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SOME ASPECTS OF BOUNDARY-LAYER TRANSITION

Itiro Tani

National Aerospace Laboratory, Chofu, Tokyo

Introduction

The problem of transition from laminar to turbulent flow in the boundary
layer has absorbed the interest of investigators for so many years. Through
considerable efforts devoted to it the physical processes involved in transition
are now reasonably well understood. There remain, however, many details which
need clarification, and which are called in guestion particularly when it is
required to predict the onset of transition. Most of the difficulty in predic-
tion lies in the large number ofvfactors which affect transition, but which are
not independent of eaéh other.v

The present paper reviews the current state of knowledge of boundary-layer
transition, with emphasis on the possibility of its prediction or at least elu-
cidation in incompressible flows with the aid of stability theories. Effects
of important factors affecting transition, such as pressure gradient, free-

stream turbulence and surface roughness, are discussed.

Processes leading to transition on a flat plate

Before en%ering into detailed discussion of the main subjects, it seems
adequate to illustrate the sequence of processes leading to transition in the
boundary layer on a flat plate in zero pressure gradient. As is well known, the
transition is preceded by thé appearance of weak oscillations in the form of a
two-dimensional traveling wave (Tollmien-Schlichting wave) as predicted by the
linear stability theory, provided all sources of disturbance such as free-stream

turbulence and surface roughness are sufficiently small (Schubauer and Skramstad,

1948). TFor the boundary layer on a flat plate in zero pressure gradient the
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free-stream velocity Uq is constant and the two-dimensional Wave‘is to appear
when the Reynolds number based on the displacement thickness 6% of the boundary
layer, Rgx = U16*/v, exceeds a value of about 520 (Jordinson, 1970). Referring
to Fig. 1, which is based on the experimental results of Schubauer and Klébanoff
(1955) at a free-stream velocity Uy of 24 n/s and a free-stream turbulence level

of 0.03 per cent, supplemented by similar experimental data due to Bennett (1953)
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and Klebanoff and collaborators (1959, 1962), and in which Rgx is plotted as
function of the distance x from the leading edge of the plate, or the Reynolds
number Ry = U1x/v, the critical value Rgx = 520 would be reached at x = 5.4 cm
(station A), but the wave first appears with an amplitude discernible on the
oscillograph only at the station B. Meanwhile, the wave develops in the manner
as described by the linear stability theory, until a non-linear effect manifests
" itself at the station C, where the wave becomes three-dimensional, namely ex-
hibits nearly periodic variation in amplitude in the spanwise direction. This
makes it possible for vorticity in the spanwise direction to be locally intensi-
fied to such an extent that an unstable velocity profilé‘persists for a consider-
able fraction of time, resulting in the generation of disturbances:of a frequency
of one order of magnitude higher than the original oscillation (station D). As
these high~frequency disturbances travel downstream, they break down into dis-

turbances of still higher frequency and of smaller scale. Through this cascade
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process of breakdown, however, the originally periodic structure of oscillations
is obliterated, until eventually random oscillations characteristic of turbulent
flow burst forth in & small localized region which is called a turbulent spo%
(station E). The furbulent spots grow as they travel downstream, until they
merge into a fully developed turbulent flow (station F).

The transition region commonly referred to is the region béginning with
the first appearance of turbulent spot and the first discernible deviation of
mean velocity distribution from Blasius profile, and ending up in a fully de-
veloped furbulent flow where the spcts have eventually merged together. In this
sense the station E is called as the beginning of transition, or simply transi-
tion point, although considerable growth of disturbances has already been made
in the region upstream of this point.

The developmeht of disturbances leading to turbulent flow is fhus very
much complicated, but a clear impression oarried away from the presentatidn of
a»sequencé of events in this form is tﬁat the region that can be described by
the linear stability theory occupies almost 90 per cent of the distance up to
the beginning of transition. Therefore, it is quite natural to think of the
possibility of predicting transitibn by simply applying the lineér theory,

without taking account of the non-linear and other complicated effects.

Application of linear stability theory

As a matter of fact, the linear stability theory has been applied by
Smith and éollaﬁorators (1956, 1970) in order to calculate the amp}ifioation of
unstable disturbances én a passage from the theoretical neutral point up to the
experimentally observed tfansition point. They found thaf for a number of ex-
perimental results for relatively low tufbulence levels the maximum aﬁplifica-
tions obtained were close to each other, the average value being e9 or 8 x 103.
Similar cOnclusioﬁ was reached independently by Ingen (1956).

Based ‘on this finding Smith and collaborators suggest that transition

should occur when the maximum amplification of ¢? is reached. This method of
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prediction seems to have worked fairly well, particularly because it indicated
good agreement with Michel's purely empirical correlation (1951) between the
Reynolds number based on the momentum thickness and the Reynolds number baged
on the distance along the surface, both evaluated at transition point.

It is true that fhe experimental results on which Michel's correlation
and Smith's prediction are based are for relatively low free-stream turbulence
levels. Strictly speaking, however, the turbulence level of individuai experi—
ments 1s not exactly the same. .In view of ﬁhe strong effect of turbulence
level on transition, particularly at low turbulence levels, a doubt is raised
as to whether Michel's correlation expresses nothing but a self-evident faét
that the value of the momentum-thickness Reyngldsynumber.atﬁtransition~incre§qss '
with increase in the surface;distance Reynolds number. In other words, Michel's
correlation might represent a combined effect on transition, in which the effect
of free-stream turbulence is gnseparate& frombthat of pressuré gradient.

That the doubt proves true to some extent may be seen from the correlatiéa
of experimental data; which was recently made by Hall and Gibbings (1970)fand
is ieproduced in Fig. 2. Here the displacement-thickness Reynolds'numngvaf
transition Ré*tr is plotted as function of Pohlhausen pressure¥gradient para-—
meter A% = (6*2/9)(dU1/dx) and free—étream turbulence 1evelic}/Ua), &héréwtﬂéi.
is the undisturbed velocity and ¢'? is the arithmetic mean of the mean-square
values of the three components' of fluctuating Veiocity.»»éuses répiéééﬁtiﬁg o
maximum amplification of»e9'and also‘critica;vﬁeynolds numbeptﬁé*crkare shown
. in Fig. 2. The curve of maximum amplification of é9 aéfées Witﬁ ﬁhe experi-
mental results in the region of falling pfessure gradient (A*¥> 0, accelerated
flow), but departs radically from the experimental data in the region of rising
pressure gradient (A*< 0, decelerated flow), in which Ré*tr = constant for a
given turbulence level appearé to be a reasonable representation of the data.
The comparison clearly suggests the need of taking account Qf the non-linear
effects for predictiﬁg transition.

Obviously, the shortcoming of the use of linear theory lies in the\factrh_‘i
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that no information is pgggided for fhe améiitude ofvfhe disfurbance. It is
ceftainly difficult to understand how the factor of amplification is relevant
rather than the amplitude of the disturbance to the onset of transition. A step
in the right direction should be taken on the basis of the non-linear theory.

In the region of falling pressure gradient the scarcity of data available
makes any definite conclusions impossible. In falling pressure gradient corre-
sponding to the stagnation point (A* = 0.42), the critical Reynolds number Ré*cr
attains a very high value of about 1.3 x 104, but no experimental data on
transition are available. In this connection only a bare mention is made of a

preliminary experimental investigation of Snedeker, Donaldson and Yates (1970),
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in which the flow in falling pressure gradient exhibits an instability against
certain finite or three-dimensional disturbances at a Reynolds number an order

of magnitude below the critical value given by the linear theory.

Consideration from non-linear stability theory

Experimental investigations were made by Klebaﬁoff and collaborators
(1962), with emphasis on the non-linear growth of the wave and the ensuing
breakdown to turbulent flow. In view of their preceding observation (1959)
that the initially two-dimensional wave eﬁhibited a nearly periodic variation
in amplitude of abouf 2.5 cm wavelength in the spanwise direction, a controlled
wave of 145 Hz frequency and of 2.5 cm wavelength was generated by a vibrating
ribbon in combination with cellophane tapes, the ribbon having been placed at
0.23 mm from the surface and 89 cm from the leading edge of the flat plate.
With free-stream velocity U1 of 15.2 m/s, frequency of 145 Hz and location of

ribbon at x,. = 89 cm, the generated wave is to amplify according to the linear

id
theory. In Fig. 3 the wave amplitude u' (root—mean—square of streamwise fluc-
tuating veldcity) at a distance of 1.14 mm, relative to u'o, which is the wvalue
of u' at x - x. = 7.6 cm, is plotted against the distance downstream from the
vibrating ribbon) X = Xp. When the initial wave amplitude is low (u'o/ﬁ1 =
0.0008 and 0,0007), the wave amplifies and damps in accordance with the pre-
diction of the linear theory. It shows the same behavior at different spanwise
positions. No transition to turbulence ensues. When the initial wave amplitude
is high (u’O/U1 = 0.0070 and 0.0050), the wave development first fqllows the
curve for low wave amplitude, and then exhibits characteristically different
behavior, according as the spanwise position is at the peak (where the wave
ampiitude is maxiqum) or at the valley (where the wave'émplitude is minimum).

At the peak the wave amplitude increases rapidly once deviated from the curve
for low amplitude, while at the Valley.it first decreases and then inmcreases

rapidly. In both cases transition to turbulent flow takes place after the

ave amplitude attains a maximum.
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One of the important points of the experimental results is the develop-
ment of pronounced three-dimensionality from an initially weak variation in
wave amplitude in the spanwise direction. Fér example, there appears a defect
in local mean yelocity at the peak and an excess at fhe valley, indicating the
existence of a system of alternately rotatiﬁg streamwise vortices. This is
accounted for by ﬁhe non-linear theory of Benney and Lin (1960, 1967, 1964),
in which the behavior of a primary oscillation consisting of a two-dimensional
Tollmien-Schlichting wave énd a superposed three-dimensional wave with spanwise
periodicity is considered. The non-linear interaétion}of these two components
when the two-dimensional component predominates gives rise to a system of $1ow—
ly growing secondary vorticity in the streamwise direction with the same span-
wise periodicity as the priﬁary cscillation. The secondary vorticity redistrib-
utes momentum in such a direction as to produce a spanwise variaticn in mean

velocity which is in good agreement with experimental results. In order to
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simplify the analysis, however, it is assumed that the velocity profile is piece-
wise linear in- and outside the boundary layer, and that the tﬁo—dimensional

and three-dimensional components have the same phase velocity, although strictly
speaking the phase velocity of the three;dimensional wave should be greater by

10 to 15 per cent. These restrictions are removed in the subsequent analysis

by Menzel (1969), in which the solution is determined by numerical.evaluation.

As pointed out by Menzel, there is a possibility for a sufficiently un-
stable two-dimensional Tollmien-Schlichting wave to produce amplifying streamwise
vortices in collaboration with the three—dimensional component, which itself is
stablef This appears to yield a possible explanation for the observed premature
development of three-dimensional, spanwise dependent disturbances. In this
conneétion mention is made of ﬁhe resonance theory, which was originally put-
forward by Raetz (1959) and recently elaborated by Craik (1971). The analysis
concentrates on the triad of unstéble Tollmien—Schlichting WaVesijﬁhich gonsists
of a two-diménsional wave and a pair of‘oblique waves travelihg at equal and
opposite angles to. the streamwise direction, all three waves having the same
phase velocity in the streamwise dirgction. It is.f@undrthat_for‘such a triad
resonant iﬁteractions take ﬁlace, resultiﬁg’in rapid growth of the pair of
oblique waves. This is interpreted as responsible for imparting charaétefistic
spanwise periodicity to the disturbance. The theoreticaily estimated periodic-
ity agrees very well with Klebanoff's experiments in one case, but not satis-
factorily in another case, thué leaﬁing the comparison inconclusive.

Another important point. of Klebaroff's resui%éﬁiSnfhat»traﬁéiﬁiohdeQSHES
when the wave amplitude exceeds a certain threshold value. -In this example
the threshold value of u'O/U1 is estihated at about 0.0026. This corresponds
to the threshold value u'/U1 = 0.01% at the station where the wave developﬁent
begins to deviate'from the curve for low amplitude. Since>the.distance of ‘1,14
mm from the surface amounts to about one fifth of the boundary-layer thickness,
the distribution of u'/U] nearly attains a-maximum in this neighborhood, and

the threshold value of 0,013 may be taken as representing the maximum value
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of the wave amplitude distribution. Seeing that the wave must develop into a
three-dimensional structure in order to lead to transition, it is considered as
a requisite to transition that the threshold amplitude be exceeded.

It seems to me that the existence of threshold amplitude may be explained
by the weakly non-linear stability theory, which was first stated ty Landau
(1944) and subsequently developed by Meksyn (1951), Stuart (1951, 1958, 1960)

and Watson (1960, 1962). The analysis centers about the equation
dA2/aX = A%(og + oph? + - - - ),

in which A is the non-dimensional amplitude of spatially growing primary wave,
X is tre non—dimensionai streamwise distance, and %y Oy . . . aTe numerical
constants. The linear stability theory yields the constant %y as an eigenvalue
of the Orr-Scmmerfeld equation, while the non-linear stability theory provides
the remaining constants, and particularly s If %q is negative the flow is
stable to infinitesimal disturbances, but the questidn remains as to whether
disturbances of finite amplitude produce instability. If xn is positive the
flow is unstable to infinitesimal disturbances, but there is a possibility that
disturbances of finite amplitude lead to equilibrium state; The sign of o5 is
of importance when only the first two terms aOA2 and a2A4 are considered. - For
ao<:O, m27>0 a subcritical threshold instability is produced, while for aoj>0,
®,< 0 a supercritical equilibrium is attained. |

The calculation of «, was carried out by Reynolds and Potter (1967) and
Pekeris and Shkoller (1967, 1969) for two-dimensional Poiseuille flow,’namely
parabolic distribution éf velocity between parallel walls. Results of calcula-
tion are consistent to show that oy is positive in the neighborhood of the upper
branch of the neutral curve. This suggests that the flow exhibits subecritical
instability in the region slightly above the upper branch of the neutral curve.

There have been no published results on a, for boundary-layer flows. See-
ing that the velocity profile of Blasius form for the boundary layer on a flat

plate is not radically different from the parabolic profile for Poiseuille flow,
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there is a fair possibility that a subcritical instability exists also in this
type of flow. On the other hand, however, due caution must be exercised against
the effect of increasing thickness of the boundary layer. So far as infinitesimal
disturbances are concerned, the effect can safely be assumed small, but there is
no Justification for validity of that assumptign for finite -disturbances.

In response to the author's suggestion, a non~linear analysis was recently

made by N. Itoh (1972) of Japan National Aerospace Laboratory for the boundary
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layer in the region near the upper branch of the neutral curve and corresponding
to the experiments of Klebanoff and collaborators. The method of analysis is
essentially a modification of Watson's approach (1962), extended to include the
effect of increasing thickness approximately. The results aré shown in Fig. 4,
in which the square of the non-dimensional amplitude A% is plotted against the
distance from the vibrating ribbon x - x,, A representing u‘/U1, where u' is the
maximum root-mean-square of the streamwise fluctuating velocity. EIt is seen that
a subcritical instability is produced when A2 at.x - Xp = 7.6 cn exceeds a value
of 0,85 x 10'4, which is to be compared to the observed threshold value of

4

0.00262 ="0,07 x 1077, VNoting that the analysis is based on two;&imensional
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disturbances while the observed instability is due to three-dimensional disturb-
ances, the result of analysis appears in favor of interpreting Klebanoff's ex-
periments as indicative of subcritical threshold instability. There is some
reason to believe that the superposition of a three-dimensional wave with span-
wise periodicity on the two-dimensional wave increases the positive value of %5,
and therefore decreases the threshold amplitude. If this is the case, the three-
dimensional disturbance of finite amplitude would be more unstable than the two-
dimensional one, just opposite to the case of infinitesimal disturbance.

Seeing that the waves develop from small amplitudes and grow larger as

they proceed downstream, it is highly desirable to be able to trace the spatial

"

and teuporal development of disturbances. Recently the weakly non-linear stability

theory has been extended in this direction by Stewartson and Stuart (1971, 1972).

The analysis has so far been carried out for two-dimensional Poiseuille flow.

Effect of free-stream turbulence

Since the Tollmien-Schlichting waves were first observed by Schubauer
and Skramstad (1948) in the boundary layer at a very low free-stream turbulence
level, it had been believed that for higher turbulence lievels transition took
place without the precedence of the Tollmien-Schlichting waves. Taylor's pos-
tulate (192E) for trarsitiorn to result from momentary separation of the boundary
layer due to the fluctuating pressure gradient of the free-stream turbulence had
been considered most nearly correct. However, the experiments of Bennett (!953)
indicated that e&en for a relatively high free-stream turbulence level of 0.42
per cent there was considerable amplification of that component of the frequency
predicted by linear theory before transition developed. Moreover, there has
been no experimental evidence that momentary separation occurred at or prior
to transition, which has raised some doubt as to the adequacy of Taylor's pos-
tulate in describing the phenomenz involved.

Very little is known about the mechanism of transition due to free-stream

turbulence. For example, let us take up the phenomenon first noted by Dryden
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(1536) that at higher free-stream turbulence levels abnormally large fluctua-
tions are observed in the boundary layer, affecting transition only to a 1imited
extent. A plausible explanation for this phenomenon is that the free-st?eam
turbulence induces’a fluctuation in boundary;layer thickness with the frequeﬁcy
1ying below those of Tollmien-Schlichting waves. However, there have been no
detailed measurements except a preliminary investigation of Klebanoff (1964).

In this connection speciai mention is to be made of the new attempt of
Benney and Bergeron (1969), in which the singularity of the non~viscous solution
at the critical layer (where the flow velécity is equal to the phase velocity)
is removed by taking account of the non-linear terms, instead of including thek
effect of viscosity as has been done for Tol}mien—SchlichtingHwaves. This-gives
rise to a class of wave motions, which differ from Tollmien-Schlichting waves
particularly in the lack of a phase change across the critical layer. Since
the theory is based on the assumption that the effect of non-linearity ?réddm*
inates over that of viscosity, it is suggested that the wavé motioﬁfobtéiﬁe&’

from theory may have relevance to transition due to free-stream turbulence.

Effect of'surface roughness

Surface roughness is known to affect transition becéuse éf the disturbances
introduced by its presence. Geometrically simplest is a two-dimensional single
roughness element, which consists of cylindrical wire placed on the surfaée k
normal to the streamwise direction. When a wire of diameter k (roughness height)
is placed on a flat plate ahead of the transition point on a smooth plate, the
transition point moves forward as the free-stream velocity Uy is increased,
beginning from the position on a smocoth pléte. Associated with this forward
movement of transition, the displacement-thickness Reynolds. number at transition
Ré*tr at first decreases, but then increases when transition occurs close enough
to the foughness element‘(Tani, Hama and Mituisi, 1954). As has beeﬁ observed
by Tani and Sato (1956), the effect of roughness on transition is of different

character according as Ré*tr is decreasing or increasing in the course of the
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forward movement of transition.

13

When Ré*tr is decreasing the flow separated at

the roughness element reattaches to the surface as a laminar boundary layer.

Transition occurs in the reattached boundary layer, and the laminar oscillation

observed is that characteristic of a boundary layer in zero pressure gradient.
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Thus roughness affects transition not only by increasing boundary layer thick-

ness but also by~supplying disturbances to the flow in the manner similar to

the effect

hand, transition occurs in the separated layer.

of free-stream turbulence.

When Ré*tr is increasing, on the other

Preceding to transition, a

laminar oscillation is observed which is characteristic of the flow with an

inflectional velocity profile. The effect of roughness for this condition is

interpreted as modifying the existent boundary layer to such an extent that

the instability of the modified flow is encountered.

These experimental evidences are sufficient to attach a significance to

the critical condition, in which the Reynolds number at transition Ré*tr attains
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its minimum such that transition occurs close enough to the roughness element.
Tani and Sato tentatively gave a critical value of 840 charécterizing this
condition for the Reynolds number based on roughness height U1k/V, although
the value was corrected to 826 later by Gibbings (1959). According to Kraemer
(1961); however, the critical condition for lower values of Ré*tr is better
correlated by ukk/v = 400, in which wy is the velocity in the undisturbed
boundary layer at the height of the roughness element. In Fig. 5 values of
U1k/v for critical condition is plotted as function of Ré*tr on the basis of the
experimental results of Tani and collaborafors (1954) as well as Kraemer.

The above mentioned effect of roughness is for a boundary 1ayer in zero
pressure gradient and at very low free-stream gurbulence levels. Fig. 6 shows
how the effect is modified by the falling pressure gradient and also by the
increase in free-stream turbulence, based on the experimental results of Fage
and Preston (1941), Tani, Iuchi and Yamamoto (1954) and Kraemer (ﬂ961).‘ It is
seen that the critical value of U1k/v is reduced in falling préssure gradient
(A*)»O, accelerated flow), both for low and high free—stfeam turbulénce levels.
Decrease in U1k/v with increase in turbulence levél is easy to understand, since
- the effect of roughness is partly to supply additional disturbances to the flow.
On the other hand, decrease in U1k/v in falling pressure gradient is difficult
to interpret, bringing out a new question worthy of clarification.

For a three—aimensional single roughness element, sudh as a sphere of
diameter k or an upright circular cylinder of height k, the experimental data
appear to correlate well with a critical value of the Reynolds number ukk/v, in
which Uy is again the velocity in the undisturbed boundary layer at the height of
the roughness element. When the critical value is exceéded, a wedge-shaped rqgion
of turbulent flow_originates at the roughness element and extends downstream.
Fig. 7 shows the critical value of ukk/v plotted against the transition Reynolds
number R5*tr for boundary layers in zero pressure gradienf (Klebanoff, Schubauer
and Tidsfrom, 19553 Mochizuki, 1961; Tani, Komoda, Komgtsu and Iuchi, 1962) and

in falling pressure gradient (Peterson and Horton, 1959; Dobbinga, 1965). The
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experimental values are somewhat scattered, but it is evident that the critical
Reynolds number is reduced in falling pressure gradients. The result thus
pgrees with that for two-dimensional roughnéss in suggesting that the transition
caused by roughness is hastened by the effect of falling pressure gradient.

€

Disturbances in stagnation region

In connection with the premature franéition due‘to roughness in falling
pressure gradients, attention is directed to the earlier observation of veiocity
 fluctuations near the stagnation point df:a twé—dimensional cylinder (Piercy
and Ricﬁardson, 1928, 1930). Noting,thajiygéRstreamlines near the stagnation
point are’ concave, GOrtler (1955) conjectured thaﬁ;such»flows might become un-
stable to disturbances in the form of”égéfﬁ%éﬁ of slternately rotating stream-
wise Vortices similar to.those predicted by him (1940) to appear on & concave
wall. fhe conjecture was supporté&‘by4ﬁh§-anaiy3is of H§mmerlinl(j955) on the
stagnation-point boundary layer with free—stréam velocity cbmpbnenté Uy =cx
and V4 = - cy. Inétability Was‘indicated to occur for é ceétain,raﬁge;of»the
spanwise wavelength, namely the distance between two vortices rotating in the
same direction. However, no’critical'%avelength was oﬁtained, because thé"
associated eigenvalue problem yielded a continuous spectrum of‘eigenvalues.

Recently Kestin and Wood (1970) rééonsidered the problem, taking the view
that the inconclusive nature of the analysis of Gortler and Hémmerlin originates
in the assumption for the fiee—stream velocity field, which in fact represents
the stagnation flow toward an infinite flat plate. When a uniform flow of
velocity Uy approaches a two-dimensional cylinder of finite radius oficurvature
a, the free-stfeam velocity fieid is modified such that -V4 for large values of
y approachesta) instead of increasing indefinitely. With this modification
it became possible'for Kestin and Wood to obtain a single discrete eigenvalue
B = (L/2wa)(2aU, /v)17 = 1,72, in which L is the spahwise wavelength of the
Streanwise vorticesf

Experimental determination of the wavelength was made also by Kestin and
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Wood (1969) and recently by Colak-Antié and Hassler (1971). The experimentgl
results are shown in Pig. 8, in which the non-dimensional wavelength B is
plotted as function of the free-stream turbulence level C'/Ua). The results
of Kestin and Wood extrapolate to B = 1.56 to the limit of zero turbulence
level, yielding good agreement with the theoretical result. The value of B

obtained by Colak-Antié and Hassler appears comparatively large. )

Fig. 8
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The decrease in wavelength (at constant Reynolds number 2aU03/v) with
increase in free~stream turbulence level appears to be consistent with the ex-
perimentally observed enhancement of both skin friction and heat transfer in
the stagnation region by free-stream turbulence, particularly for turbulence
levels exceeding about 1 per cent (Smith and Kuethe, 1966; Kestin, 1966; Kayalar,
1969). It also suggests the possibility of subcritical threshold instability_
for this type of flow, because the wavelength would have inéreased with increase
in turbulence level if there were supercritical equilibrium state. It appears
worthwhile to examine the behavior of flow in the stagnation region on the basis

of weakly non-linear stability theory.”

17
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