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A New Kind of Boundary Layer over a Convex
Solid Boundary in Rarefied Gas
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Abstract In a flow of a slightly rarefied gas over a
solid boundary, a new kind of boundary layer the thickness
of which is of order of the mean free path squared
divided by the vadius of the curvature of the boundary

is proposed to exist at the bottom of the kinetic
boundary layer (or Knudsen layer) when the boundary

is eonvex in shape.

The new kind of boundary layer is demonstrated by
investigating the asymptotic behavior for small mean-
free-path limit of thermal creep flow around a c¢ircular
cylinder which has a constant temperature gradient along
its axis.

As is well known, in the flow of slightly rarefied gas over
a solid boundary, a thin layer with thickness of order of the
mean free path appears adjacent to the boundary. It is called
kinetic boundary layer or Knudsen layer. In the present paper
we propose that a new kind of boundary layer the thickness of -
which is of order of the mean free path squared divided by the
radius of the curvature of the boundary exists st the bottom
of the kinetic boundary layer when the boundary is eonvex in
shape

We demonstrate the new kind of boundary layer by investigating
the thermal creep flow of a slightly rarefied gas around a
circular cylinder which has a constant temperature gradient
along its axis. We take the Cartesian coordinate x=(xl,x2,x3)

with X3 as the axis of symmetry of the circular cylinderr(Fig;l).
The temperature T of the cylinder is assumed to be

T, T (l+k(x /a)) where a is the radius of the cylinder and k

is a constant (aT Lar /dx ). We investigate the asymptotic

behavior for small Knudsen number of the flow induced around
the cylinder by the temperature gradient in the absence of the
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pressure gradient and derive the explicit expression for the

new kind of boundary layer. We use the Boltzmann-Krook-Welander
equation. Diffuse reflection is assumed as the boundary
condition on the cylinder. Further we assume that the temperature
gradient is so small that the fundamental equation and boundary
condition may be linearized.

Proceeding in the same way as in, the analysis of the thermal
creep flow through a circular pipe” (referred to as Case I), we
can show :

1) The temperature and density of the gas are functions of

X

3

only and the pressure is uniform. Namely, the temperature

T is given by

2) The velocity has only the x

independent of x

T = T, (1+k(x,/a)). : (1)
3—component ug and it is

3* The velocity (in its non-dimensional

form ¢) is determined by the following integral equation.

- é” ToalRR ) yJ Tp(a[R=R )~To(A[R-R)D) o
Ty TRRT o "))y RR, | 0
where |
Jn(t) = ooocnexP(-Ce_ E)dc s V= Qk_l(QRéTO)—l/2u3 s
X X,
1 2 o -1/2
R = a,a ) s A= Aa(QRgTO) .

The R_ is the gas constant and A is a constant (collision

frequency) related to the mean free path I as

L=

_l/ek—l(BRgTo)l/e. Thus, the A is a quantity of

order of the inverse Knudsen number (a/l). The domain of
integration D is the shaded region extending té infinity
outside the circle R = 1 where R = IR] in Fig.2.

We investigate the asymptotic behavior of the solution y of
the integral equation for large value of A. Because the function
Jn(t) vanishes faster than any inverse power of t as t = = ,
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the integration over the domain outside the circle with its

center at R and its radius of order of At contributes little

to the total integral over D and can be neglected when we
evaluate the asymptotic behavior of the integrals in Eq.(2)

for large A. The substantial domain of integration is classified
into the three cases as shown by shaded domain in Fig.3a,b,c
depending on the distance between R and the boundary (i.e.

R-1>0M4Lom4)13-1>0m€LoM*LiR-lioﬂ.
As will be discussed briefly below, the solution behaves
differently in these three ranges of R corresponding to this
difference of the domain of integration. Namely,

a) In the region [(R - 1) > O(A'l)], the state of the gas does
not change appreciably over the mean free path and admits
fluid-dynamic-like description. Thus, the region is called
fluid dynamic region.

b) In the layer [0(A™2) < R - 1 < 0(A™%)], the length scale
for variation of the physical variable normal to the
boundary is of order of the mean free path. The layer is
called kinetic boundary layer or Knudsen layer.

¢) In the much thinner layer at the bottom of the kinetic

boundary layer [(R - l)j_O(A_e)], the length scale is of
:rder of the mean free path squared divided by the radius
of the curvature. This new type of boundary layer is
characteristic of the behavior of slightly rarefied gas
over a convex boundary and is hereafter referred to S-layer
for convenience.
Much has been done on the fluid dynamic region and the kinetic
boundary layer in general (e.g.,Refs.2,3,4). It is the purpose
of the present work to demonstrate the new boundary layer (S-layer).

Here we do not have enough space to give the complete description
of the analysis of the problem. We briefly describe how the S
layer makes its appearance in the solution of Eq.(2) for A - =,
Let us observe the inhomogeneous term in Eq.(2). The integral
can be divided in the following two terms,i.e.

IID = ffDl - IID2 ,

¥ Over the concave boundary the situation of Fig.3c never
occurs and that of Fig.3b holds for the whole range of

0<R-1 5_0(A'l).




where D. is the region given by R > 1 and D2 =D, - D in Fig.2.

1 1
The asymptotic behavior (for A + «) of the integral over D can
be analyzed in the same way as in the Appendix A of Ref.l.

It is sufficiently small (smaller than A™" for any n) in the

region R - 1 > O(A—l) and appreciable only in the layer,

R -1 E_O(A-l), and shows the same behavior as kinetic
~boundary layer. Next the integral over D2 is considered.

When R - 1 > O(Arz)(Fig.S(a),(b)), the domain of integration,

D,, lies outside the circle of radius of order of A_'l with
cénter at R so that the integrand is sufficiently small

(smaller than A_n for any n). So does the integral over D2
there. When R - 1 f_O(A—e)

overlaps the circle of radius of order A—l with center at R

(Fig.3(c)), a part of the domain D,

where the integrand is no longer small and of order of IRO— R]—l
since the argument of the functions Jn is of order of unity.

Thus, the integral over D2 can easily be seen to be of order of
A—2 in the thin layer, R - 1 j_A_g. The behavior of the
inhomogeneous term suggests the behavior of solution of Eq.(2),
especially the existence of the S layer and that it is of order
of A72, v

Here we give only the result of analysis. The solution is
split into three parts i.e.

1]

b wH(R) + wK(n) + ws(y) R (3)

where

n=AR-1), y=An-= A°(R - 1) .

The wK and ws vanish as n and y > « respectively. The wH is

called the Hilbert part of the solution or the génefalized
slip flow and describes the behavior of the gas in the fluid
dynamic region. The wK is the correction to wH in the kinetic

boundary layér. The ws which is the distinctive feature of the
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present study gives the correction to wH and wK in the S-layer

at the bottom of the kinetic boundary layer._l

Each part is expanded in power series of A = i.e.,

12 1J
= JHL L CH2 L,
L (I S
A
] 12
K1 K2-
lp = — o —— s 0 8.0 5
v
S2 -
1{) = ——— 00 e
S A2

wHO is zero and wHi is some constant (say di) in the present
problem. The numerical value of di is uniquely determined

simultaneously with wKi by solving the following integral equations

under the condition that wKi + 0 as n > o,

by = T5(n) = (@) + $)3(n) + [ (In = ngDang ,(5)

/r

Yo = - éifngl(no)dno + I5(n) - a35(n)
+ j;¢K2J_1([n - nol)dho . (6)
In comparison with Eqs.(15b),(16b) in Ref.l, we have

4, = dpy (in Ref.l) = 0.766 ,

Up (n) = Qp () (in Ref.1)

d2 = - dTQ(ln Ref.l) = - 0.267 ,

Vo = = QTz(n) (in Ref.1) .

The QTl and QT2 are plotted versus n in Ref.l. The first order
slip flow dl and its kinetic boundary layer correction le are

the same as those in Case I. The second order slip flow d2 and

Sy
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its boundary layer correction ¢ are opposite in sign to
those in Case I.

The wSQ is given in the following form :
~/2y)°
Vo = = (a; + ¥ (0) + 1) —3-——1¥—-J (t)at
s2 K1 &f§
2
- fm (t-v2y)” J (t)at}
/2_3’ t 2
1 Jolt)
= = [(a; + v (0) + 1){23) (V2y)-ba,(V2y)- QYIai“fE——dt}
(351460, (B ey 2], (0
- 2J +6J 2y )+2 —dt T
6 yrrey y/§§ :

d. + 0) +1=1.220 .
)+ b, (0)

For large values of y,

Ha,(/37) = (5 + ap + 4y (00)3(VBy) + +++]. (8)

Yso
Since Jn(t) (w/3)l/2(t/2)n/3exp[—3(t/2)2/3] for t>>1, ¢

tends tc zero faster than any inverse power of y as y -+ o,
For small values of y

ne

_1./m
oo = 7T (5 - 4y - v (OD)+(ay + uyy (00)V25 + +o2),
(9)
It can be shown that wSZ first increases monotonically to its

maximum value and then decreases monotonically to zero as y
goes from zero to infinity (thus, Yoo is always positive).

The wSE is plotted in Fig.4k. The non-monotonicity of wSQ does

not mean that the velocity ¥ is not monotonic in the region
y <0(1). Due to the Vi1 in (3), ¥ is shown to be monotonic

increasing in y < 0(1). Since y = A2(R - 1), the thickness of
the layer is of order of ah” (Nl2a l: the mean free path squared

™y
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divided by the radius of the curvature). It is noted that the
ws(the S-layer) is not present in Case I where the boundary is

concave in shape. It may be added that the S-layer is not a
special character of the present example but a general feature
of the behavior of s slightly rarefied gas over a convex
boundary although the analysis for the general case is postponed.

Finally we consider the difference of the behavior of a slightly
rarefied gas over a convex boundary from that over a plane or
concave boundary physically (Fig.5). At a point P near a solid
boundary an appreciable portion of the gas molecules there has
come from the boundary directly without experience of any collision
with other molecules. The contribution of the molecules to the
state of the gas may be called the direct effect of the boundary.
If we pay attention to the molecules which have directly come
from a specified point S on the boundary, we may call their
contribution the direct effect of the point S. Only a part of
the boundary which lies within the distance of order of the mean
free path from the point P gives a substantial contribution to
the direct effect. The direct effect of a point which is far
away from P on the scale of the mean free path is negligibly
small. In case of a plane or concave boundary, any point of the
boundary which lies within & distance of order of the mean free
path from P gives its direct effect on P. 1In case of a convex
boundary only the part between A ahd B of the boundary in Fig.5a
gives the direct effect irrespective of the distance AP, If
the distance between P and the boundary (distance PO) is at
least of order of the mean free path, the distance AP is much
longer than the mean free path and the boundary point which is
within a distance of order of the mean free path from P lies .
inside the part between A and B. Thus, no essential difference
can be seen between a convex boundary and plane (or concave)
boundary. However, when the distance PO is of order of or
sinaller than the mean free path squared divided by the radius
of the boundary (denoted by § for shortness), the distance AP
is of order of or smaller than the mean free path and the part
of the boundary which lies within a distance of order of the
mean free path from P extends outside the region between A and
B. Thus, an appreciable portion of the boundary points which
are within a distance of order of the mean free path from P,
(the region outside AB), does not give the direct effect on P.
The range which gives the direct effect on P shrinks to vanish
as P approaches 0 over a convex boundary. In other words the

V7
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direct effect of the boundary on P is obstructed only by molecular
collisions in case of a plane or concave boundary. On the other
hand, the direct effect is obstructed not only by molecular
collisions but also by the boundary itself when the boundary

is convex in shape and the P lies within a distance of order

6§ from.0 (PO < 0(8)). When P is much further away than §

from 0, the latter effect (obstruction by the boundary itself)
is unimportant since the shadow region (the one outside AB) is
too far away from P for its direct effect to be considered.
These facts suggest that the behavior of a slightly rarefied gas
over a convex boundary shows a gqualitatively different character
in a thin layer with thickness § from that of the gas over a
plane or concave boundary. This is the new kind of boundary
layer over a convex boundary which we have demonstrated in a
simple example, ‘
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Fig.2 Domain of integration
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(a) (v) (c)
R-1>0(a7) o(a™) >R-1> 0(a™?) 0(a™%) >R-1>0

Fig.3 ©Substantial range of integration



36

¢00

¥00

|2



37

sueTd

(q)




