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Arithmetically definable analysis
%x 32 o \NALEFIF

In the mimeographed notes [77], "A conservative extension
of Peano arithmetic", Takeuti and Kreisel defined a conser-
vative extension of Peano arithmetic and develope in it the
so called calculus. They also suggest how to modify ‘4hc
system, retaining the proof theoretical strength unchanged,
so complex analysis can be developed in the resulting system.

Their method suggests, as they indicate in their notes,
that analysis is,in its essence, arithmetical. A completion of
their program would mean an ex@ecution of the Hilbert's pro-
gram: an attempt to ensure the reliability of classical mathe-
matics in the sense that i1t be developed within the "finitary"
veiwpoint (in some sense). Hilbert himself endeavoured to
carry out his own program. A recent, successful attempt
of the kind is seen in Bishop's work U1]. Here he reconstructs
most part of analysis in a "constructive" manner. Although
he denounces the formalists' approach from the outset, it is
impartant to learn that the most part of his project (and
calculus entirely) can be formulated in a conservatibe
extension of Heyting arithmetic (cf. [37]). As we know, the
formal systems of Heyting arithmetic and Peano arithmetic
are proof-theoretically equivalent. Therefore I do not think

.we are obliged to comit one way or another, mathematical
approach or formalists' approach, at this point. If the
strength of Peano arithmetic is necessary anyway to do any



part of mathematics and the equivalences (of proof-theoretical
strength) among the different systems of this level can be
egtablished relatively straightfowttard, it should not be of

any serious importanceAwhich‘standpoint one takes in developing
mathematics,as long as a coherent direction based on a clear
principle is observed.

In passing we wish tb note that Bishop and Cheng have
proposed an improved version of constructiv’e measure theory
in{21; its.logical structure is yet to be investigated.

Here we wish to continue a study of analysis along the
line of U7 ) Analysis can be naturally de_veloped in their .
system; statements and proofs take the form of ordinary
mathematics; only arbitrary quantifiers of higher type are
eliminated. So in existence statement, @r object satisfying

ﬁ,@t‘“‘ .
a condition 1s ,consfructed. There are no strange notions or

technical terms.

We shall outline how to develope the &k theory of ordinary
differential equations and the theory of Lebesgue measure in
a conservative extension of Peano arithmetic. The detaill

will appear later.

It is not, however, our goal to keep rewriting every
port. ion of mathematics in this line. After certain amounz
of experience, we should be able to see the logical strucfre
behind (actual) mathematics, hence to establish a more syste-
matic way how to eliminate higher type guantifiers. 1T
believe . that its implication is more profound than we
are now aware. 1 hope our trial here is only a start.

‘The author 1is indebted to Professor R. Kondo for answering

many of her gquertions.
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§ 1. We start -with an exposition of the idea in [77.

Let us denote the conservative extension of Peano airhtmetic
defined in C7])by S. The language of S consists of that of
finite type theory, the language of Peanc arithmetic, a unary
predicate N and a binary predicate = . The logical system
of S is the predicate - calculus of finite types in which the
comprehension abstracts are restricted to the arithmetical
ones without higher type free variabgls. The mathematical
axioms of S are those of Peano arithmetic, reading N(a) "a
is dﬁatural number", with the full induction and the full
equality axiom. For instance, the mathematical induction is
formulated as:
¥y, . Fym(A(0) A Vx(N(x) D (A(x) D A(x')) D ¥x(N(x) 2 A(x))).
The type 0 objects stand for rationals.

Developing a matheigfitical theory in the system S means
to assume that all the mathematical objécts in the theory are.
defined in terms of arithmetical abstracts, allowing some
parameters, 1.e. some higher type free variables. We say
that such objects are arithmetically definable. " Therefore in
order to - claim the existence of an object, we must const-
‘ruct an arithmetical object satisfyging a certain condition.
For example, an arithmetically definable real is defined by
an abstract {rJA(r), where r is a variable of type 0 and A 1is
arithmetical (with some parameters);mﬁhere it is provable in -
S that {r{A(r) defines a Dedekind cut (of rationals).

We shall abbreviate 'arithmetical%defin&ble' to 'ad'.

An interval Ca,b] is saild to be arithmetically definable
if a and b are ad reals. An ad function is defined by an arith-
metical abstract {¥,r}A(r,[ ), where J>1s a variable of type
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1 and the function value for the argument 7" is défined to
be {rﬁA(r, T ). 1Intultively this defines a real function
£Cp) = {r/A(r,O‘) ?. The familiar functions such as +, -, X,
+ are all arithmetically definable. The coninuity of a function
is defined as usual in the' ¢ - form, assuming that ¢ and J
are ratiocnals.

Othér mathematical notions such as a domain, a sequence,
a series, are defined in'a similar manner.

To everybody's knowﬁedge, the bafis of calculus is the
completeness of the system of reals, or the lub property
(the least upper bound property): every bounded set of reals
has the least upper bound. Logically this corresponds to the
( full) second order @omprehension axiom (the existence of
an arbitrary Dedekind cut of rationals). That calculus is
essentially arithmetical means that it is sufficient to
assume the lub property for an arbitrary, bounded and. arith-
metically definable set of (arithmetical) reals (hence the
lub is also arithmetically definable), and the key factor of
the sufficlency 1s the denseness of rationals in reals.
Consider, as an instangce, a function which is continuous

around a numbker a. lim f(x) is defined to be

X -4 .
lim sup f(x) = lim inf f(x) when the equality holds. Due

X = a X - a

to the densensss of rationals and continuity of f, lim sup f(x)
X = a
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can be expressed as {tj(¥r > 0 3s(ls/ < r, A(s+r,t)), which 1is
arithmetical.

This now implies that the differentiation is an arithmetical

operation: f'(a) = 1lim f(x+h)-f(x) = 1lim f(x+n)-f(x)
, hy 0 .
r->» 0 r
2’
wher a Aamu?zn Bt AJV{;mmalb

The integral {of a continuous function defined in an interval)
can be defined as the limit of an arithmetically deflsable sequence
of areas of rectanples, hence 1s arithmeticaliy deflnable. The

fundamental theorem of the calculus is only a consequence of the

definition.

Among the various existencgie statements of calculus, let

us ‘consider, as an exemplary case, the intermediate valué theorem

of a continuous function defined in a closed interval,  Let a
and b be arithmeticallydefinable reals such that a< b and let
f be an- arithmeticaljydefinable function. which is continuous in

[a,b]. Further, suppose f(a)< 0 and f(b) > 0. Define A =

{r/a €r &b Vs < r(f(s)< 0) } and A® ={t/3r(re A) }

where r,s and t stand for rationals as well as reals correspondlng
to the rationals r, s and t respectively. A® is arithmetlcally
definable and defines a Dedekind cut of rationab&. It is easy

to see that A° defines the least number (between a and b)

for which f(A%) = 0. Thus we have presented an ad real satis-
fying the condltions.

In order to define a system of complex numbers, intro-
duce an individual symbol i and a unary predicate r (r(a) reads
"a is a real rational”) to S. The type 0 objects of the
extended system of complex numbers are interpretéqgé
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complex rationals. An arithmetical abstract of type 1 is?
sald to deinfe a complex number if it represtnes a set of
complex rationals satisfying the "Dedekind ﬁondition”. The
familiar functions of complex numbers are ad; in particular
Qﬂ is. Thus the notion of the real part and the imaglnary
part are derxfinable: Re( o ) =d +o /2 and Im(el) = o - </21.

Much part of complex analysis depends on the theory of
real numbers and functions, hence can be arithmetically definable.
For egample the power series 1s an """ ad notion (when
the @oefficients are).

The complex integral can be defined by means of real
integral. In proving Cauchy's theorem, the inductive
definition of integrals along bisected rectangles can be
expressed arithmetically. '

We restrict the functions and their domains to ad ones;
all the examples we see are ad. It is easy to
see that for any differentiable (i1.e. analytic) function
(in some "nice” domain), say f, jf{h)jn is an ad sequence of

functions; this is due to Cauchy's integral formula;

£(1) () = n%??tif £(3)ds .
C‘ (;_Z)n+1

The éxponential ahd trigonometric'functions are ad. In
proving this, it can be demonstrated that those familiar

(5]
reals such as e and T are ad: e? = = z"/n! |,
. M=p

. iz -iz . .
sin z = e”® - e ete. T is the smallest period of e%;

2

this property can be written down arithmetically.



CwesS

§ 2. The theory of ordinary differential equation\@ﬁew/much

to the fundamental thorem of calculus; the integral of

an ad continuous function (defined in a nice domain) is ad

and its derivative 1s the original function; hence the existence
theorem can be proved in the system S. The initial value

problem should be phrased so the solutionsare arithmetical in"
the initial condition. For the method of successive
approximation, we may assume that the sequence of appro-
ximations is an ad sequence (of functions).

We will mention here only a few points. The initial value
problem being well-set should be expressed as follows. Let
y' = F(x,y) be a normal first order differential equation where
F is ad and let D be an ad domain (of (c,x)). The initial
value problem for this equation is said to be well-set in D¥
if there i1s an ad function of three arguments, say
f(%,,%x,¢),  continuous in c such that for any (x,,c),

y = f(xo,x,c) is a unique solution for the given differential
equation.

We say that an ad function defined on a "niece" domain D,
say F, satisfies a Lipébitz condition in D when there 1is a
positive, ad real L such that
¥x,y,2((x,y) € D A (x,z) ¢ D = \F(x,y) -.F(x,z)) :Eldy—z)f.
Then the comparison theorem can be stated and proved as follows.
Given an ad F and a, where F satilffies a Lipé%itz condition
for x ® a with L. If g and f are ad functions such that g
is a solution of y' = F(x,y), f satisfies f'(x) ¢ F(x,f(x))
for x ® a and f(a) = g(a). Then f(x) 4 g(x) for x = a.
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f(a) = g(a) is the assumption. At the start of the proof,
one supposes f( o ) Y g( «) (with £ as a parameter) in the
given interval and let x, Dbe the largest x °~ such that

a € x %« and f(x) € g(x). Then f(x,) = g(x,). The only
point i1s that x, be ad (with some parameters). Let C(r)
denote the formula Vs(a € r< s €« —» f($) > g(s))

(where r and s stand for rationals). C(r) is ad = and

the continuity of f and g and the denseness of rationals in
reals imply that f(s ) > g(s) for :t;y s satisfying. the
condition. Let X = inf{r/C(r) § , Where the first r here
stands for the real corresponding to the rational r, hence
x, is ad. f(x,) = g(x,) is provable in S and the rest of the
usual argument goes through.

As an example of the superposition principle for the
homogeneous linear differential equation:u" + pu' + qu = 0 where
P and ¢ are ad, consider the Legendre differential equation:

g d/ax [(1 - x2)du/dx] + n(n+l)u = 0. The singular points
are x = + 1 (which are ad). Supposing = u can be expanded in
a power s&iﬁes_ﬁ? a&_xk, the superposition principle yields
3 Biap = (K(KHL) = X)ay/(k+1) (k+2)
where A 1is a parameter.% Given a, , we can express the even
ok = E(zﬁ(zou) -N)/(2(k+1))! ,which
is ad. The odd coefficients can be also expressed arithmetiqally.

=
an recurrent equation:
coefficients as:a

The method of successive approximationsis described
as follows. Given x'(t) = F(x,t), the operator U is defined
by U(x(t)) = ¢ + £* P(x(s),s)ds (the right hand side is ad),
~with ¢ as a parameter. Let x° = ¢ and denote x™ = U"(x°]
Then{x“jm converges uniformly for |t-a(€ T(where T is given).
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Here we assume that {x“ﬁm is ad as a sequence of functions.

This does not limit the applicability of this method; all

the examples we have satisfy this condition and we do not forsee

any counterexample. In RaEEXIREXkk& proving the statement

above, Weg need to consider a constant M = sup [F(c;t) l , but’
[t-a]€ T |

this is equal to sup lF(c;r) | where r stands for rationals.

The rest of the matﬁgéégical argument goes through. As an

example ;the approximations for ﬁhe gq%?tion

ult) = 1 + Sf}sud(s)ds is x M(¢) = = £2K ok x1

hence {kﬁh is ad as a squence of functions.

§3. As we have observed in the discussiag given above, the
arithmetical nature of calculus depends of the following
facts. ﬂDenseness of rationals in reals, hence the sufficilency
of the 1lub property applied to an ad set of (ad) reals, indexed
by ration@lss This menas the sufficiency of quantification over
type 0 variables,; viz. the arithmetical quanﬁification, if
‘weAmay say so.

The arithmetical nature of the fundamental operations.
The only basic operatibns in analysis are differentiation
and integration, both of which are arithmetical.

A careful examination of the : " proofs of various existence
statements has proved that for our purpose’regarding reals
as sets of rationdls.” is most useful; an operation such as”
~taking lim spp is reduced to taking countable unions and
intersections.



§ 4, We shall outline how to define Lebesgue integral
and measuraable functions (and sets) . It is more convenient
for our purpose to employ the approach of Daniell integral;
start with continuous functions omr a compact interval (of
reals) and their integrals,and gradually expand the

class of ' integrable functions. The whole
point is to avoid quantifiers over sequences of functions in
the mathematical theory; instead, we always consider a
. (ogette, bt o ;[e_w/
function A Sequere sof functions, the latter
being regarded as a representation of the former.

A lucid explanation of Daniell integral is seen, for
example, in U6} which we follow for a hile.

Let X be the space [0,1Jand I be the integration operator
on the continuous (and ad of course) functions on X. Suppose
f andl{fmj”b are ad functions on X. Let U(f, {fij ) be a
formula expressing the relation: Each functionXﬁs continuous
and A . If u(r, {fﬂj“,) is provable (in S), then we say
that {fmjm-is a representation of £ . Statements concerning
U which are naturally expected to be true, such as
u(r, ifag) & U(g,38af) = Uf + g, {fa+ gwk), are provable.
Now define I(f) = 1im I(fm~). This definition is justified,
for the value 1is independent of the representations. I(f)
is ad. 7

~U(f,4{f«}) is defined to be U(-f, 3 f,{). If -U(F, »?fujv)
then define I(f) = -I(-f).

Among other properties concerning U and —U,.we can show
that if -U(g,3}g.%), U(h,}n.}) and g £ h, then U(h-g,je.+ hwi)
and I(h) - I(-§) = I(h-g) > 0. '

/o



Note that here all the functions are of finite value; © 1is not
allowed as a value. 7
The notion 'corresponding to summability (of finite
functions) 1s expressed as follows. Let '
S(f, {g% ’*f%)the M'%) denote the relation:
Vn(-U(g,Jghh) + Uhphlfa) &(g, € £ £ h)) & R(L(g,))&R(I(h,))
&(0 £ I(h,) - I(g,)<1/n)).
In the last clause, the explicit dependence of the subscripts
of hp and g, *(i.e. n) on the bound 1/n will turn out to be"
necessary. If S(f,......) is provable (in S), where f and
all the function sequences are assumed to be ad, we say that
X(Qg,hﬁoh,{ h §,.) is a representation of f;ema it Lie o e”*“*L“r

1im I(gM3 = l%mI(hq\) is provable. Define.I(f) to be either.
of those limits. It takes only a straightforward, mathematical
argument to show that I(f) is independent of its representation.
Note that’I(f)‘<f <o .  The T thus extended has all the proper-
ties of I (with respect to the functions satisfying S(...)).

"Consider the theorem: f andéf%f“ are ad. Suppose,for
each n, the function f_ satisfies 3(f,  ,....) with some
appropriate function sequences, f, 4 f and 1imI(f, ) < oo
Then f satisfies S(f,...) with som® appropriate ad function
sequences and I(f. ) I I(f). Let us assume f, =® 0, hence
fm2 0. Suppose VnS(fh,Pfaﬁd‘ fk:%y}% ,..il'where we do not
write ... explicitly. We shall concentrate on the first
two function#g sequences. Define h =k :L = Q:::

and
7~ ~
‘hﬁ: = k:;L - kﬁii . They are obviously ad and I(hrm )
LA
b 1(r, - £y ) ana I(h y P I(fp= £ ). Let #(n,m)
= 2" . Then 0 < I(h ¢, Ermm) )~ I(h?‘(x ) < 1/¢(n,m)

Therefore I(hY(k'Q> < I(f - f.yq )+ 1/ ¢(n,m .

: A .

< ! 357 s
f""r\ - = SV(L,J\\.) andL_,,I(h (( M))< I(f ) +(=| 1/({<l’m)'
Let £, = S; h¥§5m3 . £, 1s ad and is a U-function{the meaning

of this abbreviated expression must be obvious). I(}ak)

//
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2 Ilhgia)) and £ £ 4, . I(J,) € lm I(f,) + 1/m. With
a symmetric argument, we can define -U-functions /, such that
~ Y
).t £ and I(,ﬁ ) * 1imI(f,.) - 1/m. Therefore 1iml(ﬁk)
= I(f) and s(f,g}ld, {ﬁmtg,....), where ....is defined
appropriately (depending on the construction of /Z, and ¢, ).

<

e We now introduce eo ( = the set of all rationals) as

-
u

ani 7= extended real, and a..:m allow the functions to assume
the value © also. An ad function on X is mearuable if for
each / ( a natural humber)(f A L) V(- ) is an S-function with
some appropriate function sequence, which we denote by F(L)
collectively, where @ (/) is ad in # . I(f) is defined
to be'l}pm T((E A L) V(=N

If £ is an S-function, then 1t is measurable.

X -can be an arbitrary compact interval, say Xp =
[-p,p] where p 1s a positive integer.

Let f be a non-negative ad function of reals. £ may
assume the value e . f is said to be measurable if
VpS(f{‘Xp, P (p)) where fr‘Xp denotes f restricted to the
domain Xp and £(p) denotes appropriate function sequences
which are ad in p. I(f) is defined to be lim I(fr‘Xp).
£ is said to be integrable if I(f) < ew . F

Let T Ee an ad function of reals Su:ch that its
positive part f+- and the negative part f = are integrable .

| Then define I(f) = I(f™) - I(r~).
The measure of a set (of reals) is defined to be the

integral of its characteristic function.
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