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The large sieve and its applications

-oductory lecture on the recéht developments in the‘thédrj
‘e methods delivered 6n Apfil 19,1973 at fhe Research Insti-
' the Mathematical Science of Kyoto Univeisity o

5y .

Prof.Enrico Bombieri / Pisa University

;ext is noted and arranged by Y.Motohashi of Nihon University).

, Formulation of a sieve
$ be thekset of N integers n such that M+l s:ﬁ;s M+N where
t arbitrary integer and N is an arbitrary positive intege:. We
by:p a set of prime numberé, and let .117 be some given set
idue classes mod p. Wevconsidér the sieve in which ali integers
that n € Ily for at least one prime number p E‘ﬁ are-deleted
+ We denote this sieve by (A',75,$7?)_and the set of unsifted
ts by o ,i.e. | “ |
N ={me§ | meé ,Vpeﬁ}. o
nple I. If we set » - .
J={t=sm=n} P -[p=01}, a,={c},

2 have

M ={1}U{J'§<?sv~{}‘

aple II. If we set
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Q,=10.2} (p23),
then /7 is the set of prime numbers K < p < K such that p

{temsn} , $-{}<W®} , 0,

2

also a prime number. Thus this A4~ is essentially the set .
primes not exceeding K.

Example III. If we set

S -.-{4-&4«.4.»!} ., P s{all prime numbex;s}

= {all quadratic non-residues mod p}
then c/V) is the set of squares not exceeding N.

In the above examples I and II, 3 is sifted by only one
residue classes mod p for each peﬁ s but in the last exam
the cardinality of ‘Q'F y is 5 (p—l) and so it can be very 1
In the first case,i.e. when lﬂrlia very sma.ll on avera.ge, ]
nious method of Brum (later improved by Buchstab and Selbex;
effective, but it"looses its power as soon as we let \.(1,,1 in
indefinitely.

§2. The largé sieve

In 1941 Linnik invented a quite ingenious method which en:
us to give an effective upper bound for the number of unsif:
elements in sieves for which \ _Q_r\ is large on average,

Let Z integers nj satisfy

(2) M<n1< n2< o-o<nz$M+No ’
We choose some number ‘T with 0<T<i, and we call a prime p
¢t -exceptional if the number of residue classes mod p repre:

among the integers n, is less tham (1-7)p. Then Linnik prov
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wumber of ‘T -exceptional primes up to N is less than
CN/ZTH

s'an absolute constant.

application, n_. should be considered to be unsifted

in the sieve such that \_Q.P\z"cf and pef , ps\/E. Then the

) can be interpreted that

|/’ =2 = cN/iple2

y this is a quite good sieve-bound.

applied this "large sieve" to the very difficult problem
ogradov concerning the size of the least gquadratie non-

odulo a prime. Vinogradov conjéctured that fhe least quad-
~residue mod p is less than pe swhere € is an arbitrarily
itive constant. By the way, the hitherto best result is due
'8 who proved that the bound can be taken to be 1>;%E+E .
Xk proved that the number of prime numbers not exceeding x
t the conjecture is false is less than the constant multiple
x. Linnik's proof runs as follows: Let ng (3=1,..,2) be

not exceeding N,which is composed entirely of prime divisors
sv than N . If the least guadratic non-residue mod p (pﬁiﬁ)
* than N°© ythen all nj are obviously quadratic residué mod p.
an be considered to be ~%-exceptional for this sequence {nj} R
1e result (3) the number of such primes does not exceed 4CN/Z.
5 well known that N/Z is bounded by a constant which depends

. From this the result of Linnik follows at once.

L4 8]



§3. Rényi's version of the large sieve

Linnik's result (3) was generalized bvaényi,who applied it to
the so-called Golgbach conjecture and made an extremely important
contribufion, namely he proved that every sufficiently large even
integer is representable as 5 sum of an odd prime and a product of
bounded number of prime numbers,

Developping his work Rényi-found later the following formulation
of the large sieve: Let Z(p,a) denote the number of intégers n'j of
(2) such that nj = a mod p. Then if nj is sufficiently dense in
the interval (M, M+N} , it is expected that Z(p,a) is near Z/p.

Thus the variance
a

: p—1
Vipy = aZ { ZG,a) — _{)Z__\
, =0 ‘
provides a measure of the regularity of distribution of'nj'among
the'congruence claéses mod p. And from the non-trivial estimation

of the quantity

> WV ()
(5) =, vV

we can deduce easgily the congequence about the number of exceptional
prime numbers. Thus the large siéve can be restated as the problem
to find a good upper bound of (5).

In this way Rényi obtained

(6) : Z A2 <2NZ

1 ‘ p=<X
for X <(3). But from the fact that Linnik's result (3) is effective

even for X<(N we may expect the inequality (6) holds also for

XDQJE: To this direction an important progress was made by Roth in



1964. Roth's method is similar in principle to that of Rényi, and
he proved that Rényi's inequality (6),(apart from the particular

constant 2 on the right), holds for

4
X = ( N/logn )*

Further important contribution was made by Bombieri in 1965, who

proceeded along the line of Linnik and obtained

(7) 2z PV (p) = T(N+XHZ
p=X .

for.any'X. This states that (6) holds for x< N » and thus the long
standing conjecture is solved.
§4. Abstract formulation of the large sieve

It has been found recently that there is a strong connection
between the large sieve and the Brun-Selberg sieve, and moreover
‘another developments of the large sieve due to Haldsz, Montgomery
and Gallagher have yielded striking results in the field of the
density theorems for the zeros of Dirichlet's L-functions. Thus to
give a common basis tb these developments we state here an abstract
version of the large sieve.

This is essentially a generalization of Beésel's inequality in
a Hilbert spéce: Let f,gﬂ,g;,..., Qe be any elements of X a

Hilbert space, then we have

R R -1 .
(8) P (%,?43\2, ’\'é“?‘;,?u\} < 5\ _
| 3=

If @ yeeey Qg are orthonomal elements of F ,then this reduces
to the Bessel inequality., Similar inequalities has been found by
Boas,Bellman, and Haldsz and Turdn are the first who found its deep

applications to the theory of Dirichlet's series, Bombieri found a



.variation of the Bellman inequality and it was later refined to
the above form by Selberg.

Now as an application to the large sieve itself, we take as
H, the linear space of square-summable seguences o(/——-{al,“'},—oo<4\<+°°)

2
2
Z ldm\" <+¢o | The inner product is as usual

Mn=—00
i o -
(o, )= 2 dnfu.
Further we »ick up £ € X such that f = {an}
a, arbitrary complex numbers if |n| < N,
a =0 if iny > N,

and in the above inequality (8) we take

e"ﬁt“'m"é o imisN |

A ‘
(l\I+L iml )1 -2 MY § W<imizNTL

o=

o s fm\>N+L |

where L is a positive integer to be chosen appropriately. Then we .
have the following resﬁlt t Let x, ,..0, Xp be an arbitrary set
of real numbers, and we suppose that there is a positive number
( 0<«8<1 ) such that

2, =21 > 8 (mmed {)

for any i ¢ j. Let S(x) be the trigonometrical polynomial

S = 2, 0.

- {€m. =N

Then we have

R : ‘
(9 > sGo P <« (W28 S Ve’
) 3 =1 d s N

In this result we set a.h =0 or 1 and xj the rational point

with denominator < Q. Then we find



- i
(10) 2. | S(‘%)\z < (N+22")7Z,
a=1

1,-$Q Ca.gr=A

where

z = 2.1
44%s§
Cm=
This inequality is an improvement of (7), since it is easy to see

that for any prime p
p~1
. 2
PTGy = = 18G
=4
But the above inequality containg the sum over not only prime numbers
but also ccmposit numbers, and if we consider the contribution of
composit numbers, we can deduce a result similar to the Brun-Selberg
sieve. This has been realized firstly by Bombieri and Davenport. And

their proof has been elaborated by Montgomery who proved through (10)

that

A = N x 20

> /A‘(%.)W‘*‘;LL‘__
rsa PVg P—1LLp)

where Uvn is defined by (1) and /L(q) is the M6bius function. This
is completely similar to the main term which appears in the Selberg
sieve, but its real advantage is that it holds regardless of the
size of lilf].
85. Hybrid large moduli theorems
Ag is already mentioned, the inequality (8) contains both the
large sieve and the device of Haldsz. But recently Halédsz' device

got much improvements by Montgomery and Gallagher, and so here we



try to give an abétré,ct formulation of their methods.

Let () denote a finite set of multiplicative characters w(n) =
fx,(n)nit, where X is a Dirichlet character and t is an arbitrary
real number, And let {an}m‘Nbeban arbitrary finite sequence of complex

numbers., Then the correspondence :
I {eany — 2 Am®(n)

o=ty
can be considered to be an operator (an Nx Q| -matrix) which maps LZ((//)

to Lz(_Q_), where /" is the set of positive integers < N. As is well
X

known, if 0‘6* is the adjoint operator of oﬁ‘ s then the maimum eigen-

value of 27,5’* coincides:' with that of o?S'fiS’ o Thus to estimate K of the

inequality,which holds for all {a.n},

2. ! 9
> | = aww | < K 2 et

well
it is sufficient to find a good upper bound of ¥ of the inequality

: _ 2 ~
(11) > > A B = K 2 e,

m=N w w&SL
which should also hold for any {o(w}. Now to do this we introduce a

function f(x) such that
‘ f(n) > 1 for n <N,

f(n) = 0 for n > §.

Then we see the left side of (11) is not larger than
]

o0
S 2
D 5o | o T |
Mmo= 4 w el

]

[og]
E oo Koo E § e ewim),
w, w efL =i

And so we have to estimate the inner sum over positive integers.

We put (for example)

-3 (%

t) = (2) "G,



9

where 0°, k are arbitrary positive numbers to be chosen appropriately.

. it /it
Then we have, since w(n) =X(n)n"", w(n) =X(n)n" " ,
o0
= fF oo Buwew
M= 4

o—ult-%")

=N = e (%) T om

-
Aat’) v, XK o N pwr
pp— L (eailt-t) + ,%%)?(k+()w "

(Re w > {—a~)
where L(s,X) is the Dirichlet L-function attached to the character

X , and T7(w) is the usual gamma function., Here we introduce the
concept of "well—épacedness" to the set {L : We say that (L is well
spaced, if for any W # w’ (©, WeL ) we have either that XX’ is
noﬁ—principal mod q or that [t - t'| > (log D )2, where D is defined
by

D=( max {t\ + 1 )(max q ).

Then by the known estimate of L(s,?() we can conclude that

(12) K << (N + D) ( log Dv )€
orxr
A
(13) K <« (N + D71a))( log DN )°,

where ¢ is an absolute constant,

(12) corresponds to the hybrid mean value theorem of Gallagher
and Montgomery, and (13) to the improved form due to Montgomery of
Haldsz' device,

Finally we state some deep applications of (12) and (13) to the

theory of Riemann's zeta~function 3;(s) and Dirichlet's L-functions
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L(s,X) (s=0-+ it).
Let N(o(,T) and N(a,T, X) denote the number of zeros of %(s)
and Lfs, X ) ,respectively, in the rectangle
d=o< 4, 1t\<sT

Then from (12) we get
g Az

2-0~
N(o{, T) < T log®T,

and from (13)

Z - .
N(od, T)g T log T.

The first is the classical result of Ingham, and the second is

the hitherto best result due to Huxley, from which we can deduce
T

that pn+1 - P, < p;{+a , Where 1 denotes the n-th.prime number.
The application itself of (12} and (13) is not actually difficult,
but the real difficulty is the construction of Dirichlet polynonials
which takes large value at the zeros of <%(s) or L(s,X). In this
respect the following result of Gallagher, which is an extension

of results due to Linnik and Fogels and is an application of an im-

proved form of (12), is a typical one:

—_ Colhi—at)
> S N@TAO) <« T

>

where :Z*'denotes a sum over all primitive characters mod ¢ and co

is an absolute constant.

—10.—-



