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CHARACTERIZATION OF OPERATORS AND REVERBERATION CYCLES

ASSOCTATED WITH A SINGLE NEURON EQUATION
by
Masako Yamaguchi
Introduction

Since E.R.Caianiello [3] proposed & mathemstical model of neural behaviors,
numerous contributions have been given by himself and his collaborators regar-
ding mathematical properties'bf the neural equations. Among these contributions
the reverberation phenomenon of a neural network has been one of their main
concerns. For instsnce they investigated neural networks whose reverberation
cyclés are required not to exceed a preassigned maximal length, as: shown in
Cajianiello and others [1]~.[9], [ll]ﬂv[l6]{ Their main mathematical tecniques
rely upon matrix algebra. o -

On the other hand Kitagawa[1l0] recently started with discussion of dynami-
cal behaviors of all the possible solutions of the neural equation for the case
of single neuron. Among others, Kitagawa [10]‘introduced_various specal opera-
tofs and investigated some characteristié features of the‘dynamics led by each
of these operators. - This paper is especially connected with detailed discussions
of these operators introduced by Kitagawa [10].

In Section 1 we éhall give a necessary and sufficient condition for that
all the sequences obtained frpm the solutions of the neural equation (1.1) form
a set of mutually disjoint reverberation cycles and show thattthe4néurai system
satisfying the above condition is equivalent to that under either of two opera-
tors Ly and Lﬂ; introduced by Kitagawa [10]. In section 2 we then define a
digraph with respect to each of operators which were introduced by Kitagawa[10]
in connection with (1.1). Our grapf theoretical consideration shows that there
exists a set of 2(n+l) special operators, called an y-.p set of operators, in te
terms of which any operator associated with (1.1) can be represented in a
unique way. In Section3, we deal with reverberation cycles associated with
each of these fundamental operators L“k and Laz (£=0,1,...,n-1). We determine
the exact number of all the possible reverberation cycles with any admissible
length. Here we make use oe a combinatrial method appealing to circular parti-
tions. We then proceed to discuss the reverberation phenomena for operators Ly

“

and LQT as well. It is shown that the number of all the reverberation clcles
<
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can be reduced to those of reverberation cycles under the operators an and L
i 4

81. Characterization of the operators Ly, and Lig-
0

We shall investigate. mathematical properties of a single neuron model rep-

resented by a nonlinear difference equation which read :

(1.1) X(t+1) = 7[§/Q/<Z(é—k)~9]

(1.2) 1yl = J1 i wde
0 (f Us0
)
where x(t) is the state (1 or 0) of a neuron at the time t iV} the set I of
indices (0,x1,%2,...), 8y is the coupling coefficienﬁ fro@Ehe neuron to itself
which is effective k unit times after firing, and § is the threshold value.

In what follows in this paper we assume thet all akv(kﬁ:o,l,...,n—l) and
¢ are constant independently of t. The functional equation (1.1) is regarded
a neural equation (NE) due to Caianiello [1] for a single neuron.

In order to investigate state transition phenomena of (1.1), it is convi-

mient to introduce the following n-dimentional vector as shown in Kitagawa [10]:

(1.3) d; = (}ig; 0&~0 Ty, Ci;sz} szyﬁ )

where OQ = x(s) and d; denotes the state of our neuron at time t, Whileéaij

called an n-state configuration of our neuron at time t. Let us define the

inner product ( a’dQ) by

n~
(1.%) | (&,d;) = %ﬂké}«

where a = (ao,a a 1) and a concurrence function by

1200

(1.5) Z(de) = (& &) - g,

which reduces the functional equation (1.1) to

(1.6) Sy = TLE(de)]
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In connection with (1.6) Kitagawa [10] intrgduced the operator L of n-dim- -

entional vectors defined by

(1.7) | _/ ~ n

L(ds, dgr J:%—W-Z/ a;mv) = (1[Z(d)], Je, -~ dt-n2)
The five characteristic features of the functional equation of (1.1) have been
pointed out by Kitagawa[10], one of which is the translatability of associated
operators. An operator L defined by (1.T), namely -

(1.8) L () = (Ade, o3, dtey =, dtonez )

with

(1.9) | NAdy = [z @;)]

is translatable, i.e., commutative with all translatiOns“E,>w(a«0, where %}z(t)

=z(t+« ), in the sense that we have

(1.10 ' |
b T R) = (k)]
for all t and«/. Because of this translatability property, we may and we shall

confine our discussion to a transition :

(1.11) Z‘ (J;"// ST UF// J;) = (Z[X/a\)], d;—'// Yy Jj)

for anyéysr(a;j/.>é;)1n the n-state configuration space Xn’ which is deflnedbby

(i) X, ={g= (Grs)sdydy ), Si=laa D, €=0,1,-, )7”/}_
Now we shall give the following
Definition 1.1. A solution x(t) of the functional equation (1.1) is said
to have a reverberation cycle, abbfeviated by RVC, of period R if the following

equality holds:
(1.13) X( t+R ) = x(t)

for any te I = 40,11,12,... }.

Let us define Li(d\)z L(Li-l(QY)) and LO(@F)E a -

Lemma 1.1. The equality (1.13) holds if and only if the following equa-
lity holds

C) LE, G s G, Fr )= (B iy o, o)
for any te& I.

Proof. The proof is trivial.

Because of Lemma 1.1, our search for any reverberation cycle is equiva-
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lent to that for the solutions of equation (1.7) with the condition (1.1L4k).

For the operator L, an immediate observat’ion gives the following

Lemma 1.2. For any assigned n-state configuration in Xn the number of
state configurations transformed th by an application of L is at most two.
In particular, when any assignedé_belongs to some reverberation cycle there is
one and only oneééuch that L(J/) =4 - - '

Kitagawa[10] was concerned with the following special operator;

039 Lo (G 5,8 ) 2 (5, Fy o S)

. v /]
for any state configuration (J;H/ ~.)J;£)in Xn and showed that for any state con-

figuration there exists a positive integer R such that equality (1.1L) holds,
that is, any n-state configuration in Xn belongs to some reverberation cycle,

under the operator L... Here we shall introduce the another special operator
L]

28) Ly (Fnyy o 8 G3) 2 (Foy Foy 7 )

for any ((;41_// “)c);‘/éz)in X . :

In connection with these opefators La; and Ll,\,° Jjust introducgd, it is
important to oberve that there exist sets of coupling coefficients 4ak}
and the threshold value @ for any of which the operator L associated with
the functidnal equation (1.1) is equivaMllent to one of these two oper-
ators Lds and va

Lemma 1.3. There exist sets of coupling coefficients {ai; i=0,1,~~-

, ’
n-1 } of and the threshold value ¢ such that (i) 1[z(J)]= J, for any

T = ny o, .5 ) in X or (ii)} 1z(4)]= dp for any J = (0)\'}1—//*"}’
a’? d’;) in Xn' :
Proof. The case (i). For-any o = (dy-y, s a;oy;)in X , let us

assume 1[z(j )]= ;—: which holds if and only if the following inequalities
hold:

4
(117)  Lre T 2 dgoz
Vel
4
/!

. . . 4 4 - < . . _
for any set (11, i, ’lh)’ 0% h £n-1, such that 0 < i, <i, <i, < n-2.

(1.18) a. — & > 2,

L%

For any fixed a; i=0,1,2, ~~+~ ,n-2, let us put

(1.19) & — )
- A 2 A <=0l -y wL
#>0

]
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) ,
(1.20) A = Z A, =0,/ -, L
Ay<o :

It is trivial that (1.17) and (1.18) for a . and & hold true if.
(1.21) ) . -)
Dyy A = < A ;
The case (ii). This is quite similar to the case (i).

Under each of these operators Lo_,

[

dependent on the sole state a;_ ) exactly n step before the time t.

and L any solution of (1.1) is
“e

Now we shall prove the following

Theorem 1.1. The necessary and sufficient condition for that any n-state
configuration j‘ =(.’;/)7«-// ‘../(;7/0)’;) in Xn belongs to some reverberation cycle
is that
L= Ly or L°(o , that is, 1[z(d)] = ‘}: or J- -
Proof. (1) Necessity. For any 9\/ - (J:n—/,") d;) , let us put
re)
(1) = (-, Iy, O) = (JF, o),
(1.22)
(1ii) Tren 2(3Y) 5 £
&€ Xy
(iv) max Z(F5") = «,
J\\ ¢ Xny
Now it is evident that the following thre{cases exhaust all the
possibilities:
Case 1. Z>0
Case 2. U £0
Case 3. Z £0<u |
Casel. In this case, for any é‘\’z (s J/‘)/ x (J(?)oand hence
we have.

(:.23) 102(8) = |



which implies

(1.24) 1[2(F%)] =0,

) /
pecause 1[z(g )] = 1, i.e., L{ d\(o)) -y JC) ) ~contradicts Lemma.l.2.

From (1.23) and(2.24), we have L (Jy,_, ---, J;, o) = (8o, Sty =, 1)
for any & =(Jy-,, - di, é;) in Xn’ which means that L is equivalent to the

operator Ld .
[

' A
Case 2. In this case for any 4 = ( J;, ,
=1
we have

(1.25) 1[2(F"] =9

which implies, in view of Lemma 1.2,

)01/“) , Z(J"))g_o , and hence

(1.26) 7(2(F)] = 1

as in Case 1. .
Frome (1.25) and (1.26), we have L(d,_, ~--, J. Jo )=(J;/ ac'r—-/, -
d, ) for any J = (A;V//"/AZ Jp) in X » which implies that L is equivalent

to the operator L .
[2]

Case 3. Now let us introduce an (n-1)-state configuration

~(=- ) -
(.21 77 = () - 97)
whreye /

~) 1 A+ Ar<o \ :
(1.28) C)J‘ = { ][ ¢ J=1.2- 77—1/,
and another one
(1.29) 3] (+) )

é\ = ( Jﬂ-—/ ) Ty J/ )/
where
(1.30) S 1 £ a 2o ‘

/ = : J=bz n-1

| o f a; =0 .
Then it is clear that
Xy,
(1.31) (= 2(5 1)
. = R

(1.32) M-X((J,,1)),

Now we shall prove that the Case 3 does not oceur by ad sbsurde.

Let (= 0. Then it follows that

(1.33) 7[5(5‘\(‘)/1)] = 0
which implies, in view of Lemma 1.2}
3y L0 0)] = 1

/
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which is equivalent to

(1.35) F((F7 0)) >o,

From (1.33) and (1.35) we have
(1.36) x ((5F7 1)~ x((dT70)) =&y <o

On the other hand let u > 0. Then it follows that

(13 7 (ZFH1)] =1
which implies, in view of Lemma 1.2.

. X
(1.38) 1[2(2%0}]:0
which is equivalent to ’

T .
(1.39) x((27, 0)) 20
From (1.37) and (1.39) we have :

LR XY

(1.10) ((F71) - 2(UFT0) = any 20
But (1.36) and (1.40) are mutually contradictory, showing that the Case 3
does not exist.

(2 ) sufficiency. This is trivial, because, for any 4 in X =~ we have

(1.41) L;’z (J) =J
(1.42) o -
which show tha££;£y {;ézin Xn %Z?éhgs to some RVC of at most length 2n
ard respectively under successive applications of Lai - and those of LW‘> .
respectively. gq.e.d.
Our Lemma 1.3 and Theorem 1.1 give us a characteristic of L v, and

Lo in the realm of functional operators defined by (1.11).
°

§2. Graphical representation of the operator L

In this Section a digraph G is defined for each operator L introduced

L
by (1.11), and we shall represent GL in terms of a set of specific operators
which includes L < and L= as its members.
&, hy
Definition 2.1. A digraph G = (Xn,[7) is called to be a digraph

with respect to the operator L when the set of arcs is given by

r = {(J/Z(J\)) 5 € X”} . In this case we denote the digraph by
G = (X, F’L). ’
Let us define the following operations between two digraphs:
Définition 2.2. . For any two digraphs G =( X, [7) and G' = (X,Iq/a,
(2.1) G+ G = (X, FypP’)
(2.2) G.¢c = (X, PAT7).

Definition 2.3. The total number of arcs in a digraph (Xn, [7)
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which starts from an assigned J in \Xn is called to be the outdegree of
J in the digraph (X, [ ). :

Definition 2.b4. The number of arcs in a digraph (X, [7) which
comes to an assigned d‘ in Xn ig called to be the indegree of 4 in
the digraph (Xn, 7 ).

From the definition of r L and Lemma 1.2 we have immediately the

following
Corollary 2.1. TFor a digraph G = (Xn’ ]Z) w.r.t. an operator L,
we have
(2.3) outdegree of 5 =1
(2.4) indegree of DL 2,
for any ;¢ X,,L « In particular any é\ belongs to some reverberation cycle

if and only if indegree of 5 = 1.
Definition 2.5. A digraph G= (Xn, r ) is called to be oé -complete

if, any j_-_: (J,n_l) .../JLOJ;}%ntains two arcs (@2 (1, 0":,4_,) -~ é:)) and
: 2
(d: (o G- - 0‘7))’

Definition 2.6. A digraph G = (xn, r ) is called to bepé -complement
to a digraph G = (Xn, /’Zc) w.r.t. an operator 'L if G+ G is L -
complete, denoted by G = GL.

Lemms 2.1. For any operator L, there exists one and only one operator
L such that a digraph G— w.r.t. the operator T is an 05 -complement to

L
the digraph G. w.r.t. the operator L.

L )
Proof. For any operator L there exist the set {a_; i=0,1, . , n—l}
i
of coupling coefficients and threshold value 4§ corresponding to the operator
L. Because of density of the set of real numbers, we may and we shall confine
to the set {ai; i=0,1, -~ , n-1 and & such that exact inequalities hold
(2.5) g [=z(F;a,6)] = { /1 F (P, )0
| 6 T (D d/§)<0/
vhere X (J; R, 0) = (R, d) ~ & for d=(aya,; G )end any F
in X . :
n
Now let us introduce the operator L corresponding to the set

JL]: 5 é,:o,;j./-n—;}and threshold value g , where Z{b = -g, for b= 6

20Ty,
v—| and §=_-6 . Then for any g in X
n _— — —
(2.6) #(Jyd,6) 2 0 if and o0y if ¥ (3, @, 3)s0 "ere d= &, G, -,
dn=r )

(2.6) is equivalent to say that, for any .,



100

(2.7) L (,a;—/) ST \):‘/ JG) = (d\/ ‘j;1"// Tt J—/\)
implies and is implied by

(2.8) 4 (J/n—/, -, é‘,/ Jp): (J, 531—-// < J:) ) |
This means that GL + GL is oé -complete, this is to say, GL ispé -complement
to G.. The uniqueness of the operator L is trivial. g.e.d.

L
Lemma 2.2. For any operator L, we have the equation

(2.9) 676, =G.q" =G
oF

* -
(2.10) G ¢+ Gr; =G Fa = &
where G¥ is the [, -complete digraph.

.

Proof. This is evident from the definition of G¥.

Now let us consider a system of operators consististing JLO’J@ }/ {Lyz }
‘o . . .
=01 - ﬁ_/}} Zcu and /= which are introduced in KItagawa [10] and

defined in the following way:

(2.11) A;,;; ( Ioneyy -~ J, - do) = (é—jz, sy =2 ar) -

2.12 R ~) ~
E ; Lo/_e (Idn—t, J:Z/ - dp - (U.Zj d’ﬂ”l/ e 0/;)
2.13 ;
oy P (Tm s S g = (0 Py )
' Z“od (a\/}f—/} S~y é?/ d;) = (1/ ;)/f-//“/ J:)/
for any o~ _ .~ in X . The set of all these operators is called
G =m0 J:/OG) n

to be the A—-w set of operators in Xn.

Similarly as in Lemma 1.3 we obtain

Lemma 2.3. There exist the sets of coupling coefficients f‘ d, ;o':o, :l}
~y ﬂ*i}and threshold value g corresponding to each of the operafors
defined by (2.11), (2.12), (2.13) and (2.4), respectively.

Lemms 2.4. We have the equations

(2.15) @N + G o= @
2 ¥
. R
(2.16)  GZo + Gz = T
for ¢ = 0,1, -~ ,n-l. where G¥* is the ﬂ(‘j -complete graph.
Proof. This is evident from the definition of each operators.

From Lemma 2.4, we have immediately the following

Corollary 2.2. We have relations
: C
(2.17) , _
Q—LN - (-Tz___
£ 7

(2.18) ¢4w - <r:_
[75)
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for [ = 0,1, --- , n-1.
Corollary 2.3. We have relations
(2.19)

%, 9 = G

B2 s, Gu, = Gy

7

for [ ==o0,1, «~+ , n-1, where G¢ denote a special digraph when the set of
arcs reduced to an empty set )ﬁ .
Any operator L defines and is defined by J such that 7[27(5/)]= 5\
because we have
(2.21) i (8) = (11Z(B)] Iuey= G) = (F0.Goy, ~+~, o1 )
’ L ( ) = U/ o YNy A=l ’ .
This fact makes us possible to introduce thiﬁotion
.22 M
(2 ) (5 ;I ) € ZI.
Now a representation of any operator L in Xn on the basis the
set of operators by thechelp of the notion (2.22) is given by the following

Theorem 2.1. A digraph G, w.r.t. any assigned operator L in Xn is

L
-/
G = 2 GO &(5, &)
4 T gigren A
J:(d"ﬂ-l/"‘/a-c?)f/\/%

represented by

(2.23)

where digraphs G (J,d,) and &(J)are defined by

(2.24) 640, '}[ g = JZ
F(F,ds) = ¢ _
G f 5 =a

6(3) =) %0 f
6_4;; /‘7[ dﬁ:a.

Proof. Let us denote any arc in digraph GL by

/ - - ~ ~ ~ . -
(2.26)  ((Ge), - 6,85), (3 Oy o) = (T J/)}
which implies and is implied by (J &‘)54 By the definitions of the digraphs

(2.25)

Fic, og)and Giw) , we have
(2.21) (§ §7) e ¢ (dde),

for 4 =o0,1, ..~ , n-1, and also

(22) (), T7) ¢ & (),

which give us
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(2.29) (7,3) ¢ ér/d‘)jzfj G(5de)

Hence we have

(2.30) G, P G&) %:/6;(0’\/ de).

(5/‘J)éé /:0
é\ = (J”“// "/d;)é/l/

On the other hand, for any (7, )€/, we have

(2.31) 5(5)77&(; B) = ((Byoyor B30, (L 55y I )

N

where d\ (;ﬂ_ _\,,&/J;))because the set of arcs in the digraphs defined
b
v . N~
(2.32) TG d,)
4=0

consists of two arcs

(2.33) s,(J;,_/J 4 J;/J; )) [J\/ 027—-// 2 Jl\))

(2.34) ( .
( J;? / 7 ) d\ ’”-—-/ T 0,\))
to which the multlpllcatlon of digraph G( ) leads to (2.31).°
Equation (2.30) together with (2.31) gives us (2.23), as we were

to prove. q.e.d.
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§3. The number of reverberation cycles

In this Section we shall deal with thed;u)set of operators defined in
Section 2 and obtain the number of a}ll reverberation cycles with possible X
length.

We shall define a notion of a circular partition for any positive integer.
The total number of circular partitions ﬁir then given by virtue of the
number of ordered pafititions each of wnich is usually called composition after
P.A.Macmehon. So far as our enumerations of reverberation .cycles are concered,
the advantage of the notion of circular of partitions is that it makes us
possible to introduce the notion of equivalent classes in the set of all ordered
partitions, »

A partition of a positive integer n is a represented by a sum of positive

integers as follows

(3.1) D= bbb, fa.l b,

where,ti); 1, 1§ i € k ,for k = 1,2,...,n, Eq. (3.1) is called a k-par-

tition of n and denoted by (tl, t ...,tk). An ordered k-partition is called

2’
by k-ordered partition. It is conventional to abbreviate repeated parts, by
use of exponents ; for example, 6-ordered partition (2,3,2,3,2,3) of n=15

3
)7,

is written (2,3 A special permutation §~of (tl’t2"

(3.2) G"(t|) ‘bz) v )-tk ) = (‘bK, tr,,tz/‘““'}-tk-l)

and let us put

(3.3) 0% (b, Tsy oo, ) = 007 (b ke, o, )

(3.4) % (B, Uz~ te) = (b, ta, -+, ti)
7

..,tk) is defined by

for 2 1.

Definition 3.1. Two k-ordered partitiomns, (t .,tk) and (s

_ l’t2’“ 1952’_.
.,sk), of n are called to be equivalent if there exists a positive integer

3 (14 3< k) such that

(3-5) y(t;,tz,“‘, tK)Z <‘S"“SZ/ Sy, SK)

Iet us denote by Pn

.

K the set of all the possible k-ordered partitions
b

of n and by Cn the set of all the possible equivalent classes of Pn

k K?
9 k]
each element of which is called a k-circular partitions of n. The equivalent

class containing the k-ordered partition (tl’tQ""’tk) }s denoted by E(tl,
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tg"“’tk)' In what follows we shall denote by # A the number of .all the

elements belonging to a set A,

Lemma 3.1. For any k-ordered partition (tl,t ,...,tk) of n, for which

2

#E(t tb,...,t ) = J holds, there is a positivexd for which we have
1272 k 1;7;;;) ' d_ ) .
(1) (t., tz, -, tu,)- = ( t(,t;,“‘.iq )1 wiih Jé =K,
(3.6) (2) % E(L0ts, > Ty D=

kJ (3) d is a divisor of g.c.m. of n and k, denoted by d‘ (n,k).

Proof. Because of OK(tl,tg,...,tk) = (tl,tg,..!,t

(3.7) [ 2 #T0 (4, 1, -, te) £ K

k)’ we have

.

It is evident that (3.6) is valid for j=1 or k. Now let us assume that 1< J
< k. This implies that there exists a uniquely determined positive integer

h (L h<k) scch.that

(3.8) St s, Tk ) = (b e, i)

2

(3.9) 't ta, o ) #E b e, o Tk ) Tov =2kl

sh+y

v

It is clear that h is a divisor of k, because the equation
(3.10) N iit\,tz/“‘,'ty:) =

LAt : -4 Yy
Cov. Va2, oo Nl /

(&5

with k=sh+r, for O§ r<{h-1, gives us r=0. Hence any k-ordered partition of

E(tl,t 2“"tk) can be written as follows

+1 . i
(3.11) Stttk ) = 0N (b e, b )
for p=0,1,...,k/d and 1=0,1,...,h-1, which implies h=j. In consequence we
have o 4
, o L
(3.12) NSO Tty } = . t:, et )

with dj=k. The equality d4§%t1=n gives us d'n which implies, in view of dj=k,
a ((n,k). q.e.d, v

Let us put
. Y T T L o S PN
(3.13> ,d { N ~ ;o= iﬁ Aw‘t\ e, Lo \;A,L;, y ik ) 2 ' '\;g'/Lp/
< N - ! }
We shall give the following .

Lemma 3.2. For eny positive integer n and k, 1< k- n, we have

ST

L

Proof. It is trivial that for any positive integer n and k, 15k-n,



we have
S
(3.15) H# . T N
On the other hand, we have, from Lemma 3.1,
.o . ; %
(3.16) i‘r SD’F . — +#* *} :\%;\,‘ ,tL): ’\t\,"' 3k§éf¢7,}< :
o d{(}";; \ # ;\w tic ) = f'%"" L
“and ) %
(3.17) (B Be) Sy e o FEML e ) = g )

SELE e (o Uy ey g FE(R, - ks )= f
for sy 4 | (a0 - v %)
From (3.16) and (3.17), we have
(3.18) #f, = _,,A V(T4 5

)
which gives us the equality (3.1L), becauce of (3.15). g.e.d.

From Lemma 3.2, we have immediately the total number of k-gircular par-
titions of n in the following
Lemma 3.3. For any positiwve integer n and k, 14 k &n, we have
» /) /’2‘;;"1 ,7//
(3.9)  # (pp = %13”%( A ),}d)
At this stage it 1s useful to sppeal to the special property of the famous

Mobius function which is defined
v d _ j
‘1 ('f =
(.20 wdi= s o i A 5wl spuare - free,
A g n cduct o £ }/a/.cjf,';;c:’f Vo¥iad 774/7/7///’:

for any positive integer d. IN fact we observe, as in the classical use of
the MObius function, the following theorem,

Theorem 3.1, For any positive integer n and k, 1£ k£n, we have the
equality ‘

(3.21) YLK = Z “ie [4;/ ~/
gt )’

Now we shall first give the number of reverberation cycles with all the
possible lengths under each of two operators ITC andedo , by using the results
given above, First of all we shall explain the correspondence between state
configuration(s) and an ordered partition. As a conventional notation of any
n-stste configuratianaf:(g;%ftvJ;)we abbreviate the same consecutuve states
in its compositiog} by use of exponents ; for example, a 6-state configuration
(1 ,1,1,0,0,1) is written by (13, 0%, 1Y

. . In this way any n-state con-
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figuration é\ can be written

~ 7N - Zi- g .
(3.22) a = (or L0, L0 4 o ) j—f"oy‘ %= erex

s
s

or
(3.23) d\ = (é‘f: 5‘{‘ .. V\?f&'-./ ;1/<) 7[“/ k= oﬁ{%’
where  §= /ot O, S=/-4, Z, -%mté Zoz/ Fov 1= 2 - K,
Now the k-dimensional vector (t 2’,. oo k) defined just now forms a k-order-
ed partition of n and is uniquely determined for each assighned n-state con-

figuration. Such a k-dimentional vector i§ called to be a k-ordered partition
associated with n-state configuration., It is evident that for any k-ordered

partition (t e ) there exist exactly two n-state configurations with

1° 2:°--a

each of which the partition (tl,t t, ) is associated, and these two statw

99y
configurations are mutually conjuZate. k

In what follows we denote by NZL(R) the number of reverberation cycles
with length R under the operator L defined in statae configuration space Xn'
3.1. The operator L?

In this subsection we shall confine our discussion to the operator L&'

Under the operator LJ we have immediately the following

Corollary 3.1. For any n-state configuration 2 in X 0 a re‘verberation
cycle contalnlngj includes also its conjugate n-state conflgurarlon g in X .

Lemma 3.k, For any assigned reverberation cycle there exists an odd
integer k uniquely determineed such that (i) there exists k-ordered partition
(tl,tg,. .. ,tk) associated with some n-state configuration in the reverberation
cycle, (ii) the set of all the ordered partitions associated with n-state
configurations in the reverberation. cycle consists of the set E(tl,tz,...,t‘k),
where E(tl,té;.,...tk)

containing the ordered partition (tl,t2,..., k) given (i) and the set of (k+1)

denotes the equivalent class of k-ordered partitions

-ordered partitions.
and
Proof. For any reverberation cycle, we maMe/shall note that there exists
some n-state configuration thich assiciated with a k-ordered partition of n,
denoted by (tl, 5aene ’tk) ,
that 1n general, for any even integer f and any n-state conflguratlonf.. f
,J\ ;)where {“l or 0, n-state configuration L (51) associated with

S¢s Spseces 1,/)
let us devide the set of 2n integers

with an odd integer k. This is due to the fact

( f—-/ )-ordered partition (s +

In connection with (tl, paeees k)

I={l,2 P24 o l; into the mutually disjoint sets
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2,k

I

W) . . K
(3.2’4) I — { | )' ! 2 } Z*} a
and J_d =

(3.25) I% = {i ; (eI, &Im}’

Since the set of all the n-state configurations belonging to the reverbera-
tion cycle is written by{ ]_' (5);{,6]}, in view of the definitioh of th@ operator
L&- , the set of all the ordered partitions associated with each state confi-

guration in {L (3; 1€I }15 equal to the set E(t,,t,,..
state conflguratlon 1n{L,_<J eI jassouates with a (k+l)—ordered partition

oty ), while any n-

of n, q.e.d,
The converse assertion of Lemma 3.4 is given by the following

Lemma 3.5, For any odd 1nteger k and any equivalent class E(tl, Dt
t, ) there exists an reverberation cycle uniquely determined which has an n-

k
state configuration, a35001a't1ng with the k-ordered partition (tl, Xk ..,tk) .
Proof, The set of the n-state configurations in Xn’ with each of which

k-ordered partition (t ..,tk) is asseciated, consists of the following

l’t2 ,e
two state configurations.

D te B
(3.26) (1% 0% -, 0" 1% )
and +

£ t 1
(3.27) (0%, 1 . 1™ 0")

On the other hand, in view o%. Corollary 3.1, these two n-state configurations
belong to the same reverberation cycle, which implies, by Lemma 3.14; that for

any assigned equivalent class E(tl,te,...,t with an odd integer k there ‘

)
exists one and only one reverberation cycle, g-e.ol.

Now the length of a RVC is defined by the number of all the different
n-state configurations belonging to the RVC, We observe

Lemma 3.6, Fop any 0dd integer k and any k-ordered partition (tl,t

,tk) of n, for which# E(t

23 L)
1obose ,tk)=j holds, the length of reverberation
" cycle corresponding to E(tl, 3oeees

Proof., For any odd integer k and any k-ordered partition (tl,t

tk) is given by %tﬂ- , where dj=k.

.t

Dy k)s

for which# E(tl,tz,...,tk)=j holds, let us denote an n-state configuration
which (tl,rg,...,tk) is associated by

_ 'L‘/ Zfz —_é"/ (\1'/(
(3.26) 4 =(& , & 5K, 4

From Lemma 3,1, we have the equation

(‘3'27) (‘61/ sz ey -tk ) = (—Z// Zz_, Tt Z;‘)



K, Whi;k impﬁn'es)
(3.28) fz cAA)mA
Z £7 T
3.2 y .. o
(3.29) A = (57 5 S f/)
where m= ——J, because both of d and j a¥Ye odd integers. Hence we have

g
ct-
P
(V9
Q
Il

(3.30) 45 () = AAA) = CAA)A .
(3.31) /,;, )= AT = (SGI)A =S

/J
where éi aiandu[<té§. On the other hand, sincef#E(tl,tQ,...,tj)=j,
we have )
(‘\l - g
(3.38) Ot g - T ) F (L e T )
¢ 4
for i=1,2 ,...,j-1, which implies, in view of (3.32), that we have
£ e ™
(3.34) L #
Lo (dY) )
for[:l,e,...,gf-/. (3.31) and (3.3L4) give us that the length of RVC

is equal togig q.e.d.
Lemma 3.7. The set of all the possible lengths of reverberation cycles

is given Qy

(3.35) zf s d s ooud lever sach Tha J/W}

Proof. According to Lemma 3.land Lemma 3.6, for any odd integer k and

a j(n,k), the length of RVC corresponding to E(tl’tQ""’tk)’ for which # E(
tl,tg,...,t ﬁi holds, is given by the set
Vl . f P ) ,
(3.36) {4 U d /‘:73*/\/) St K s qn edd tnleger,  JERNSH S
%

Whlch is nothing dut the set (3.35). g.e.d.

After these preparations we reach to the final result of this subsection
which read

Theorem 3.2, For any odd integer d such that d{ n, the number of rever-

beration cycles with the length 2R =2-,’;-" is given by
# . o o Ao
. : L2 U A )T
(3.37) /\/ 2%) - LRI )<
Proof. Because of Lemma 3. 6, for an odd integer d such that 4 ‘n the

set of all the ®quivalent classes of ordered partitions to each of which a

reverberation cycle with length 2vu coresponds, iﬁéiven by

(3.38) D = : Tt T U§ 2 e I e t«f‘)nc}‘/
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\ 0 PO .
515 am ead lMTeJ‘f«V 1. P =
Y4

with R=5E' In view of Lemma 3.3, we have

(3.39) #D = 2 4,&(42,01)/;:

lit

R}

J%}éﬁl )
which implies, from The orem 3.1, _ [5ﬁﬁ.
L 5%? -]
(3.40) # 2. U (74 ~ 4y - /R
b= '%LZ IRy 0 —')/J g’/ZK/M) Z bfw)
. /S‘ L,{(o(/)-——LZ[?J}‘ : l ~ | &’/;
< S0k L s
Al o
A el ‘Zﬁzégz%ai '

But Lemta 3.4 and 3.5 show that RVC with length 2R=2§;, which, in view
f (3.40), gives us (3.37), as we were to prove. q.e.d.

Corollary 3.2, We have the following @quation,

(3.41) % /204 /VA (27 )

7 A
where Q%, 2Z“) is glven by (3.37).
3.2. The operator L,
(]

In this subsection we confine our discussion to the operator L, .
4

Quite similarly as the case of the operator L , SO we omit the
[} .
proofs.
Lemma 3.8, For any assigned reverberation cycle there exists an even

integer k uniquely determined such that (i) there exists a k-ordered parti-
tion (tl’te""tk) associated with an n-state~éonfiguration in the reverbera-
tion cycle, (ii) the set of all the ordered partitions associated with n-state

configurations in the reverberation cycl® consists of the set E{t ..,tk)

sthse
and the set of (k+1)-ordered partitions of n. v
 Lemma 3.9. For any even integer k and any equivalent class E(tl,tg, ces
), (1) ifﬂ=E(tl,t2,...,tk) is an odd integer, then there exists an rever-
beration cycle uniquely determined such that an n-s¥ate configuration in the
reverberation cycle associats with a k-ordered partition in the (tl, CIRRRE
t, ), while (ii) if 4 E(tl,tz,. »t, ) is an even. integer, then there exists two
reverberation cycles such that these are mutually con;jugate reverberation
cycles and each of these reverberation cycle confains an n-state configuration
2""’tk) of n.
Iemma 3.10. For any even integer k, dl(n,k) and any k-ordered partition

(tl,tz,...,tk) , for which # E(tl,tz,...,tk)=j with j"_d=k holds, the length R

which associates with k-ordered partition (tl,t
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of reverberation cycle corresponding to E(tl,tz,... t,. ) is given as follows:
(i) for the case that j is an odd integer, R = 2%7
(ii) for the case that j is an even integer, R = X%

Lemms 3.11, The set of all the possible lengths of reverberation cycle

is given by
(3.42) (£ 5 dn}

Theorem 3.3. For any positive integer & such that d] n, the number of

n,

reverberation cycles with length R= =1 is given by

(i) for any odd integer R Z 3

(3.143) /\/A/y (R) = %{Wd’)/‘ Q)JZ

while d ‘2 odd

o, .
(3.541h) Aé (1)
(ii) for any even integer R,

(3.145) /\/ (,e/ —«Z Wo{)/z —~z}+~- %uw}ﬂ 2}

d < é{ , (/{ relent K CL/
t S did)Z
3.3 The other operators belonging to thedy set ‘i{/%dd .

In view of Theorem 1.1, we should notice that, in contrajt with Ljo and
L&; , there exists their respective subsets of n-state configurationg, each
of which does not belong to an RVC for each Ibhand Laz when 1£( £ n-1, but
each of which reaches to an n~-stat@ configuration belonging to some RVC after
finite applications of each of these operators. In short, each of these n-
state configurations is transient. In spite of the existence of these tran-
sient state configurations, it will be shown in this subsection that so far
as the n-state configurations belonging to the RVC are concerned, the number
of RVC's in each of Ly and L;r can be reduced to those of L“, and LS” which
were already given in Subsectlon 3.1 and 3.2.

Theorem 3.4, For any positive 1nteger d I (n-(), we have
(3.%6 ‘“ (2 =S
) 2) - 4
(3’47) /l/h N-L , - JJ 7 VZ
/e (2 ’“') = AV (2 ) 7[6}” Al ead (/] /e}/

-

(o | For il <V /;77%/<V a/)

for { =1,2,...,n~-1,
The proof is omitted.
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Tt may be noted that an n-state configuration in X can a‘tteln to some
RVC at least f applications of La, (La%_ ) (/ =1,2,...,n-1), i.e., the length
of transient phrase is at most 12.

On the other hand it is immediately to observe that any n-state configu-
ration in X except (1,1,...,1) ((0,0,...,0)) belongs to a transient phrase
under the operator L,,(L z;), while the n-state configuration (1,1,...,1)
((0,0,...,0)) in Xn constitutes a RVC with length one under- the operator L,
(L5 ).

References

[1] Accardi, L. : Rank and reverberations in neural networks, Kybe rnetik
8, 163-16L4 (1971)

[2] Aiello, A., Burattini, E. and Caianiello, E.R. : Synthesis of reverber-
ating neural networks, Kybernetik 5, 191~195 (1970)

[3] Caianiello, E.R. : Outline of a theory of thought-processes and thinking
machznes, J. Theor. Bicl. 1, 20k~ d?) {1961)

[4] Caianiello, E.R. : Decision equatzons and reverberatzon35 Kybernetik 3,
98-100 (1966)

[5] Caianiello, E.R. : Brain models, natural languages and robbots, Japan
Industrial Technological Association Symposium of Information
Processing Systems, Tokyo, March, (1972) 126

[6] Caianiello, E.R. and Luca, A. de : Decision equation for binary systems,
Application to neuronal behavior, Kybernetik 3, 33-40 (1966)

{7] Caianiello, E.R., Luca, A. de and Ricciardi, L.M. : Reverberations and
eontrol of neural networks, Kybernetik L4, 10-18 (1967)

[8] Caianiello, E.R., Luca, A. de and Ricciardi, L.M. : Reverberations,
constante of the motion and general behavior, In: Neural
networks, de. E.R. Calanlello Bﬁrlln~He1delberg-Hew York,
Springer (1968) P92~99

[9] Ishihara, T. : On Caiantellc's neuronic equations, Math. Japonicae,
Vol. 15, Fo. 2, 119-125 (1970)

[10] Kitagawa, T. : Dynamical systems and operators associated with a single
neuronic.equation, Research Report of Research Institute of the
Fundamental Informetion Science, Fac. Sei. Kyushu Univ., No.30
(1972)

(117 Luca, A. de : On some dynamical properties of linear and affine net-
works, Kybernetik 8, 123-127 {1971)



112

[12] Luca, A. de : On some representation of boolean functiions. Applicaticw
to the theory of switching elements mets, 9, 1~7 (1971)

[13] Luca, A. de and Drago, A : A new representation of linear and offine
cireuits, ICC Bull., Vol.6, 133-1k2 (1967)

Fed - . .
jis] Luca, A, de and Ricciardi,
deseription and asy
N
{1867

wnd hicelardi,
ﬁagya' ﬁetworks,

and Ventriglis, F.
~output relaticns

183 {lj?ﬁ;




$h: AL -12752d4 - wit3 theshold funchon
FERG Y 2 v Th, BE XA F CAG VA 1117, T
3 ab,

Mo i A~k TIANL - JCHR T IS KT
N %417 ' .
B Tévthoy17h, (Bowvy,2 12, 44
B Kokt (e,

dho: 2>, zhelEF R 2TL LT, wnjuqideiz 335
%‘l:li\et’@m',@wL’L. '

®h: VoL )VBIbH T IR, ThlzBE ot}
LMy w3 = l, 35 . ~\‘L‘5—'1J}q“m L - li’%%?ngv
AN 7SR N |

Uhl: -G Rfhalsthe £t 9 -Fuwr v, d-w z w544
HBinv- 9o hnth3EMHeELL, Lar i, Kigp

2“1@5\'54'1—:H4~‘€'%, :&»%qsﬁt"j&,n.la-wt:;oz. W
Lodagstd 7IvE2L 3, T 2T Ee o (n-2)/d o 44
INNEABDEI A E L SN THI L, Taku, tadpied
EHRY, THe Sy TvAN,

Lo 1Faw.

&&,: ANETE = ST O S AR RN A ARURUIC B A & -

ho : o5 ( Ly, Lo, 2=1.2,5 -4 ) 331342



114

wg J, tH59atNlL - Fa7 -,

Hh: x>, 053¢I EIEIHMNGL EIH N
AR

LD 3 ANt IvETSz (T T

4 (ol, PRILY &> Lo D> EHALE

AL, 5@, Threshold funckion o 4 ' 3 4 & 2 1%
Ku®e (202 dh, 3727080072 8 BN,
BFh1353 L Wi de, |

he: wrauny i sats 1Rt . 55%hn4a @KL
FTHRX=2v -2 (3wFF

TH 2 athobtlht wHad M, me=10 7, Ly
TN T TN, 44 9 we B R &G by TH,
Lp: m=dor, Lz atREe k33, Wik, R
VC o R 2+, b 85% 4% 2 1%,

N“: (&) = —,{ S oaanz¥= )= 1.
T, «

e 2
A odd

o 2 1@ S 3 stake enfiswmration a G w2 Kt M4 o pve BEC

BA®e w>H=z0=%y 323,
B4 : ' REKRBIBABC o th: 1 3 3 M,
hb: thn. @R R 20 vhELSRIT A,

A= 1 Y&t 2, 45 8% 2 2 F ,



115

\

®F : M IET 32T % . h T

B4 1574 H. MFaua3 3, BExH 4 ..., La L
~ W5 P LRELEEBE 2N 2y k2L 3T Le S,
Bh: 15%:2£9CH5T 44, wtathlrioallime
Mk 53 a2 9 45, 22 5 (acamello o 3w 70 {- element o
t5 %1%, MecCulloch- Pifts o € 7 1L o (mfi)-zlemew‘ls o BE% ¢
BT, 2tk adtshetbr ttas [, 5301t 3,
a9 20008 t@BiBry v5 =173 0,

4 : AKarawebmbe k., Thfo r widsz k3¢
WYy 74K Ao, Fdnldniképrh Lz e
L, 23 ‘é % 3 shift Yegzs'}or 3, RN e
AMIPA 6 TN T ED . T I AR, —hie mEZ A
T3REIPB L1535 155 T3 H, v ,03e L, Ly
4. 2 b o195 L £ 8 11 & Q..‘:B.,? VolFPa 2 B
WHR UM% o2 3, Ll T thbatht g
B AT T 03, e T, cathio ke AR
m’%%l"— K, TRkl hibolB1Epa RVCHIRIB (534 2w S
S A Al I

PR: LaliheTohyges v vdambhosl wh
tlrdtnt

H 41 : 15 7%



118

$h: FTLATWLAT, :a bt hrBiIANTE3 L
whH A G T2 g ([ h TG MeL %, :ai%%?&a'%%
213 3R CE Tz T 3G AT AER 2 3 bt
PTh, 1ht, —83aESEr, BARBIBE L R » 35S
AR B DI T RN AN ¢ % SIS S 25 \E Ll SIE P S SR ARUIE S -
CHwrb3zl; 9, 1Lat ieaarsd e, =2 adh
Iohy tz2 v, 58 34-39 L33,

AR S TE TR R B R 5

e vdh, BriEfsnerd, WL aFE 030

o

¥ : 73721172

113 vvy =y lbag, g orlvo BlafFik
td3¢, 2Lz o 1[-Je>M¥d -a3zs e,
0313 ] LSl Lalbond, 2wt b3 Bsemic
L33 ¢ ,n. LTALLC) 334, B2F. 390
LR L L EMNEE 0 H R 2T 5t T T h, { 2@l
A £y brBHEFRiBeENRD L, FU)a ARG
43, £t oo ioahedidcs3 e 53, ¢
Yo b5 44X vt verdhite b5 T4 10,

Wmh : :-oiEe Mz, =1} finh st 7-F (-
R25%5 0% %73, 2ha KB ERDe: v, #4147
it s 3 4 o & ":%/'S Y. % WG o characlerizedion ¥ 9 =

tTdh, Fon, 1thten. T-F 2 b >z ®o2u3



N AR SR L N ¢ RMDNE» % v, pa» L vy =%

H. 15 G (#2034, oIS 30 nrds,



