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Note on shape theory

Yukihiro Xodama

Department of Mathematics, Tokyo University of Education

§1. Shape of compacta.
in (2], [3] K.Borsuk introduced the notion of shapes of
metric compacta. Let X and Y be compacfa lying in the Hilbert

oo
cube Q (=T I

*
me; 1

In a copy of the interval I =[O,1] , n €N, where
N is the set of positive integers). A sequence f = {fn} of maps
(= continuous maps) fn': Q—2Q, ne N, is said to ve a fundamen-

tal sequence of X to Y if for each neighborhood V of Y (in Q)

there is a neighborhood U of X such that fn[UQ £, |Uinv
for almost all n, that is, there is a homotopy H : UxI—=V
such that H(x,0) = fn(x) and H(x,1) = fnﬂ(x) for x €U. We
write £ ¢ X—>Y. Setting in(x) = x for each x€Q, for each
compactum X € Q i, = {in} : X=X is a fundamental sequence

X
which is called the fundamental identity sequence of X.

Two fundamental sequences f, g : XY are said to be homo-
topic if for each neighborhood V of Y there is a neighborhood
U of X such that fnlUf_\_-gn|U in V for almost all n. We denote

it by £ &~ g. The collection of all fundamental sequences ho-

~1=



472

motopic to a given fundamental sequence f is said to be the fun-

damental class with the representative f and it is denoted by [f].

The composition h = gf : X-— Z of fundamental sequences f :
X—»Y and g : Y—> 7Z is defined as the fundamental sequence con-
sisting of maps h = g, f,+ Q>Q. If f~f': X—>Yand g g':
Y= Z, then gf &> g'f' ¢+ X—> 14,

Bach map £ : X—>Y defines a fundamental sequence f : X—Y
as follows. Take ahy eiten’sion h : Q—= Q of £ and put fn = h
for each n. Then f = {fn} is a fundamental sequence of X to Y.
We call zvt‘he fundamental sequencé induced by f.

Proposition 1. Let X and Y be O-dimensional compacta. Then

every fundamental sequence f : X-2Y is induced by a map f :

X-—>Y and £ is uniquely determined by £.

Proof. Let £ = {f } : X-—>Y. From the definition of a fun-
damental sequence and the compactness of Q the sequence {fn(x)},
x € X, converges some point f(x) of Y. Obviously the corres-
pondence x—> f(x), x€X, defines a map f : X~ Y and it induces
£.

Compacta X and Y in Q are said to be fundamentally equiva-

lent if there exist two fundamental sequences f : X—Y and g :
Y—> X such that gf o~ iy and fg iy. Then we write Xox, Y. If
we assume only that the relation gf & iy holds, then we say

that Y fundamentally dominates X and we write Y ?i‘ X. If X and

Y are homeomorphic, then X ’-Z‘-:F Y, because if £ : X Y and g :

Y- X are fundamental sequences induced by f and g = :f"1 then
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gt n iy and fg o i,. Also, if X and Y are homotopically equi-

valent, then X 2~ Y.

o

It is known that the relation of the fundament~l eguivalence
and the relation of the fundamental domination have an absolute
character, that is, they do not depend on locations of compacta
X and Y in Q. Since the relation of the fundamental equivalence
is equivalence relation, the class of.all compacta decomposes
into mutually disjoint classes of compacta, called shapes. We
denote by Sh(X) the class containing X and we call it the ghape
of X. Also we write Sh(X)Z sh(Y) if)(E%,Y. If X and Y are
ANR's (= compact ANR's for metric spaces), then it is known that
Sh(X)== sh(Y) if and only if X dominates homotopically Y and
S(X) = Sh(Y) if and only if X and Y have same homotopy type.

The shape of =2 space consisting of only one point is said to be
trivial and denote by Sh(1). If X is contractible, then it is
obvious Sh(X) = Sh(1). |

Let X be a compactum contained in a compactum Y. A funda-

mental sequence £ = {f } : Y—>X is said to be a fundamental

retraction if _f_ixf:_— iy, where jy : X=2Y is a fundamental se-
quence induced by the inclusion jX : X<Y., If there is a fun-

damental retraction f : Y—> X, then we call X a fundamental re-

tract of Y. If there is a fundamental retraction £ : Y—=>X

~guch that £ &~ i, then X is a fundamental deformation retract

of Y. A compactum X is said to be a fundamental absolute re-

tract ( a fundamental absolute neighborhood retract), written

~as FAR (PANR), if X is a fundamental retract of an AR (an ANR).
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The following theorem characterizes a compactum with trivial
shape ((4],[8],(18]).
Theorem 1. (K.Borsuk, D.M.Hyman, S.MardeSiC) For a comp-

actum X the followings are equivalent.

(1) X is of trivial shape.

(2) X is an FAR.

(3) PFor a certain imbedding X C Q there is a seguence {Xn}

of neighborhoods of X such that each Xn is homeomorphic to Q,

X C Interior X, n€N, and /2 X =X

Por a compactum X, Borsuk defined Fd(X), the fundamental

dimension of X, as the minimum of dimensions of all compacta Y
with Sh(Y) 2 sh(X) :

PA(X) = Min dim Y
Sh(Y)= Sh(X)

Obviously it holds that if Sh(X) <= Sh(Y) then Fd(X)< PFd(Y) and
if X and Y are compacta and Y # ¢ then Fd(X) < Fa(XXY) =
FPA(X) + Pa(Y).

Let X be a compactum. A closed subset Y of X is said to be
a fungamental k-gkeleton of X if dim Y=< k and the homomorphi-
sms ﬁn(Y:G)—-» ﬁn(x:G) and T,.(Y,y )—> T.{X,y ) induced by
the inclusion (Y,yo) < (X,yo), y,@ point of Y, are isomorphisms
for 0 €n< k and an epimorphism for n = k, where ﬁn(X:G) is
the n-dimensional 6ech homology group of X with coeffiéients
in G and "—5—»-("'3’0) is the n-dimensional fundamental group of

(X,yo) defined by Borsuk[}].



We do not know whether every compactum has a fundamental O-
skeleton or not. If X is a solenoid of Van Dantzig, then X
has a fundamental O-skeleton which homeomorphic to a Cantor dis-

continuum. (See Corollary of Theorem 5).

§2. Approach to shapes by Mardesic and 3Segal.
By an ANR-sequence we imply an inverse sequence £ = {Xn,'ﬂ;"m}

over the set of positive ingers N, where X 1is an ANR and m, ., :

X 4o~ X, is a map, n€N (Mum = Topy~ T, pfor n<m). Let X =

](._:i_.g X and let mm, : X—->Xn be the projection. A map f : X—2Y =
{Y, s Muay} consists of an increasing function f : N— N and of

. . N
a collection of maps fn : Xf(n) Yn such that

flfl Tf{ﬂ)f(ﬂ’)/'\'" /ﬁwxin' for n £n', n,n'€ N.

Two maps f,g : X—>Y are said to be homotopic, fo>g, if for

each n €N there is an n'€ N, n' =2 f(n), g(n), such that

fn '”;(u)'n-’ = 8, (":7(1101-’ .

The composite gf : X—22 of £ : XY and g : Y22 = {Z ,Yns)
is a map of sequences h : X7, where h = fg : N—> N and hn =

: . . i i, ¢« X=—>
gnfg(n) ng(n)——) Zn The identity map of sequences }-X X

X is given by the identity 1N : N=>N and the map iX : Xn—-a Xn
n

n€N. Two compacta X and Y are said to be of the gsame shape
in the sense of ANR-systems, written as Sh(X) = —S_E(Y), oro-

vided there exist ANR-systems X and Y with X = %i_m X and Y =

(1__1_1_11 Y and maps £ ¢« X—=> Y and g ¢+ Y- X such that g_i_‘f_\_-;x and
Ig o= iy,

Marde¥ié and Segal [15,16] gave the following useful cha-
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racterization of shapes.
Theorem 2. (S.MardeSié and J.Segal) Let X and Y be comp-

acta. Then Sh(X) = Sh(Y) if and only if Sn(x) = Sn(Y).

§2. Shape of decomposition spaces.

According to Borsuk [4,p.266], a compactum X is said to be

approximatively k-connected if for a certain imbedding X C Q
and for every neighborhood V of X in Q there is a neighbor-
hood U of X such that every map of.a:k—sphere Sk into U is null
homotopic’in V. It is known that the approximative k-connec-
tedness is the shape invariant,

Theorem 3. (Kodama) Let f be a map of a compactum X onto

a compactum ¥ with dim Y = n such that for each y€7Y £ (y)

is
approximatively k-connected, k¥ = O,1,..,n. Then Sh(X) = Sh(Y).

Moreover, if dim X < n then Sh(X) = Sh(Y).
In the proof of Theorem 3 ([11]) an argument in the proof
of Theorem of [9]) is used essentially.

The following corollary is a generalization of Borsuk [4,

Theorem (6.1)].

Corollary 1. An n-dimensional compactum X is of trivial

shape if and only if X is approximatively k-connected for k =

O0,1,..,n,
For the proof it is sufficient to apply Theorem 3 to the
case where Y 1s a space consisting of one point.

Corollary 2. (R.B.Sher) If X and Y are finite dimensional

and £ is a map of X onto Y such that £ (y) is of trivial shape
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This is an immediate consequence of Theorems 1 and 3.

For a compactum X, denote by tI(X) the set of all components
of X. We consider B(X) as the decomposition space of X. Then
it is a compactum. As an application of Theorem 3, we obtain
the following theorem by Borsuk [3,Theorem (8.1)] .

Corollary 3. (Borsuk) Let X, Y be compacta in Q. Then

for every fundamental sequence f : X=»Y there is a unigue

(continuous) map Ag OX— Y such that for each component

X, of X £ : X — A{-(Xo) is a fundamental sequence. Moreover

/\f depends only on the fundamental class f and this depen-

dence is covariant, that is, if g : Y= 72 is a fundamental se-

guence then /\” = A? Ay

Proof. Let m : X OX and m: Y>OY be the decomposi-
tion maps. Since Tx"(x) is a continuum for each x € OX, it
is approximatively O-connected. Since dim [ X = 0, by Theo-
rem 3 there is a fundamental sequence h : JX-» X such that
Ty h & ipgy- Consider '_rf\r_i_‘_lr_l_ : QX-»>0Y. By froposition 1,
'_I_I;f;f'__lg is induced by a map /\+: OX-207Y. It is obvious that
Af satisfies Corollary 3.

The following generalizes Sher [zt,Theorem 12] and it is

given by a similar method as in a proof of Theorem 3 (cf. [11]).

Corollary 4. Let (X,xo) and (Y,yo) be pointed compacta.

Let f be a map of (X,xo) onto (Y,yo).. If f_1(j) is approxi-

matively k-connected for each y€éY and k = 0,1,..,n, then the

induced homomorphism f, : '_I.rh(X,xo)——i T (Y,yo) is an isomor-

phism for k = O,1,..,n, where Ehi—s- the k-dimensional fundamen-
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tal group of Borsuk [3].

Corollary 5. Let f be a map of a compactum X onto an n-

dimensional compactum Y such that £ (y) is approximatively k-

connected for each y€Y and k = 0,1,..,n. Then Fa(X)= Fd(Y).

4. A -spaces and fundamenfal dimension.

A compactum X is said to be a 4 -~-space if there is an in-
verse sequence {Kn,'ﬂ;,,ﬁ,} of finite simplicial complexes such
that X = lim {Kn} and each bonding map T,,,: K 2 Kn is simp-
licial.

Theorem 4. (Kodama) (1) BEvery O-dimensional coznpactﬁm and

every finite polytope are A -spaces.

(2) There is a 1-dimensional AR with property (4) which is

not a A4 -gpace.

(3) Every A-space is dimensionally full-valued for para-

compact spaces (cf.[14]).

In the shape category every compactum has a A-space as its

representative as shown by the following.

Theorem 5. (Kodama) For each compactum X there is a A-

space X' such that Sh(X) = Sh(X') and Fd(X) Pa(X').

Corollary. For every compactum X there is a compactum X'

sueh that X' contains X as a fundamental deformation retract

and X' has a fundamental k-gskeleton for each k = 0,1,2,..

We only give a proof of Corollary. For a given compactum
X, find a A -space Y by Theorem 5 such that Sh(X) = Sh(Y). By

Moszyﬁska [20] there is a compactum X' such that both X and Y
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are fundamental deformation retracts of X'. Let {Kn,mgnw} be
an inverse sequence of finite simplicial complexes such that Y =

. A . . . L1 .
l&g {An} and each T, . is simplicial. Denote by Kn the i-gkele-

%4
ton of Kn,_i = 0,1,.. . Then {Ki,%;”ﬂ} forms an inverse se-
quence. Put Y, = lim {Ki}, i=0,1,.. . Then it is obvious
that Yi is a fundamental i-skeleton of X',

As shown in the above, every 4 -space has a fundamental k-
skeleton for each k = 0,1,2,.. . On the other hand, consider
the 2—dimensional continuum () constructed in [JO,p,390]. It
is easy to know that Q(s) has no fundamental 1-skeleton. Also,
we can see that every ANR has a fundamental i-skeleton for i =
0, 1. The following example is a trivial modification of the
example constructed by Borsuk [1].

Example. There is an infinite dimensional ANR X which does
not have a fundamental k-skeleton for each k = 2,3,.. .

To find such an ANR X, let S°

be a 2-sphere and let A be
an arc in 32. Take a map £ from A onto the Hilbert cube Q and
let X be the adjunction space obtained by S2, Q and f. Then
X is an infinite dimensional ANR. If Xk is a fundamental k-
skeleton of X for k 2 2, then Xk has to contain a subset SZ—A
of X. Since S°-A is dense in X, we have X, = X. Thus there
is no fundamental k-skeleton of X, k = 2,3,.. .
Proposition 2. If X is a éomgactum in an n-dimensional

euclidean space R, then Fd(X) =< n - 1.

Proof. Take a sequence {Kk} of triangulable neighborhoods
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of X in R7 such that Kk+1c Kk’ k=1,2,.. , and /K\Kk = X.

Since Ky 1is an n-dimensional polyhedron in Rn, there is a sub-

plyhedron Lk of Kk such that Lk is a strong deformation retract

of Kk and dim Lks n-1. By induction, we can find a simplicial

T

k+1
-

that kakh*,&lk+1jk+1lllk+1 in K, for k = 1,2,.. , where j, :

subdivision ’ﬁk of Lk and a simplicial map Tk —> ,fk such

j : — i, : —> i -
L= Ky Uy 3 D 7 By 8nd 3, K 7 Ky are the dnclu

T,

It is known by Theorem 2 that Sh(X) = Sh(X'). Since dim X' <

B

gsions. Consider the inverse sequence {'f 9q7i-¢l¢+|} and X' = 1i

!

n-1, we Know Pa(X) < n-1.
Let & = {Xy|«€A} be a collection of compacta. A member’

Xo of € is said to be majorant for the shapes of members of

- € if sh(X ) Z Sh(X,) for each X,¢E, For example, let € ve

the collection of all O-dimensional compacta Y such that Sh(Y)
‘éSh(X) for a given compactum X. Then the decomposition space
O X of X consisting of all components of X is majorant for the
shapes of members of &. This follows from Corollary 3 of The-
orem 3.

Proposition 3. (Watanabe) For the collection J¢ of all

compacta in R1 a Cantor discontinuum is majorant for the shapes

of members of (R.
This is a conseqguence of Proposition 2.
Theorem 6. (1) (S.Spiet) There is a compactum in 8% which

is majorant for the shapes of all compacta in Rg.

(2) (K.Borsuk and W.Holsztyfski) For the collection of
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all solenoids B no compactum XO satisfies the condition Sh(X) =

sh(X ) for every X ¢ 7. Hence, if € is the collection of all

compacta in RB, then there is no compactum which is majorant

for the shapes of members of &.

Problem 1., Let X be a compactum and let E& be the collec-
tion of all compacta Y such that Sh(X) > Sh(Y). Does there
exist a compactum which is majorant for the shapes of members
of C} ?

The following problem is raised by Borsuk [3].

Problem 2. (Borsuk) Let X and Y be compacta. If Fa(Y) >
0, then does it hold FA(XXY) Z Fda(X) + 1 ?

It is likely true that the following holds. However it
does not know yet.

Problem 3. For every compactum X, does it hold that

Fd(XXS’) — Pd(X) + 1 ? Here s! is a {-sphere.

§5. Movable compacta.

According to Borsuk [3,5] , & compactum X in Q is said to
be movable if fér each neighborhood U of X there is a neighbor-
hood V of X such that for every neighborhood W of X there is a
homotopy H : VX I—?U satisfying the condition:

H(x,0) = x and H(x,1) € W for each x€ V.
A compactum X is said to be k-movable if for every neighbor-
hood U of X there is a neighborhood V of X such that for every
compactum A< V with dim A < K and for every neighborhood W of

X there is a homotopy H : AXI—>U satisfying the condition:
-11=-
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H(x,0) = x and H(x,1)€ W for x€ A.
Marde$ié and Segal [17] gave a characterization of mova-
ble compacta in terms of ANR segquences.

Theorem 7. (Marde8ié and Segal) A compactum X is movable

if and only if there is an ANR sequence {Xn,’ll,'.,,,,} satisfying

the following condition: X = }_:'g_n {Xn} and for each n € N there

is an n', n'=n, such that every n" 2 n there is a map M mr:

Xn,—-i' Xon satisfying the homotopy relation A ,,, LA

For movable compacta, the followings are known.

Theorem 8. (Borsuk) (1) Let X and Y be compacta with

Sh(X) = sh(Y). If X is movable (k-movable), then Y is mova-

ble (k-movable).

(2) If X is movable (k-movable), then the suspension > X

of X is movable (k-movable).

(3) Every compactum in R2 is movable.

(4) 1If Xi is a movable compactum for i = 1,2,.. , then

i X, is movable.

<

(5) Every FANR is movable.

Theorem 9. (Kodama and Watanabe) An n-dimensional and n-

movable compactum is movable.

Theorem 10. (1) (MardeSié) An n-dimensional 1o comp-

actum is movable.

(2) (Borsﬁk) An Lqu compactum is n-movable.

Let X be a A -space. As we know from the proof of Corol-
lary of Theorem 5, for each k = 0,1,.. , there is a fundamen-
tal k-skeleton Xk of X. It is easy to see Xk is i-movable
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for i = 0,1,..,k-1, if X is movable.

Problem 4. Let X be a movable 4 —-space. For each k =1,
2900 doesvtnere exist a fundamental k-skeleton Xk of X which
is movable ?

K.Borsuk[5] raised the following problems:

(1) Is it true that if X is m-movable and Y is n-movable
then ¥XY is (m+n)-movable ?

(2) Does there exist, for each n = 1,2,.. , a continuum
which is n-movable, but is not (n+1)-movable ?

(3) Does there exist a non-movable compactum which is n-
movable for every n = 1,2,.. ?

These were solved by Kodama and Watanabe [12].

Theorem 11. (Kodama and Watanabe) (1) For compacta X and

Y, XXY is k-movable if and only if both X and Y are k-movable.

(2) If X is k-movable, then X X is (k+1)-movable.

_ (3) There is a continuum X such that X is k-movable for

every k = 1,2,.. , but not movable.

To show (3) of Theorem 11, we remark that there is a non-
movable continuum>XO such that = X, is homeomorphic to XO £7].
Since an n-fold suspénsion of a compactum X is (n-1)-movable
by (2) of Theorem 11, the continuum X, mensioned above is k-
movable for every k = 1,2,.. . Borsuk proved every solenoid
is not 1-mavable, It is known that a suspension of a solenoid
is 1-movable but not 2-movable,

1t is known that every 2-dimensional ANR is diménsionally
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full-valued (cf.(14]).

Problem 5. Is every 2-dimensional movable compactum dimen-
gionally full-valued ?

Let X be a compactum with metric d. Let K be a finite simp-
licial complex and let V(K) be the set of vertices of K. For
a map £ : V(K)=— X, we mean by mesh f the maximum of diameters
of f(sAV(K)) for every simplex s of K. Let € 3> 0. For maps
f,g : V(K)=> X with max (mesh f,mesh g) < €, by £ g we im-
ply that there is a sequence of maps h; : V(K)—> X, i = 0,1,..,
n, suéh thét f = ho’ g = hn’ mesh hi <€, 1i=0,1,..,n, and
max {d(hi(v)’hiﬂ (v):vev(K)) <€, i =0,1,..,n-1.

Proposition 4. A compactum X is movable if and only if for

every € >0 there is a § >0 satisfying the following conditions:

For every finite simplicial complex K, every map f : V(K)—>X

with mesh f <4 and every v >0 there is a subdivision K' of X

and a2 map g : V(K')—> X such that mesh g <2 and f'lrné g, Where

o ¢ V(K')—> V(K) is a map defined by any projection of K' 1o K.

This proposition gives a simple proof of Theorem 10. In -
a similar form to Proposition 4 we can obtain a necessary and
sufficient condition for a compactum X in order that X be an

FANR.
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