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On a distance function between differentiable structures*
Yoshihiro SHIKATA ¥

1. Let M, N be smooth orientable manifolds with
boundary and assume that the boundaries oM, ON are
diffeomorphic each other through a diffeomorphism f.
Denote by C(oM), C(aN) the collar neighbourhoods of oM,

O N respectively and let

o : oM xlo.1) - CclaM), p 3N<«[o.1) = c(aN)

be the diffeomorphisms. Then the map which sends x(x, t)
(x e 2M, t ¢ [0, 1)) into p(F(x), 1-t), defines a
diffeomorphism F = F(f) between C(eM), C(eN) and the

identified space M \é N turns out to be a smooth manifold.

- Lemma 1. Let Mj, Ni (i = 1,2) be smooth manifolds with

boundary and let fl be a diffeomorphnism between ciMl and
aNl. If homeomorphisms g1t Ml - M2 and g5t Nl - N2 are
diffeomorphic on some neighbourhoods of the closures of
collar neighbourhoods c(aml), c(anl), then there are collar
neighbourhoods C(aMz), C(aNz) and a diffeomorphism F, of
C(sz) onto C(aNZ) so that I, \% N, is homeomorphic to
-2
\ . . .
M, Ry N, by a homeomorphism g; g, defined by

%)
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gV e (x) = { gy (x), 4if =x €My
8o (x) ,. if =x €N
Proposition 1 Let My, N:» 8 (1 =1,2), £, be as in
Temma 1. Suppose moreover that with respect to

Riemennian metrics P, . di (i = 1,2) on M;, N; respectively,

the homeomorphism g; (i = 1,2) satisfy that

Pilx, 3)/k; < 6 (x), g;(3)) € &y £ (x, ¥)

for 'x, y € Mi ’
then there exist Riemannian metrics T; on Miwﬁ N, (i =1,2)
. i

such that

Ty (x, y)/max(ky, ky) ¢ Ty(g Ve, (x), &78,(y))
¢ max(ky, ky) T4(x, ¥).

Proof Take a real valued smooth function ) such that
0<g(t) ¢1, ©(t) =0 fort <0, p(t) =1 for t 21,
/ ’ - _ :
< (%) ¢(t) =0 for t €0 or t 21,
(1 -1t%)=1- ¢(t)
and let

o M ox [0, 1) = c(eM;), /51: N, x [o, 1)—;‘c(aN1)
be diffeomorphisms onto the collar neighbourhoods. Then -
- R -1 : _ ; -1 .
%o = 8% ((gy ,OMZ)’ 14), B =8y Py (g laNZ)’ 1d)
also are diffeomorphism of M, x [0, 1), ON, x (0, 1)
onto collar neighbourhoods C(OM ), C(aN ), respectively, morecver
&t the identification map F2 obtained from.dz, PZ’ and
(g2[ GN ) f (gl HBM ) satisfies that

gz o Fl = F2 e gl On . C(aMl)o ‘
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Define quadratic forms T3 on My %{ N, (i =1,2) by
. ’ i '

(ﬁi)X o | , x € My-CM;),
(T, = { et By, + (A-9((x))) (F;%6;),, x € OO,
(gi)X , X € N,-C(dN;).

where t(x) denotes the t-coordinate of x in the collar

Cand  ~ indicates the quadmlic iorm of the melric ,
neighbourhood! Then it is easy to see that the well
o~
defined quadratic forms T i (i = 1,2) give Riemannian
X ) . '
metrics 'Ci on M, F, N;.  Since
Pilx, /% €P,(g(x), &,(¥)) <k F(x, ¥)
¢ 1 (Fy(x), Fp(y))/k,¢ 6, (esmgbmd, 8,7 (X)), g,F(¥))
it holds that ' '
~ ~ o
F1/ky R g*Pp X ¥ Py
~

F x 6’ /’.t{ o( (F * &
g N —
1 1/ %2 1"V 2 2) = (g2 F])*l52 - kB ¥ 61 .

Therefore the metrics T, satisfy that
T

Tl/ﬁax(kl, k2><< g1% Ty <X max(kl, k 1

5)
on C(bMi), thus from the construction of gl‘J g, we may
conclude that _
T (x, y)/max(ky, ky) € T,((gVe,(x), (g:Y,) )
s max(ky, k) T9(x, ¥). |
Let M, (i = 1,2) be smooth manifolds with metrics

@Pi(i = 1,2) and f be a map of M, into M2, then we define
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L(£: &4, 8 5) by .
Lg: Pqs o) =inf k2 1/ P(x,3)/k < Po(E(x), £(¥))
< kfl(x, V), for any %, ¥ € M_}
Definition {iet Zi(i = 1,2) be differential structures

on a combinatorial manifold X represented by‘smooth
manifolds Mi(i =1,2) with Riemannian metrics \Pi(i =1,2).
The distance d(Z_l, Z.z) between the differential structures

is defined to be
» d(Z.l, Z ) = log ( inf ‘t (f xPl’ 2))
where the infimum is taken over all the piecewise llnear

equivalencestof of Ml onto M2 and all the Riemannian metrics

f]j‘fz. It is known ([S]) that 4 is actually a distance
function.
Theorem 1 Tet L | =1,2, j =1, 2% be differential

1,3 W”
structures on cominatorial manifolds Xl, then it holds that -

- # £] | L
ALy %L, Ly, Zz,z) ¢ max(a(2y 1,25 1), d(zl,Z’ 2,2))
where ] 1 1#'21 , denotes the differential structure

? 9 .

obtained by the connected sum.

Proof Represent Z: 1,3 by smooth manlfolds My g and for
’
£ >0 take piecewise diffeomorphisms g, of M, into M,
i i1 i,2
and Rlemannlan metrics f 3 ofr My 5 80 that
, ]

10g£(gi, fil"fiz)s d(zil’zi2)+£
Assume that 83 are diffeomorphic on neighbourhoods of
points FPi € Ml 1» ‘then after cutting out small imbedded
disks around Pi’ Mi,j and g; turns out to satisfy the

assumption of Proposition 1 with k; = e(gi; ‘Pi,l’ ‘fi,z)’
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Since identified manifolds Ni j‘v'Mé 3 represent the
b4 ? .

connected sum ) , .* L. ., we have that
i,3 2,3

d( 21,1#22,17 Zl,ZaZ‘Q,Z) £ m-ax(log kl, log k2)

finishing the proof.

Corollary 1 Tet Fk be the group of k-dimensional
homotopy spheres, then it holds that
ALy + L5 Zy+23)=a(2y, 2,)
for auy Zi Gf'k (i =1,2,3).
Corollary 2  The subset [’k(a) of Fk given by

[ () ={Zel /a5 7)¢a)

turns out to be a subgroup of I'k’ where Sk denotes the

standard k-sphere.

Corollary 3 Let M (i = 1,2) be k-dimensional manifolds

such that M, ~ M, # L (Qiffeomorphic) with X¢€ Fk(a), then
d(Ml’ Mz) L a.
Corollary 4 Let Diff Sk"l denote the set of orientation

preserving diffeomorphisms onto itself and let W denote

the projection of Diff Sk—1 onto Iﬁk, Take the usual
metric | | on s¥~1 induced from thet of RX D s¥1, then
it holds that

a(s®, m(£)) ¢ 1og L(£;11, 11 ).

Proof Extend f radigally to a homeomorphism g of disk
Dk k-1

onto itself which bounds the sphere S and apply

Temma 1 to disks DY, g, id and f:

¥ > ap¥ —I 3ok ¢ ¥

| o |

DX K



to obtain a homeomorphism g UV id and a dlffeomorphlsm

F' of BDk onto itself Wthh can be chosen tofﬁdentlty

2
Since it is obvious that

(g 11,0 0)= Llgsit, 11D,
Proposition 1 yields that
a(skt gz s¥L, () ¢ log L(g£; |1, 1 1).
2. The partial converse to Corollary 3 holds as in the

following:

Proposition 2 Let f be a homeomorphism between k-

dimensional manifolds Mi’ (i = 1,2) with Riemannian
metrics“Pi( i ='1,2) and assume that f is diffeomorphic
except finite number of points Py, ... Py € M; then

M, = My Z(diffe'omorphic) with [ ¢ fk(log L(f; L1 fz)) .
Proof Imbed small k-disks D; around P;, then the images
f(Di) turn out to be summanifolds in N. Apply Lemma 1 to

manifolds Di, f(Di), diffeomorphism f[ oD and homeomorphism
i

R -1
id, £
- ¢ oo, .

| D; > 3D; i .3(2(Dy)) < £(Dy)

J id 1 J

id ‘

D, > aD; . . 8D, C D,

to obtain homotopy spheres Zi = Dy ;{ f(Di) and a homeo-

1

-1 between the homotopy sphere and the sphere

morphism iaV f
Si' Because of Proposition 1 there are Riemannian metrics
dll, 621 on Zi, Sy» respectivély, so that
pa v e @, 6,0 ¢ L(E Py, Py
Therefore we have thaEﬂ
I, e T W)f L1 Fo))e
On the other, since it is easy to see that
My o Mpp I g » 2_27 S 2 S

This finishes the proof.
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In general concerning the first obstruction of’
Munkres ([}]) to smoothing f, we obtain the following:
Proposition 3 Let Mi (i = 1,2) be smoothly triangulated

manifolds with Remannian metrics fi (i = 1,2) and let L

be a m-dimensional subcomplex of ﬁl' If a homeomorphism

f of M; onto M, is diffeomorphic mod. L, and if £ (f: fl,\fz)
<, = 1,32 for the positive root {, of xo-x-1 = 0, then

the first obstruction chain A(f) of lMunkres %o smoothing

f lies in

L
Fk_m%{(f) (1-(L2(2) - g (£))%)7H4)

Proof Mﬁnkres obstruction is obtained as follows:

Take an m-simplex 616 L and.fake trivializations of normal
bundles as cobrdinate systems around ¢ and f(K) so that

the tubular neighbourhoods of § , £(d) are diffeomorphic

to dx R¥®, 1£(¢) x R*™, respectively, then if &>0

is sufficiently small, T-f- ip is a homeomorphism of the

&~ disk Dg around O into RE® for the inclusion iP:

R » p xR = and for the projection 7: £(d¢) x g0
RE™ thus the obstruction A(f£)(¢) is defined to be the

homotopy sphere obtained by glueing the boundaries of'

Dy, and 7-f qiP (Dé) through 7Tf- ip.

Hence it is sufficient for the proof of Proposition 3

to compute f ( 7-fo ip; ‘Pl’ kFz) (see Proposition 1) and

because of the regularity of f at I ([M] p.526 (4)) fﬁe

compulation is reduced to the foldowing Assertion;
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Assertion Let g be a map betweén manifolds N; (i =1,2)
with Riemannian metrics ¢ (i = 1,2) satisfying that
L (g: &1, (2)<K<€0
theﬁ if g is differentiable along any vectpr of anm
dimensional vector spacé v C ?P(Nl), the angle © Dbetween
the vector exp2—¥ g- expq (y), 0 and the plane dg (V) is
not too small, in fact © satisfies that
| cos 8 < KO- K <1,
for any ¥ in orthogonal linear subspace W to.v; provided
ly! is sufficiently small.
ffroof qf Assertio# : Taking an §-disk D, of O in Tp(Nl),

we may assume that 'é = expz_%geexpi 'also satisfies that
D LG 11,11 <K <L
Let x € V be such that |[x| = |y], then it holds that
2 <r(x), £y = [£@I2 + (£17 - 2 - £33
< *AKf(yxxz 1312 - x-y1%/x
= 2[x|® (K- 1/,)

also it holds that »
2 <£(x), £(¥)> > 2[x]° Q4 - k)

therefore we have that |
leos (£ 0, £ Ol <K’ -w

finishing the proof of Assertion. |

Thus taking the regularity of f into consideration, 'may

conclude that by an application of Assertion to g = f @ip,

K -03-02) 2 p L (mei(x), e, ())/Fi(xy) € K



On a small disk arocund O, completing the proof of

Proposition 3.

3. The method in 1, 2 apnlies to obtain a weak estimation

of the pinching of a exotic sphere. Let M M2 be combina-

1
torially equivalent compact manifolds, then according to
the construction of Hirch-Munkres (I7), we may have a
sequence of compact manifolds Li (i=1...k) such that
i) L; are combinatorially equivalent to My, M.
ii) Ll = Kl, Lk = M2 (diffeomorphic).
iii) Li+1 is obtained by attaching of ZJ X In_j to
| L; through a certain attaching map. ( Z;j € [’j).
Now suppose Ml, MZ have different (integral) Pontrjagin

class, then for some ilLi’ L have also different

i+l
Pontrjagin classes. Since we know that manifolds having
different Pontrjagin classes are of distance 2 1/2 log 3,2
(82), we have that

(1) 1/2 log 3/2

7o)

AT, Ij4)
¢ max(d(L;, L), da(s? x 179, £I x 179))
< d(sj, LY.
Here the last inequality follows froﬁ an easily proved
Lemma below:
Lemma 2  If Mi,’Ni denote a pair of combinatorially

equivalent compact manifolds (i=1, 2) then

d(Ml x M,, Nl x Nz) < max (d(Ml, Nl), d(Mz, Nz))
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On the other as is improved by Zarcher (uﬁpublishéd,
see aiso (83)) § -pinched Riemannian manifold Mg (& 2 9/16)
- has distance 4(i—f§) from the standard sphere S, there-
Rfore if the exotic sphere Zj in (1) is;expresseé as a 0-

pinched manifold Mg, & must satisfy that

1/2 log 3/2 ¢ 4(1-{3).
hence
§ ¢ 0.64
thus we may conclude that a certain exotic sphere of
dimension € 16 which aﬁpears in the obstruction chain to
sﬁoothing a combinatorial equivalehce cén}not be pinched
by 0.64, because we know that there are compact 16 mani-

folds having different Pontrjagin classes.
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