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On solutions of initial-boundary

_ 1
problem for u, = u,  + STy

Hideo Kawarada

University of Tokyo

§1. Introduction and Theorem

Various worksl>’2)'3)

have been published on the blowing-
up of solutions of the Cauchy problem and the initiél-boundary
value problem of nonlinear partial differential equations.-
Blowing-up means that the solutions of these problems become
infinite in a finite time.

The objective of the present paper is to introduce the
concept of quenching which has more general sense than blowing-
up and to find some sufficient conditions for quenching of the

solutions of the following initial-boundary value problem for

u=u(t,x), t>0, =x€&(0,r),

1
(1.1a) U = Uy L vl t>0, =xe&(0,2) ,
(1.1b) u(t,0) = u(t,2) =0 , t>0 ,
(1.1c) u(0,x) =0 , x&(0,2) ,
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where & 1is a positive constant. The above initial-boundary

value problem (l.lanc) is denoted by IVP. Our study may be

said to be more illustrative than general, since we restrict
ourselves to one-space-dimensional mixed problems of semilinear

heat equations. .Nevertheless, we hope that our results will

give an insight into a more general situation. The nonlinear

perturbation l—}-a (u#l) in (1.la) is a locally Lipshitz
continuous. Thus IVP has a unique solution which may be local
in t .

The present problems came to our attention in connection
with the diffusion equation generated by a polarization

4)

phenomena in ionic conductors .

We shall define quenching for the solutions of the initial

value problems.

Definition 1. Let u = u(t,x) be the solution of the initial
value problems which are defined in t>0, xe€Q. Q means R™

which stands for the m-dimensional Euclidean space or the

bounded domain in rRT

We shall say that u quenches if |ju becomes infinite

tle

in a finite time where |

Ic denotes the maximum norm over Q .



139

In order to clarify the nature of gquenching, let us take

some examples.

Example 2. o being constant, the solution of the initial

value problem for u = u(t) , t>0,

d 1
a% =1 £>0
u(0) = a ,

is u=14+ V(1-0)% - 2t, if o>l and u=1 - Y(1-a)% - 2t ,

Y 2
if oa<l. In both cases, we see quenching at t = iiiﬁl_ .

Example 3. Let o be as above. The solution of the initial-
boundary value problem for u = u(t,x) , t>0, x&(0,2),

u, = u + =, t>0 , x€(0,82) ,

ux(t,O) = ux(t,z) =0, t>0

u(o,x) =a , x€(0,8)

is the same as above.

Example 4. Blowing-up in the initial value problems means
guenching. As our main result, we have

Theorem. In the IVP, suppose 2>2/2. Then the solution of

the IVP quenches.



140

The present paper has two sections apart from this section.

In §2, we shall give a Lemma. §3 is devoted to the proof of

our Theorem.

§2. Lemma

As a preparation for the proof of Theorem we state the
following lemma. Henceforce, let u = u(t,x) be the solution
of IVP.
Lemma. In the IVP, suppose 2>2/2 . Then u reaches 1 in
a finite time at x = % .
Proof:
1st Step. We show that u(t,x) 1is increasing in t for
every X in (0,2) as long as u exists. In fact, putting

vV = u, , we have

t
(2.1) v, = v L _ v, xe€(0,2)
. t XX (l_u)z r rvJor
V(t,O) = v(t,SL) =0 ’
and
v(0,x) =1, =x€(0,%) as long as u exists.

We notice that v is a solution of the linear parabolic

equation (2.1) and is non-negative on the "parabolic boundary".

Thus v 1is non-negative everywhere, which implies the required

74
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monotonicity of u

2nd Step. The solution uy = ul(t,x) of the initial-boundary

value problem for u = u(t,x),

Up = U, 1, t>0 , x€e(0,) ,

u(t,0) = u(t,) =0 , t>0 ,

u(0,x) =0 , x€(0,2)
converges its stationary solution Y (x) = %&(Q—x) (0<x<) as’
t > +=. Thus u; crosses 1 in a finite time if 2>2v2 .

Suppose that u does not reach 1 in a finite time if
2>2v/2. Then IVP has a global solution, i.e., u satisfies
0gug<l in (0,2)%® [0,+=») by virtue of the monotonicity of u .

Comparing u with u; , we get u > uy in (0,%) %X [0,+x)

since T%T 1 in 02X<1. This contradicts the assumption.

v

We shall denote the time when u reaches 1 by ¢t = TO'

3rd Step. u satisfies (i) ux(t,O) > 0 by virtue of positivity
of u ; (ii) ux(t,&) =.0 since u 1is an even function with
respect to x = % . Putting w = u, , we have

T, =T + i T tel[0,T,) XE(0 2

t XX (l_.u)z ’ ) [ ) ’

T(£,0) >0, w(t,3) =0, te€f0,Ty ,
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and
L
m0,x) =0, xe(0,5 .

Repeating the same argument as in lst Step, we see that

. L
(2.2) T = ux(t,x) >0, tE[O,TO) ’ xe(o,i)
Combining (2.2) and (ii), we get that u takes its maximum

at x = % for any t&[O,To). This completes the proof. .

§3. Proof of Theorem
lst Step.

l.a) Put u = u((t) = u(t,&) in [O,TO). U satisfies

Q

(3.1) $ < in [Tgme,Ty)

for sufficiently small ¢€(>0) since uxx(t,%) <0 in [O,TO).

Put Tl‘= To- € and Qe = (0,8) x [Tl,To). Comparing u(t)

with v = v(t) =1 - /EVTO-t in [Tl,TO), we get
(3.2) uW>2v, in [Tl’TO)

since v satisfies (see Example 2)

dv _ 1 .
I = IV ! -te[Tl,To)

and

lim v(t) =1 .
t->To

(3.2) implies that there exists the domain D in which

u satisfies
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u(t,x) > v(t) .

Denote the compliment of Ds by E€ and put E(l)=E€nﬂO,&)2[Tl,T0)}

€
(2)
€

_ 2
and E —EEAKE,Z)X[Tl,TO)} .

For Ds , there may be two cases:

Case (a) D€ has no interior points; i.e., there holds

uxx(t,%)=0 in [T,,T,).

Case (b) D. has interior points.

For the case (a), u quenches obviously. Henceforce we

consider only the case (b).

(1)

1.b) Denote the boundary between D, and Eg

by x=s(i%t)

(te[Tl,To)) for i=1,2. Then x=s(l%t) satisfies

(i) 1im s Yhe) = % ;
t->T
(1) u (e,s Mo M) = o6, Me)),  rerry,my)

(i) .
d t .
—§aEi-l for i=1,2. 1In fact, there holds

where é(i%t) means
(3.3) u=von x=s t&[T. ,T.)
. r 1’ 0’
Differentiating both sides of (3.3) and using (3.3), we get
(1) (i) + (1) 1
(3.4) u, (t,s " 1(t)) + u_(t,s " (t)) s " (t) = = .
t X 1-u(t,s ‘e))

By virtue of (l.la) on x = s(l%t) and (3.3) we have (ii).

l.c) OCbviously we have the following inequalities
1 1 .
(3.5a) = 2 Tt in D_ ,
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and
1 1
(B-30) 1 A i Ee
0
2nd Step.

1

_ 1 . .
2.a) Let p = p(t,x) be §TTE:ET in D€ and ENE in E_.

Then the solution V= vl(t,x) of the initial-boundary value

problem for v = v(t,x) in Q

V(tlo) = V(tlz) = 0, t&[TllTo) ’

V(Tllx) = B(x) ut(Tllx) ’ x€&(0,2) ,

exists and satisfies 2 < v in Qe by virtue of (3.5a).

2.b) Put W = W(t,x) = VTO—t'vl . Denoting W in D€ by
(1) (ry_ ..(1) .

W , we have Wt = WXx in DE .

3rd Step.

3.a) We shall deal with the following initial-boundary value

problem for V = V(t,x) in (-ew,+w) x [Tl'TO)'

(3.6a) Vt = Vo in (-®,+®) x [Tl’TO)

(3.6b) v =) in D_

(3.6C) v

Il

Ex) , xelo,s Mrpy) U osPr e

X
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(3.64) v=20, x€(-»,0) U (2,+=)
In what follows we impose on the solution V(t,x) the following

conditions at infinity: V(t,x) and Vx(t,x) are bounded as

X > *o uniformly with respect to t in [Tl,TO). We see the
Fa)
solution W= W(t,x) of (3.6) uniquely exists. Unigqueness of

ﬁ is shown by Holmgren's theorem. Using the Green's function

. _ 1 _ (x-g)?
K(t,x;T1,8) = s expl Ty }

14

W is represented by

t
e = s Moy,
T

1

Iy

|

-~ whhe, s Whoyyx, (e,xit,s Wiy ) 1ac

3

- s(lle)
(3.7) + f K(t,x;T,,£)/e-B(E)AE
0

-+

t
[ xees0it,s Menw e, s Moy -5 Moy,

T

1
-0 < x < s(l%t) ’ te[Tl,To) .

Also in s(z%t) < X < 4o, t&{Tl;To), we have the similar

expression as (3.7).

3.b) Using the positivity of B , W and maximum principle, we
have

W(t,x) > 0 in (-»,+®) x [T,/ Ty) -
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Thus from (3.6) and (3.5b) we see

ﬁ(t,x) > W(t,x) in QS

4th Step. We claim that
LA 2 '
lim W(t’f) >0 .
t->T
0
On the contrary, we suppose that

LN L
lim W(t,s) =0 ,
t->T

0
which implies that 0 = W(t,x) > W(t,x) 2 0 in Q_ by the
strong maximum principles). This is a contradiction. Thus we
get that
Lim ) © 1in viex) > 1 e =1 R,
im = lim v(t,x) > lim v, (t,5) = lim = 4o
N £+T g>r 12 £+T ;t‘To
0 0 ‘ 0 0
This completes the proof.
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