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On the infinitely multiple Markov property of

stationary Gaussian processes with a multi-dimensional parmeter

by
Shinichi Kotani and Yasunori Okabe

Osaka University

§1. Introduction

In this paper we discuss stationary Gaussian processes
for which the parameter domain is awd—dimensional space
rather thaﬁ the usial real interval.

P. LéVy, H. P. Mckean, Jr., and etc. defined another Markov
property of stochastic processes which contained the definition
of usual one. Our interest is in the determination of all
stationary Gaussian processes with the Markov prbperty.

In one dimensional case, N. Levinson and H. P. Mckean, Jr.
resolved this problem completely in their paper [i].

On the other hand, G. M. Molchan [2] introduced a Hilbert
space associated with process to consider the problem in the
field of the theory of differential equations. And recently
Y. Okabe tS], G. M. Molchan [4] and L. D. Pitt [5] characterized
the Markov property by a locality condition of the Hilbert
space used by G. M. Molchan, and then Y. Okabe simplified and
advanced the resultsydf N.jLevinson and' H. P.yMckean,;Jr;:by
using the theory of Sato's hyperfunctions [6] to understand
an entire functibhrof inffd-exponéntial type as a local

operator in the space of hyperfunctions.
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In this paper following the idea in [3], we give a

sufficient condition for the Markov property.

§2. Reproducing kernel Hilbert spéce and Markov property
Let X = (X(x);xEﬂfH be a stationary Gaussian process
with its parameter in Rd and its value in. R. We denote
by R the correlation function of the process, i.e.
R(x-y) = EX(x)X(y)
, and introduce the Hilbert space H with the reproducing
kernel R and following subspaces of H ; for each open subset

D of Rd,

= {ué}f|u=0 on D} ,
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(H%(D))L (the orthogonal complement),
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;; }f((aD) ) (the present),

where D = {xe:Rd'tdis(x,D) < % } etc.

When jl is the projection of M ~onto H (D) , the
relation below is trivial:
(2.1) MDICH D) AR I LK @ .

Now we can state the new definition of Markov property.



Definition
We say the process X has the Markov property in D

if and only if

(2.2) PR @ =KD

Remark 1

Roughly speaking, if ¥ has the Markov property in D,
then the 1east squares prediction of ﬁhe fﬁture under thé
condition that we have known the past depends upon the
informations of X in only nearest neighbourhood of the

boundary 3D.

Remark 2
We can also state the Markov property in terms of

Borel fields [for example, see [5]].

§3. Proof of Markov property of X

In this paper we assume that the correlation function R
has a spectral density A

Before proving our theorem, we quotate some notations
and results of the theory of Fourier hyperfunctions introduced

by M. Sato [6] T. Kawai [7].

d d

We denote by D the radial compactification of R and

by R the sheaf of Fourier hyperfunction which concides with
the sheaf of hyperfunciton (3 on Rd. Let ([, be the
space of rapidly decreasing holomorphic functions, then the

next identificaiton . can be shown:
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(3.1) RO ~ @)

(in details, see T. Kawai [7])
We remark that we can represent the space 8 by the

density A as follows:
N\
(3.2) H = {u; u=fr , £e1%(0)} ,
where ‘) is the Fourier transformation, i.e.

FAcE) = I e 18 Xex)ax)dx .
pd

Because of (3.1), we can regard }-f as a subspace of R(Dd).
Next, we impose the following assumption as to A

through this paper.

Assumption: We assume that A satisfies the
condition A and either one of the conditidns B, C;
A: A is a reciprocal of an entire function P of
infra-exponential type, . |
B: there exist a positive number tO > 0 apdxa monotone

decreasing, nonnegative function g on [to,m) such that

Jm lEE_%LEl dt > -

1+t
to

d

and g(|x|) < A(x) for any x¢ r® x| > t

0 )
C: there exist positive numbers tgs Co > 0 and a continuous

function h on [to,w) such that
h(t1+t2) > cC h(tl)h(tz) for any trty > ty

and h(|x|) < A(x) for any x€RrY , x| > t,



We denote by H the supporting function of a convex

D
set D and by h? the p-indicator of an entire function
‘? on Cd . Then, by the results proved by O0.A. Prensjakova
[8] and O. I. Orebkova [9] under the above assumption, we

have, for any bounded convex open set D of Rd N

(3.3) the closed linear hull of {e''¥*; xeD} in Lz(Aj

= {C;PGLZ (A); & can be extended to an entire fﬁnction (@ on Cd
and there exists a convex set D,C D such that hy, < H, 1.

? # ~ "Dy
Therefore, by (3.2), (3.3) and the theorem of Paley-Wiener

type in the space of hyperfunctions ([10]), we have

(3.4) MM C{ueH; p(id)u=0 on Dd-]')' as a Fourier hyperfunction}
for any bounded convex open set D of Rd .

Now, we can prove our main theorem.

Theorem

For each bounded convex open set D of Rd , X has the
Markov property.

To prove this theorem, we need a lemma, which is shown
later.
Lemma

For any positive integer n, there exists some integer

m=m(n) > n such that

fweR[p@Eau =0 on 0\ (3D)73C H((2D)n) ,
where D 1is any bounded convex open set.
Proof of Theorem: |
Noting (2.1), (2.2) can be reduced to the following

statement:
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(3.5) For each positive integer n and m=m(n) of Lemma

PFHD YD FHBD))

But observing that fé(D) is generated by functions of
R(--x), x€D , it is enough to show (3.5) only for such
functions, and this follows from usual technics of Hilbert
space, Lemma and (3.4).
Proof of Lemma:

For n, let us fix small m which is determined later

and u € # such that

(3.6) p(id)u = 0 on DY\ (eD) .

To show ué&fe((aD)n) , it suffices to prove

(3.7) (v =0 for any Ve (e )

v E }e((aD)nTL implies

[}
(o)

(3.8) v on (D) .

foa>

However, supposing by (3.2) u =

"UIH")>

and v = D we obtain

the following equality:

A

, fg _ fg
v, JRd e - 20
and
,/\_.
(3.9) EP& = (p(id)w) sy  (V(x)=V(x))



in Rd
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On the other hand by (3.6), p(id3)u has a compact support

and, if we regard (3.9) as equality in 45 , we then

can justify this convolution by usual integration in the

theory of hyperfunction  [6].

Noting (3.6) and (3.8) we can find small m such that

(p(iB)u)*V =0 on a neighbourhood of O ,

so that, by (3.9), we have

on a neighbourhood of O

S >
1]

N\

- ~
But, since %%ééLl(dx), %? is continuous, so €§{O)=O

and this shows (3.7). Consequently, our theorem was proved.
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