EXTREME VALUES OF AN IMPLICIT FUNCTION

NOZOMU MOCHIZUKI

Let $\varphi(x,y)$ be a C^2 -function in a domain E of \mathbb{R}^2 and $\varphi_X(a,b) = \varphi_y(a,b) = 0$ for $(a,b) \in E$. Then, as is well known, the local behavior of $\varphi(x,y)$ is examined by the sigh of $\triangle_0(a,b) = \varphi_{xx}(a,b)\varphi_{yy}(a,b) - \varphi_{xy}(a,b)^2$; that is, if $\triangle_0(a,b) > 0$ $\varphi(a,b)$ is a local maximum or a local minimum according to $\varphi_{xx}(a,b) < 0$ or $\varphi_{xx}(a,b) > 0$.

Let now f(x,y,z) be a C^2 -function in a domain D of \mathbb{R}^3 and let f(a,b,c)=0, $f_z(a,b,c)\neq 0$ for $(a,b,c)\in \mathbb{D}$. Then a C^2 -function $\varphi(x,y)$ is uniquely determined in a neighborhood of (a,b), for which $z=\varphi(x,y)$ if and only if f(x,y,z)=0.

As for the local behavior of such $\varphi(x,y)$, we have the following simple criterion. Although straightforward computations are sufficient for the proof, we have not found such a result in the literature.

THEOREM 1. Let f(x,y,z) and $\varphi(x,y)$ be as above, and let $f(a,b,c) = f_x(a,b,c) = f_y(a,b,c) = 0, \quad f_z(a,b,c) \neq 0.$ Put $\triangle(x,y,z) = f_{xx}(x,y,z)f_{yy}(x,y,z) - f_{xy}(x,y,z)^2$.

(1) If $\triangle(a,b,c)>0$, then $c=\varphi(a,b)$ is a local maximum or a local minimum of $\varphi(x,y)$ according to $\mathrm{ef}_{\chi\chi}(a,b,c)<0$

or $\varepsilon f_{xx}(a,b,c) > 0$, where $\varepsilon = sgn(-f_z(a,b,c))$.

(2) If $\Delta(a,b,c) < 0$, then $c = \varphi(a,b)$ is not an extreme value of $\varphi(x,y)$.

PROOF. From $f_x + f_z \varphi_x = 0$ follows that $f_{xx} + f_z \varphi_{xx} = 0$, hence

$$\mathcal{L}_{XX}(a,b) = -\frac{f_{XX}(a,b,c)}{f_{Z}(a,b,c)}.$$

Similarly, we have

$$\varphi_{yy}(a,b,c) = -\frac{f_{yy}(a,b,c)}{f_{z}(a,b,c)}, \quad \varphi_{xy}(a,b,c) = -\frac{f_{xy}(a,b,c)}{f_{z}(a,b,c)}.$$

Thus we have

$$\varphi_{xx}(a,b)\varphi_{yy}(a,b) - \varphi_{xy}(a,b)^2 = \frac{\triangle(a,b,c)}{f_z(a,b,c)^2}$$

which completes the proof.

We remark that the generalization to the case of n variables is immediate.

Let $f(x,y) = f(x_1,x_2,\ldots,x_n,y)$ be a C^2 -function in a domain D of \mathbb{R}^{n+1} such that f(a,b) = 0 for a point $(a,b) \in \mathbb{D}$. Let $f_y(a,b) \neq 0$. Then there exists a C^2 -function $\varphi(x) = \varphi(x_1,\ldots,x_n)$ in a suitable neighborhood of $a=(a_1,\ldots,a_n)$ in \mathbb{R}^n such that $y=\varphi(x)$ if and only if f(x,y)=0.

Let $f_{x_{j}}(a,h) = 0$, j = 1,2,...,n. We have then

$$\varphi_{x_{j}}(a) = 0; \quad \varphi_{x_{j}x_{j}}(a) = -\frac{f_{x_{j}x_{j}}(a,b)}{f_{y}(a,b)}, \quad 1 \le i, j \le n.$$

It is well known that $\varphi(a)$ is a local maximum if the matrix $A = \begin{bmatrix} \varphi_{\mathbf{x_i} \mathbf{x_j}}(a) \end{bmatrix} \text{ is negative-definite and } \varphi(a) \text{ is a local minimum if } A \text{ is positive-definite and, moreover, } \varphi(a) \text{ is not an extreme value if } A \text{ is indefinite.} We have thus$

THEOREM 2. Let f(x,y) be as above and let $f_{x_j}(a,b) = 0$, j = 1,2,...,n. Then

- (1) $b = \varphi(a)$ is a local maximum or a local minimum according as the matrix $A = \left[\varepsilon f_{\mathbf{x_i} \mathbf{x_j}}(a,b) \right]$ is negative-definite or positive-definite , where $\varepsilon = \mathrm{sgn}(-f_{\mathbf{y}}(a,b))$.
- (2) $\mathcal{G}(x)$ does not admit an extreme value at x = a if A is indefinite,

EXAMPLE. Theorem 1 is sometimes useful in computing extreme values of $\varphi(x,y)$. For example, let $\varphi(x,y)=(x+1)\sqrt{\frac{2}{x+y+1}}$. Then, by setting $f(x,y,z)=(x+1)^2-(x^2+y^2+1)z^2=0$, one can easily see that $\sqrt{2}=\varphi(1,0)$ is a local maximum of $\varphi(x,y)$.