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The signature theorem for differentiable manifolds
and some elementary number theory

By F. Hirzebruch

(Notes by S. Morita)

§1. A formula for the signature of a compact normal complex

surface.

Suppose we have a compact oriented manifold XAk with boundary‘

bk _ ka-l

X , which may be empty. Consider the following cohomology

exact sequence (in these notes, the coefficients will be the rationa
numbers @, unless otherwise stated).
R, vy ey — ) —
We define a quadratic form B on HZk(X, Y) by
B(ot, ) = (U p)lel
where o« , ﬁ € HZk(X, Y) and ge¢ H&k(x’ Y) is the orientation

class.

Then tﬁe signature of X, sign X, 1is defined by
sign X = sign B = p+ -p°
where pt (p~) 1is the dimension of a maximal subspace of 'HZk(X, Y);
on which B 1is positive (negative) definite. |
Now it is easy to see that o € Ke;‘y if and only if B(e« , p f
= 0 for all pé HZk(X, Y). Therefore the quadratic form B 1is
defined essentially on Imy C HZk(x), and then it is non-degeneréte;

The following lemma is a simple consequence of the Poincaré

duality theorem.
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Lemma 1. The quadratic form B on sz(x, Y) 1is non-degenerate
if and only if Y is an isomorphism. |

The definition of the signature above shows that, to define
the signature for some space X such thaﬁ HZk(X) has finite dimen-
sion, we have only to give a "fundamental class" [X] € HAk(X)'

For

if [X] exists, then we can define the signature of X exactly
the same way as for compact oriented manifolds. Precisely, we define
the signatﬁre of X to be that of the quédratic forﬁ B on H2k(x)
defined by

B(a, f) = («UB)IX], «,pe HYE).

Now by Borel and Haefliger [1], any compact complex analytic
variety M of complex dimension n has a fundamental class.

[M] € Hzn(M; Z). Therefore, if n is even, we can define the
signature of M.

Now we consider the case n = 2. Thus let M be a compact
normal complex surfacé and let M be the set of singular points
of M. Since M is normal and compact, SZM is a finite subset
of M. |

Now M- XM is a cgmplex manifold. Though it is not compact,
it has a compact differentiable manifold N with boundary as a
deformation retract. Thus we have the éignature of M- M. 'On
the other hand, we have the signéture.of M itself. But since

HZ(M) SN HZ(M -2 M)
and the quadratic forms on ﬁz(M) and HZ(M'-IEPD are the same

under this identification, it follows that
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sign M = sign (M- = M).

To calculate sign M, we blow up the singularities of M.
Since the singular points of M are isolated, we can make the
blowing up process locally. Thus let US be a "nice'" neighborhood

of a singular point P so that UP-{P} is a manifold with compact

boundary - éhp and UP is homeomorphic to the cone over EU?,
Let
I UP' — U,
be a resolution of the singularity P. Then we can write
u' = Tt"l(UP-{P}) UEy o Us)

t
.

P

possible resolutions, there is a unique minimal one and any resolu-

where' Si is a compact irreducible curve in U Among the
tion can be obtained from it by successive blowing ups.

Now a classical theorem says that the intersection matrix
(Sia Sj) is negative definite. Clearly aUP' = aUP, because
the boundary was not changed.

We have

" g ® o 0
Hy (U 5 Z) =28, © ®zZSs_

1
where Si is considered as a cycle. By the.Poincaré-Lefschetz
duality,

Hy(Uy 5 2) = BA(U) , QU )
and under this isomorphism, the quadratic form on HZ(UE) defined
by the interesection numbers and that on HZ(U ' EBUP') defined

by the cup-product (evaluated on the fundamental class) correspond

each other.
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Since the quadratic fofm of UP' is negécive definite, by

Lemma 1 and the above observation, -.the homoworﬁhism
p: 0 (U, BU,') —>HE(U,")
is an isomorphism and

. LI,
sign UP r.

Now we recall the signature theorem for compact differentiable
manifolds without boundary. It says that the signature can be
expressed as a linear combination of various Pﬁntrjégin nuﬁlber's with
rational coefficients.

Let X be a compact complex manifold vorf complex dit_nen'sj_on tv}o.
Then the signature theorem simply says that |

“ . sign X = %—Pltxl | |
= 3 (e [X] ~e (X))
where clz[X] is the Chern number and e(X) is ‘the Euler‘ number Eof
X. Now we ask whether the signature theorem holds for compact almost
complex manifold with non empty-boundary. Tht-zs let X be a compact
almost complex manifold of complex dimension twd (which may have a
boundary in the differentiable sense). |

The first problem is to define the Chern number clz’ for X.
In general, this is impossible. But if we assume
(%) e, () € Im( p: B X, v) — u2®)) ,
then we can defin; the Chern‘number clz[x] as follows. Take an
element x € HZ(X, Y) such that L) = cl(X) . Then"we have

clz[X] ='x2[g.] | [g]eHz;(X, Y), the orientation class.

‘This does not depe;nd on the choice of x, for the quadratic form
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is defined essentially on 1Im 50 .
‘Now a simple example; the 4-disk D4 (with trivial almost
complex structure) shows that the signature theorem is not true for

compact manifolds with non-empty boundary. For

» clz[D4] =0
e(D4) =1 R
but
sign(D4) = 0.

Now assuming (%), we introduce an invariant;

%—(clz[X] -2e(X)) - sign X.
(Reéall that the assumption (%) is satisfied for our case UP').
Now we go back to our original problem, i.e. to calculate the
signature of compact normal complex surface.
We define for each singular point P &€ 3¥M, the invariant
p@E)e Q by
@ @) = 31U ~2e(U;)) - sign Uy

where UP' is a resolution of the singularity P. $(P) depends

only on the singularity. This can be checked as follows. As
mentioned earlier, any resolution can be obtained from the minimal

one by successive blowing ups. But differentio-topologically,

blowing up one point is equivalent to the connected sum with V-CPZ.

Now we check how the numbers ¢ 2 e and the signature change by

1 H
blowing up. It can be shown that c]_2 goes down by one, e goes

up by one and the signature goes down by one, therefore the value

2
c, -2e
1 .
3 - sign . does not change.

-5 -
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We prove

Proposition 2. Let M be a compact normal complex surface.

sign M = 1( <, [M-2XM] -2e(M- M) + Z; w(P).

REzM
Proof. Let M' be a resolution of M We can write

M'=(M-UU)U(UU

PEZM PeZM P

Now by the Novikov additivity of the signature, we have

(1) sign M' = sign (M - =M) + > sign UP' .
PezM

We also have the additivity of the Euler number and the Chern

number which follows from a Mayer-Vietoris argument. Thus we have

(2) eM') =e(M-ZM+ e(Uy)
PezM
(3) c[M]—c(M z:M)+Z:c{U]
PezM |
From (1), (2) and (3), we obtain the formula. Q. E. D.

§ 2. Quotient and cyclic singularities and some connections with

elementary number theory.

Let Gp ={§ [ 4 P 1} » the group of p-th roots of unity

~and let q be a number relatively prime to p (0 < q < P).
Gp acts on (:2 by ﬂ

1y . oz 4

;( ) = s z., z,& C.
z 4 z 1 2
2 f 2 -
Take the quotient space CZ/GP, then it is a complex space with

one singularity , which we call the quotient singularity of type

(P, q). Let ¥ (p; q) be the % of this singularity. Then we

have

def(p;q) -%—

Theorem 3. PYp; @ = > where
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T q]j
P,

p-1 .
71:2

def(p; q) = - 2. cot cot
j=1 P

This theorem was motivated by the discussion of thé equivariant
signature theorem for 4-manifolds in [4]. The number def(p; q) 1is
‘related to the classical Dedekind sum (q, p), see [4&4]
def(p; q) = - %(qs p).
This is the first relation with number theory.

Now to calculate T(p; q), we blow up the quotient singularity,

Let
5 i

¢4 "1

27 .

3
- L
a
Y

P . . . .
be the development of E‘ into the continued fraction with a; 2 2.
Then the resclution of the quotient singularity can be represented

by the following diagram

where Si is a rational curve and each Si intersects with the

following Si+ transversely and the self-intersection number is

1

(See [3].)

Now since the intersection matrix is negative definite, we have

<f(p; q) =‘%(c12-2(r+1))+ r,

We can write

w2y



(4]
(W5 4]

here €, is the Poincaré dual of sa'l(cl)‘. Then

r
ALS, S. =2-a,.
.(iél %) J J

This is the classical "adjunction formula'". It can be checked as
follows. Let M be the manifold obtained by blowing up the given
singularity and let 1 : Sj —3> M be the inclusion.  Then
aiosj =¢ey 00, 5,7

=< i%e (), 5

=<ep(t M| 8, 8,0

=C ey (8)+ep (V) 8,5
e(Sj)+Sj° Sj

= 2-a,
J

where V is the normal bundle of Sj in M.
Now since det(SiO Sj) # 0, we can determine Ai: aﬂd;henée

Cl.

3. This was carried out by Don Zagier. |,

Thus we can calculate 9D(p; q) to get the formula in Theorem

Instead of doing the complete calculation, we only'cheék the
following simple example. |
Example. The quotient singularity of type (p, 1).

The resolution configulation is

The Chern class is

- -2
. c1 = —;— S .
Therefore
2 -2
1 P '



Hence 2

V(p: 1) = _3'—_‘-1
p2-3p+s
- 3 .

A simple formula for def(p, 1), see [4], shows that (p, 1)
def(p,1) - £
P

is equal to as stated in the theorem.

Now let M be a compact normal complex surface which has only
quotient singularities. Then we can improve the statement in Prop-
osition 2 for such M as follows.

First we introduce the Euler number €(M) in the sense of
Satake [10]. For this we consider a triangulation of M for which

all singular points are vertices. Then

e(M) = 89 = 51 + s,

where sj (j 2 1) equals the number of j-dimensional simplices

of the triangulation. In s, we count each O-simplex with multi-

0

plicity 1 if it is a non-singular point and with multiplicity %

if it is a quotient singularity of order p. Thus

eM) = (M) + L E-I;iap
P

where ap is the number of quotient singularities of order p.

Clearly,

eM=-IM) =eM)-2_ a
p P
Therefore,

e(M - M) = E(M) Zi ;l;gp :
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We define cz[M] to be equal to cz[M-QZM]. Then we can write

the formula in Prop051tlon 2 as.follows

sign M = —(c 2iM) - 26 ) + Z 50(1:)
PeiM

where 93(P) = -def(p, q) .
Next suppose we have a singularity whose resolution configuré-

tion looks as follows.

reg?2

j

with the following one transversely with Sj° Sj+1 =1 and

Sjo Sj = -bj < -2. Since the intersection matrix must be negative
definite, theremust be at least one j such that Sjo Sj s -3.

where S, is a non-singular rational curve, one curve intersects

We will write ((bl’ b2’ seey br)) for this configuration.
We propose the following question.
Question. Given ((bl’ b2’ SO br)) 'with bj : natural

number 2 2 and there is atleast one j such that b Z 3.

Does there exist cyclic singularity with the required resolu-
tion configuration?
The answer is yes. Here we show the existence as follows.

By Kodaira ([6], especially diagram Ib on p.565 and Table I, type

I, on p.604) there is a coﬁfiguration

- 10 -
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for any r, and all the self-in;ersection‘numbers are equal to
-2. On the curve sj we blow up (bj -2) points, which must be
different from the points where two curves intersect. Then\éﬁe
wanted configuration is obtained. For, since the intersection
matrix (sio Sj) is negative definite,.by a theorem of Gragert [?];
we can blow down the curves {Sj) to obtain a singularity: But B
it is not known whether the singularity obtained above is equivalént
to the "canonical" one constructed in the Tokyo-IMU lecture (see |
(5.
Its structure as cyclic Singularity may also depend on the
choice of the points to be blown down. |
Now we calculate the % for a cyclic singularity of ﬁype
((bl’ ceey, br)) (as mentioned‘above, the singularity does not
-depend only on ((bl’ ceey, br))’ but ¢ depepds only»on
((bys **, b)) ).

Since all the curves are rational, we have

c,0S, =S.08S, + 2.
R R

1
Hence
N r
c; = 2 s, .
j=1
Therefore the Chern number ca? of our singularity is

2 r
o::1 =) -b, + 2r .
j=1 J

- 11 =



¥

On the other hand, since the zero-th and the first Betti numbers are

equal to 1, the Euler number is

Therefore

99((b1, cee br)) JRRTY S.
This gives many relations to number theory and is important for the
study of the Hilbert modular group. As oneexample, we give a
special case of a theorem mentioned in [5]. |
Theorem 4. Let p be a prime number such that p = 3 (mod 4),
p>3 and h(Q(/p)) =1 and let ((bys ***, b)) be the primitive

period of the continued fraction development of /p ,

1
Jp = i

S
2 .tr'
: 1
b_ -+
bl "
with as bj 22, br = Zai. Then
(s **+, b)) = ~h(Q({7P))

where h(k) is the class number of the field k.
This is the second cqnnection with number‘theory.
Finaily we remark that our invariant % for a c&clic’singularity
is related to some other algebraic or;nuﬁber;theoretic invariants.
Precisely, for a cyclic singularity of type ((bl’ cey br))’
the boundary of a '"nice'" neighborhood of SlLl von L)Sr is a torus
bundle over the circle. If we represent the torus by mzﬁzz,

this bundle can be given by an element A’ of SL(2, Z), which
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represents the identification of the two boundary components of
[0, 1] X TZ. (Of course, A can be replacéd by’a conjugate element
in SL(2, Z)), |
As matrix A for the torus bundle belonging to the period

((bl, ceey, br))’ we can take

0 -1 0o -1 0o -1 )

A = )( ¢ 6 6 ( \/'W\
1 b1 1 b2 1 | br
( -q' -q)
p' P

where

b'z"
- L
b
1
? | . - —
P/q _bl'b-
2
o1
br-l

For SL(2, £Z), Rademacher [9] and C. Meyer [7] have studied a
function
o SL(2, 2) —> %

defined by

a b) _atd-2(,c) _ 3 sgn c (a+d)

c
(for c # 0)

where (d, c) 1is again the Dedekind sum [4]. The value of ¥

depends only on the conjugacy class of the element of SL(2, Z).

- 13 -
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The fdllowing formula is related to work of W. Meyer [8] on torus

bundles.

For the matrix A above

r
wa) =2, by - 3r.

i=1
Therefore,
L) = -30(0b,, -+, b)),
This relates our invariant ¢ for cyclic singularities with the

function of Rademacher and C. Meyer. The relation to L-

functions of real quadratic number fields was explained in [5].
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