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Some applications of hyperfunctions to the abstract Cauchy problem
and stationary random processes

By Sunao Ouchi

Recently the theory of hyperfunctions makes progress, and it becomes
a powerful tool to ihvestigate thé theory of partial différéntiélVéqﬁafions.
But, except it, the theory of hyperfunctions is scarcely uséd.

In this note we will show a few applications of hypérfunctions.
In §2 we report a few results on hyperfunction solutions of the abstract

Cauchy problem

at’
u(0)

where- A 1is a closed linear dperator in a Banach space X and a € X.

.{ M = A.U.(.-t)

a s

We discuss conditions for eXistencé, uniquenésé and régﬁiérity.gﬁfhf §3
we define stationary random hyperfunctions which are.more géneral %han ‘
stationary random distributions studied by I.M. Gelfand and N.Y. Vilenkin
[7] and K. It8 [8], and show their elementary properties. Appendix

_is concernedwith positive definite hyperfunctions.

The author hopes that the methods and the notions in the theory

of hyperfunctions are useful for various fields 6f analysis.

1. Preliminaries. We denote by )3 the sheaves‘over R" of
germs of hyperfunctions and by  the sheaves over Cﬁ of hnlomorbhic
functions. Let U be a set in R® (or C®). Then Bw) ( @ )
denotes the set /7 (U,RB) (/7 (U, &), respectively) of sections over U.

Z In the following we shall use vector valued hyperfunctions of one
variable. Let E be a Banach space. Consider the space o ({2, E)
of all E-valued holomorphic functions defined on [ s where L2 is

an open set in Cl. Let S %be an open interval>in Rl. We define-an
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E-valued hyperfunction to be an element of quotient space:
O(p-s8,E)
O(p,E) ,

where D is a complex neibourhood of S , which contains S as a closed

B (s,E)

set. For E-valued hyperfunctions we can establish results similar to
the case of scalar hyperfunctions. We refer the reader to H. Komatsu

[9], M. sato [12] and .P. Schapira [I3] for the theory of hyperfunctions.

§ 2. Hyperfunction solutions of the abstract Cauchy problem.

Let E and F be Banach spaces whose norms are ll-'(E and‘ " .ItF
respectively. L(E,F) is a Banach space consisting of all bounded linear
operators from E to F equipped with the operator norm denoted by
I - | ExF - The set L(E,E) is written L(E) for short.

Let X ©be a Banach space, and A a closed linear operator
in X. The domain of A with the graph norm is a Banach space and
is denoted by [D(A)]. P (A) means the resolvent set of A.

In the following I is the idetity mapping, in particular Wé shall
use notaions IX and I[DLA)} which are the identity on X and
on [D(A)] respectively.

Definition 2.1. A closed operator A 1is said to be well-posed
for the Cauchy problem at t = 0 in the sénse of hyperfunction (well-
posed, for short), if there exists T € 3 (Rl , LOX , [p(AY]) )
satisfying the following conditions: |

(2.1) - support of T < f0,°°) 5

(2.2) (W @r- Sw@nsr= §)I®T, ,
(1) / = ey
T () @1 - §()@n) = S)®T

where g;(t —'C) is Dirac measure at t = T, ¥ means convclution,
E; (k)(t) k=th derivative of g:(t) and &) tensor product.

We shall call T in the definition a fundamental solution.
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Remark 2.1. If A is well-posed, then the fundamental solution
T is unique in ﬁ (Rl ; L(x, [D(A)]) ). This result easily follows
from the facts that T is a two-sided fundamental solution and
its support is contained in [0,09).

Theorem 2.1. A closed linear operator A 1is well-posed i.f
and only if the resolvent of A satisfies the condition:

(2.3) For any 820 there exists Kg such that 2=
{ A 3 ReA2€mAl + K¢ is contained in P (A) and in this set
| Ov- 4 )-l“ k < Cg exp(&(A|) holds.

X=X
Theorem 2.2. A closed operator A is well-posed and its fundamental

solution is holomorphic in the sector 3= { z; |arg z|d, 0<°(<'21§§’ )
if and only if A satisfies the follqwing cqndition:' ‘
(2.4) For any £ > 0, there exists a real (g , and
for any N in the sector Zg =[x ;| arg(d - We)|<6> 0=%‘+ o - ¢ )l s
we have (N - A )_l & L(X) with the estimate " (AN -4 )—l" X=X
4-; Cg expL&[)\I). v -
Theorem 2.3. A closed operator A 1is well-posed and its fundamental
solution is real analytic on the positive real axis, if and only if
A satisfies the condition:
(2.5) For any £> O . there exists K¢ and 0 <§5 <¢,
and for any )\  in the set 2£= {’)\ 3 € ReA2 -%slmA| +Kg k R

——

(A-2)"" & L(X) exists and the estimate I - ISl ’X——>X

Ci exp ( ¢ |ReA| + YefmA | ) holds.

Remark 2.2.  Distribution solutions were investigéted_by J.xChaza¥ain
[3], G. Da Prato and U. Mosco [§], D. Fujiwara [6], J.L. Lions [10]
and T. Ushijima (4. J. Chaiarain (3] characterized well-posedness
of the abstract Cauchy problem in the sénse of distribution. Compairing
Theorem 2.1. with his result, we conclude that operators which are
well-posed in the sense of hyperfunction contain those which are
well-posed in the sense of distribution.
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The criterion which correspond to Theorem 2.2 in the case of

distribution solutions was given by G. Da Prato and U. Mosco [5]

and Fujiwara [6].

The same results in this section were reported in S. Ouchi

[1¥] and in it outline of proof of Theorem 2.1 is shown.

§3. Stationary random hyperfunctions. Let £) be a measurable
space of elements W with a 6 - algebra m , on which there
is defined a probability measure P(dw). In this section we

shall restrict ourselves to complex random variables with mean 0

and finite variance. The set of all such random variables constitutes

of a complex Hilbelt space }L with the following inner product:
(3.1) (X,Y)=E(X,Y); E: expectation.
Definition 3.1. A random variable Xz(w) is said to be a

stationary random hyperfunction, if it satisfies the conditions:
(3.2) x (e O(ct -5 ,¥#)

(3.3) Xz(w) is transiation invariant in the following
T = T 1
sense, E(Xz, o 22_'_ h) E(X . Xiz) for any h€R™ .

From Definition 3.1, we may say that Xz(w) defines hyperfunctions

for almost all wWef) , by means of the result Arnold [l] or Belyaev
Tue o

[2]. Namely we have

Proposition 3.1. For a random variable X (W) which satisfies

(3.2) , there exists a random variable X (w) deflned’g_g&\—R ]
zE

with the properties:
M~ .
(3.3) X, (w) is holomorphic for almost all wW&f), that is,
/\
Twe O ot - Rt ) for almost all wel) .

(3.3) P(,Xz(w) = I)EZ(w) ) = 1 for every ze(Cl - Rl).
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Now let X (w) be a stationary random hyperfunction.
Set Y (z) = E(Xz, X 1)’ which is an element of *.%“O’(Cl-Rl).
3 -1 _
Proposition 3.2. The holomokrphic function %’ (z) is represented

in the following forms

"/)(,Z)= j:;i)\z d}*l@) LIn;zf—‘y)O )
¢ (z) = Fei)‘zd)‘ZQ\) (ITmz=y<0)) ,

-0
where the measures satisfy

@
J ‘e"w"*d}«i(k) L% (i =1,2) for any €7 0.
sw - - .
Define a function F@)€ O ( ¢ - ') as follows:.
n 1o
g (2) /oe:” ap™)  (yro0)
$z)= [ apn) (y<o),
w0
where M =}‘l+ Moo

The hyperfunction ¥ defined by ﬂ’ is a Pourier hyperfunction

and , measure is unique as a Fourier hyperfunction. We eall the
the )

measure Fmggectral measure of Xz(w).

Pat  f (z),2,) = - B( X, ,_f_;;), which is in  (F ((c*-BY)x (ct-rh)).

Definition 3.2. The hyperfunction %t‘ined by f(zl,ze) is
said to be a covariance hyperfunction of XZ (w).

Theorem 3.3. The covariance hyperfunction Fof Xz(w) is
coincident with the hyperfunction G defined by g(,zl,zé)G'O((Cl-Rl)X (Cl—Rl))
whichlis
=0 (y»0, y,>0)

- /:ei(zl’zz) ap () (y;> 0, ¥,<0)
0 ( y<0, y,< 0)
- foei<zl'ze) am &) (y,<0, y,70)

—i
Thorem 3.L4. For a stationary random hyperfunctio X (w) with the
" zZ

o]
i

spectral measure/.( > there is a stationary hyperfunction 5(\ (W) which
z

is expressible in the following form:
w0
D _ ixz
X, (w) = /., Mr)  (yy0)
iXNz
- [N ey (yeo)

Jw
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where M(dX\) is a random measure with respect to the measure M ,such

thét Xz(co) and 5(\2(«9) define a same M -valued hyperfunction.
Remark 3.1. Theorem 3.3 corresponds to Khinchin’s theorem

and Theorem 3.4 to Kolmogoroff’s representation formula in the

theory of classical stationary processes. Se€ H. Cramér and M.R.

Leadbetter [4] for the classical case.

Appendix
Let F Dbe a hyperfunction on R® . Then there is a function
" . ,
f(z) € T(c -Rr such that F 1is represented by the boundar
) €0(T(C - R) ).such D y y
(Ze€M)
value of f(z). So we can write

(4.1) P=2_Nels( x+1i&y ) ,
e

where £ = (81,52, Ign) R 5i=lor -1 and»ﬂEﬂ=El*‘82" =&

n.
For such representations of hyperfunctions we refer to Schapiral(3].
Definition. A hyperfunction F 1is said to be positive definite
if there exists f (z)&§ ( 11:\( (C-R)) such that |
(4.2) id;&; NENTF Cxg =2y +F1 §) 20 nolas
for any d:€C ’?:14 the set Z‘E = { z Giyi70 , 1= 1,2...’n)kand
any & = (21,3, ... €n)
Theorem. ‘ Every positive definite hyperfunction F is represented

by the Fourier transform of a measure, that is,

= 1y
(4.3) F= 4}1 Dam N

where the measure j'{ is unique as a Fourier hyperfunction and it is

tempered in the sense of hyperfunction, i.e.

(4.14) fe‘s‘“ apuA)< 0O for any £7 0 .

n
Remark. For a positive definite distribution, the measure correspond

to it is tempered in the sense of distribution, i.e.

(k.5) f ‘ apx) < for some m. (See I.M. Gelfand

and N.Y. Vilenkin [7] )
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