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Mathematical Properties of Responses of a Neuron Model

A System as a Rational Number Generator
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Abstract

Recently, Nagumo and Sato proposed a mathematical neuron
model in the form of a nonlinear difference equation and investi-
gated its response characteristic. The result showed that the input-
output relationship of the neuron model is quite complicated and
takes the form of an extended Cantor’s function. It also explained
the “unusual and unsuspected” phenomenon found by Harmon
in experimental studies with his transistor neuron model. — In this
paper, a fraction representation of a sequence of pulses is proposed.
A mathematical treatment of the same neuron model based on the
representation gives the same result as in the previous paper. More-
over, many mathematical properties, including the one where the
ratio of the number of 1's contained in a cycle of a sequence to the
length of the cycle gives any rational number between 0 and 1, were
obtained by investigating sequences generated by the model.

I. Introduction

In the previous paper [2], we proposed a mathe-
matical model of a neuron from a functional point of
view. This model is represented by a nonlinear dif-
ference equation as follows:

u,,+1=l[A,,—c 5 b"u,,_,—e], (1)
r=0
1 =0
ta-{, 2

where u, represents the state of a neuron at the instant

n, namely, u, =0 denotes the resting state and u,=1

the excited state, 4, is the magnitude of the input

stimulus applied at the instant n,  the threshold
. n

value, and ¢>0, b> 1. The term ¢ ). b™"u,_, repre-
r=0

sents the influence of the past states of the neuron to

the state at the next instant.

By investigating the mathematical model, we
clarified the relationship between the magnitude of
the input stimulus applied to the neuron and the out-
put which gives a sequence of pulses, and alsc succee-
ded in explaining an “unusual and unsuspected”
phenomenon which was found by Harmon in experi-
mental studies with his artificial neurons [1]..
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In this paper we will analyze the same mathematical
model by a different method, which gives eventually
the same result as before. Furthermore, mathematical
properties shown by the model, especially the one
which seems to be interesting in number theory, will
be reported.

In what follows, any pulse sequence corresponds
uniquely to a rational number between 0 and 1. And
hence, we can deal with the number instead of the
sequence of the pulses. This method seems to be also
useful in analyzing the output behaviour of networks
consisting of many neurons.

II. Fraction Representation of a Pulse Sequence

I1-1. Let us consider a sequence of 0’s and 1’s.
A sp. 1 means the existence of a pulse and a 0 its non-
existence in the outputs of the neuron model. Thus a
sequence of pulses is represented by terms of a sequence
of numbers:

a,,a,,...,a,(a="1or0).

Let a number x correspond to the pulse sequence

as follows:

1 t 1
x=a,,~—2—+a,,_,-7+-~-+a,_,-?17+---, 2
where a,_;=0for n—i<0.

For instance, the sequence
...0101 .01
corresponds to the number
1 1 1 2
1 '—i‘+0'—22—+1 'F"‘"“—"- —3"

by Eq. (2), and vice versa, the number % corresponds
to a repetitive sequence of 01 with a present value 1.°
Clearly 4 corresponds to the same sequence with a
present value 0. :



One may consider that a sequence with period 2
should correspond to a number independent of its
present value. However, the next state of 2 neuron is
affected by its past history as described by Eq. (1). The
more time goes back to the past, the less becomes the
influence of the past states on the next one. Therefore,
a sequence has different meanings on the next state of a
neuron according to its present state.

11-2. Fraction representation of a periodic se-
guence. '

As described in the above, a sequence will cor-
respond to several numbers depending on the present
state.

Let us consider numbers correspondmg to a

sequence with period m:
e dydy .. Gy dy ... Oy

We have m different numbers according to the present
states:

= 4 a';;‘ ok o 2,‘,',“ +o
1
= 2m_1am -1 "al(2)9
A—1 Q-2
Oy = 2 + 22 + e 2"'_‘ + +"‘
1
= S Om-te a16,(2),
=y Ho b o
“=7 ? 2*
1
= 27:—1—‘(110” ees 02(2),

where a number 2 in parentheses means the binary
representation, which will be omitted.

The canonical cycle of the above sequence is
defined to be:

aa,...a,.

In what follows, by a,a, ... a,, we sometimes represent
not only the canonical cycle but a repetetive sequence
of it.

III. Modification of the Neuron Model

The term ¢ Z b~ u,, _, is a function of the present
=0
and past states “of the neuron:

uo,ux, soey u,, .
Writing u; =0 for i £0, we obtain an equality:

0
- — -r
Uy_,=C Y b~"u,_,.

r=0
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And assigning a sequence ...ugu, ... u, to a number
x, by Eq. (2), we can put
¢y bu,_,=h(x,), 3)
r=0

where h(x) is clearly a monotone-increasing function
of x because b > 1. From.Egs. (1) and (3), we have

Upy1 = 1 [dv'n - h(xn)] ’ (4)

where d,=A,—0.

Or, instead of Eq. (4) which gives output pulse
sequences of the model, we have a set of difference
equations:

1
Xp+y = _2—+ _i"xm dn—’h(xn);oa

q : (%)
Xp+1 = ixn s dn - h(xn) < 0’
which gives a sequence of the corresponding numbers.
Let us consider the case that d, =d, i.e., the magni-
tude of the input stimulus is constant with respect to
time. Since the function h(x) is a monotone-increasing
function of x, the equation

d—h{(x)=0

has only one solution, which is denoted by &,.
II1-1. The case that &, 1.
For all x(0<x < 1),

d—h(x)20.
Consequently, from Eq. (5),

at n— oo, which gives
Xg=1=.111...... @.

a0

This means that the neuron fires at any instant.

I11-2. The case that £, <0.

If £, <0, d — h(x) <0 for all x(0< x<1). Thus we
have a sequence ...00...0. This means that the
neuron is always in the resting state.

If £,=0, Eq. (5) gives a sequence {x,} which
converges to zero as n— oo for any initial value of x,,
which means that we have consequently a neuron in
the resting state for &, =0.

III-3. The case that 0< &, < 1.

A number of firing modes will be obtained in this
case as reported in the previous paper. Before irt- °
vestigating the case again, we will give some prepara-
tory discussions. :
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1V, Concept of “Node of Period m” and
Euler’s Function

IV-1. Construction of nodes and periodic sequen-
ces.

e« Step 1. Let us take two different points on line,
These points are called nodes of period 1 and denoted
by ni and n}. The value m=1 is given to both nodes.
At the same time, repetitive sequences of 0 and 1 are
assigned to n! and nj, respectively. Namely a se-
quence ...00...0 corresponds to the node n} and
... 1 ...1 to the node n}.

Step 2. m«m+ 1 (m is increased by 1),
Step 3. The two values i, and i, given to the nodes

g and n2, each of which is adjacent to the other on
the line segment, are summed. If the result is equal to

m, a node ny’ of period m is newly made between the

two nodes nj}, and n. There are at least two nodes of

period m, for n} exists between n} and n7"!, and

Hgm between njyeL ) and nj, where m23 and ¢(m)

means the number of nodes of period m.

Let a sequence with a canonical cycle

Ir=10 Iz (. : concatenation)
correspond to the node of period m, where
k=1,2,...,p(m)

and [} and /i2 means the canonical cycles of sequences
correqunding to nodes ny} and m2, respectively.
For instance, since
1 - - - -
=0, fp-1 Q-2 ot =012

em-1)=
1
=1,
we have successively

ImM=0"m"Y1=000...01
’ m-1)

Bmy=01""D=011_.1.
(m—1)
Step 4. Repeat steps 2 and 3.
The following few steps make the construction
method clear.
Two nodes exist at step 1.

and

and

-
[y

0 M
Nodes and the corresponding canonical cycles at
step 2 are:

1 2 1
(©) 01) ),

where the cycles are shown in the parentheses.

At step 3:

1 3 2 3 1.
©) (001)  (01) (011) 1)

At step 4:

1 4 3 2 3 4 1
©) (0001)(001) (01)  (011) (O111) §)]

At step 5:

Py ° 8- Py -
* & L4 ©

1 5 4 3 5 2 5 3 4 5 1
(00001) (00101) (01011) ©O1111)

............................................................

............................................................

Two sequences are called adjacent to each other at
'some step if the corresponding nodes are adjacent
to each other on the line at the same step.

1V=2. On the number of nodes at each step.

We have the following theorem.

Theorem 1

Let us denote the number of nodes of period m by
@(m). ¢(m) is nothing but Euler’s function [3], namely,
@(m) gives the number of positive integers prime to
and less than m. <

The proof of Theorem 1 will be given in the
Appendix (Prop. 10).

IV-3. Number of 1’s included in a cycle.

Theorem 2
Let u denote the number of 1’s included in a cycle
a, a, ... a, of a periodic sequence constructed by the
method of IV-1. Then m and u are prime to each
other. <
The proof will be given in the Appendix (Prop. 2).

V. On the Existence of the Periodic Sequences

In what follows, we will give theorems which
assure the existence of periodic sequences constructed -
by the method. By the term “existence” of a sequence,
we mean that the system described by Eq. (1) can give
it as an output for a certain magnitude of input
stimulus.

For any sequence a, a, ... a,, constructed by the
method, we define an interval I,,=[«,,_,, a*], where

1
Ay = —2m—__——1—a,,,_1 Ledgay
and

¥ = a,a, ... a,.

2
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We will discuss in the Appendix (Prop. 16) that the
interval is not meaningless; that is a,_, <a*.
Theorem 3

A necessary and sufficient condition under which
a repetitive sequence of a, a, ... a, exists in the sense
mentioned above is that the solution &, of the equa-

tion o= h(x)=0

belongs to the interval I,,=[a,_,a*]. -
The proof will be given in the Appendix (Prop. 18).

Theorem 4
If two sequences whose canonical cycles are

a,a,...a, and by b, ...b, exist adjacently, then a

composed sequence with a canonical cycle

a,a,...a,b,...b,
can exist. <
Theorem 4 cites that all sequences constructed by
the method mentioned in IV-1 can be realized as
outputs of the neuron model represented by Eq. (1).
Next let us define a function F(x) as follows:
For any x in I,,=[a,,_,, a*],

.. number of 1's in‘a,d2 e
F = 4 m
*) m (length of the cycle)

’

where a, a, ... a,, is the sequence corresponding to " I,,.
Then we have the following theorems.

Theorem 5
F(x) can take any rational number between 0 and 1.

, <
Theorem 6

F(x) is a flat, continuous almost everywhere and
nondecreasing function of x(0<x<1). «

These theorems will be proved in the Appendix.
Many other mathematical properties obtained from
the output sequences of the neuron model will be
given in the Appendix.
Ex. 1 '

Two sequences with period 1; ...00...0 and
.. 11 ... 1 exist as shown in I1i-1 and I1I-2. Accord-

ingly, the repetitive sequences of 01 can exist. The
condition of the existence is that the solution &, of the
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and . 2 2
==
Ex. 2 »
Two sequences of 001 and 011 can exist.
Since 001 is the concatenation of 0 and 01, we have
B | 1
Yi42-1=72= ﬁml’- T
and . 1 | 2 2 2
= = ——— = e * = — = —
Y2-1 Y1 23___1010 7 (y 23__1001 7)

Consequently, the repetitive sequence of 001 is
realizable by the model if the solution lies in [4 , £].

“In the same way, the interval [3, §] corresponds to the

sequence of 011.

Ex. 3

The sequences 0110110111-01101101110110111
can exist at a node between the nodes of the sequences
0110110111 and 01101101110110111.

0110110111:
L 1 1555(8)
O] =0lg = 210 _{ 1101101101:%%,
-2 ‘ 1556(8)
C og* = : = -
a*= 50110110111 E
1 [1555(8) 1556(8)
"~ 117738 1TT18) |
01101101110110111:
. 333555(3)
Pr-1=Prs= 377777(8) °
P 333556(8)
g 3777171(8) °
L= [333555(8) 333556(8)]

T [377777(8) ° 377771(8) |
0110110111 -01101101110110111:

o 667333555(8)
Tmen-1=726= m,
. 667333556(8)
V= TmmTe)

Lyvw=[126> 7*]»

equation d — h(x) =0 belongs to the interval 7 o
F(x)=~~ forany xin L,
, 1 2 10
213 5| 12 ’
3’3 F(x)=— forany xinl,
because e 17 d ’
, ' 1 1 ‘ 19 . -
a2_1=al=_22__1-01=-3— F(x)f—2—7-' for any x in I, ,,.
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