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Preface

The aim of this paber‘is to study an existence theory
of solutions of boundary problems for general linear differential
equations. There are many methods to prove the existence ofb
solutions. But they canChot be applied equally to all types of
boundary problems, such as elliptic, evolutional, or mixed type
problems. 1In this paper the author ﬁries to lay the foundations
of a method which can be applied to variqué types of boundaryA
problems. Especially we have obtained existence theorems for

elliptic boundary problems in non-cempact manifolds, evolutional
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boundary problems with Cauchy data given on the characteristic
boundary, and similar ones With respect to Schwartz' distributions.
Moreover our techniques may be applied to mixed type problems for
evolution or Tricomi equations. |

Qur approach is fairly different from a traditional one.
We do not use completions of function spaces with respect to a
norm. We deal with many local spaces of distributions directly,
which are endowed with the structure of Frechet or more complex
locally convex spaces. TFirst we improve Treves' conditions (25]
of surjectivity of a continuous 1in¢ar mapping on a Frechet space
to another, so that they can be applied more directly to closed
linear operators appearing in-our problems. Employing the |
calculations in Chapter two, we can immediately write a necessary
and sufficient condition for the solvability of each suitably
posed boundary problem. It consists of two kinds of conditions.
One is on the semi-global existence of solutions, that is, the
existence in any relatively compact open subset. An equivalent
condition is given as a collection of inequalities for the dual
opefator with respect to some kinds of norms, such as Sobolev ones.
The other condition is called T-convexity, which is a generaliza-
tion of the classical P-convexity condition for linear differential
equations with ﬁo boundary conditions (cf. Malgrange {17], Treves
[25], and Hormander [13]). This guarantees a possibility that a
global soiution can be constructed by approximetions using semi-
global solutions.

We explain the plan of this paper. In Chapter I we
develop an existence theory for linear equations in locally convex
spaces. In the next Chapter I we introduce the function space

3(fi, W,;B). Roughly speaking, this consists of distribution
1 .
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sections of the vectofAbundleﬁE, which can be extended through a
part @ of the boundar& ofrfi to belong to the function space 7,
and which vanishes outside the part aJ1 of w. We prove some
properties of these spaces in order to apply the main theorem of
Chapter I. After that we can immediately obtain necessary and
sufficient conditions for the solvability of many boundary
problems. Using these results we study elliptic boundary problems
in Chapter III, where we prove the existence of solutions in non-
compact manifolds. Chapter IVAis devoted to the study of boundary
problems of evolution type. 1In these cases we recognize important
roies'piayed by differential operators on the boundary, which are
induced by theioriginal differential operator and a normal vector
field on the boundary. When we want to reduce a Cauchy type
condition to the property that functions belong to our function
spaces, eépécially to,C“(fi,raﬁ), we have to solve such differential
equations on the boundary. We can solve many kinds of Cauchy problems
with daté given on characteristic boundaries. Especially the
Goursat problem is solved. In Chapter V we study the existence
of distribution solutions. Many difficulties arise from the
complicated topological structures of the spaces of distributions.
For a‘more detailed description of the contents we refer to the
introductions of eéch chapter.

Finally the author would like to thank Professor K. Yosida

for his stimulative advice in the early stage of this work. Thanks

are also due to Professor H. Komatsu for many valuable suggestions.



Chapter 1I. Fundamental lemmas in locally convex spaces.

§1.0. Introduction.

This chapter is devoted to the study of abstract existence
theory for linear equations. The results of this chapter form a
basis of the subsequent three chapters. Combining Theorem 1.2.1.
and the calculations in Chapter II, we can immediately obtain

rcondifions for the solvability of linear equations. OQur main
theorem is a generalization of a result due to Treves[ 257 and
‘Harveyf'7 J, and ih many cases their result is sufficient for our
use. They gave conditions for a linear operator to be surjective.
But we encounter many cases where_the range of the operator has
some kinds of compatibility conditions. In such instances our
theorem can be used. Typical examples are overdetermined systems
of linear differential equations with constant’coefficients (see
Ehrenpreis [ 5 ] and Hormander[ 9 ]). We can explain the serious
gap be%weeh determined systems and overdetermined ones from our
point of view. In the overdetermined case we havé to find a new
element z' in the estimate (1.2.2) of Theorem 1.2;1. This causes
a very hard problem.

Now in section 1.1. we make some definitions and preliminary
propositions for the next chapter. We have to calculate the norm
(1.1.1) in many concrete cases and this will be done in Chapter II.

In section 1.2. we state our main theorem and its proof
vwill be given in section 1.3. 1Its essential part is contained in
the proof of the open mapping theorem, where the step by step

construction of a solution is done (see Ptak[21]).

Qur task is to reform the conditions to be more manageaﬁle.
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§1.1. Preliminaries

Let E and F be (Hausdorff) ldcally convex spacésb, and
T‘ ra densely defined linear operator of E into F. Let E' be the
dual space of E. We denote the value of x'< E! at x L by
<%, Xx'>. The absolute value [x'| of x'€E' is defined by the
equality |[x'[ (x) =|<x, x'>[, for x€E. It is obvious

that |x'| is a continuous seminorm on E. Let D(T), R(T), t

T
represent the domain, the range, and the dual operator of T
respectively. By SpecE we denote the set of all continuous
seminorms on E. TFor every seminorm pedSpecE and a constant
C>0, we define C-p by (C-p)(x)==C-p(x) for xeE. Tor p, e
€ Spec E, we write p=gq if 0 p(x) = q(x) for xeB.
We call 43 a basis of continuous seminorms on E if and only if 23
is a subset of SpecE and to each peSpec E there exist qeé3 and |
a constant C > O such that p=C-q. For Xx'e E' and peSpeck,
we write

ux'"p_—_:inf{c >0; lx'léc-p}. (1.1.1)
If there exists no such positive constant C, we set ]{x'l[p= oo, -

Tor any seminorm peSpec E, let Ep be the normed space E/Ker p

with the norm induced by p. Here we denote by Kerp the kernel

A
of p, or the set of all xek such that p(x)=0. Let Ep and EI')
be the completion and the dual space of Ep respectively. It is

easy to verify that (1.1.1) is a norm in the Banach space of all

x'e E' such that (1.1.1) is finite, which is isomorphic to the-
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Banach space El'7' In the following we identify these two spaces.

Proposition 1.1.1. Let E, F, G be locally cdnvox spaces

such that F is a rsubspace of E and there cxists a continuous oren
linear surjection p of F onto G. Ve denote the natural injection
of F into E by 7 . For every peSpecE we write

p*(z)f: inf{p(y); | yeF and P(y)= z}, zEG. (1.1.2)
Then p* is a continuous seminorm on.G, and the set of all such
p* (peSpec E) is equal to Spec G. Moreover if /3 is a basis of
Spec E, then p* (pe®) form a basis of Spec G.

'I‘aké two seminorms p, qeSpec E such that q==p*of on

F. Then tf induces an isomorphism of GI!J* onto F , and

1
p¥o p
-1t . . . . v . .
tf 10 7 1nduces an epimorphism, i.e. an open continuous linear

surjection, of Ec'1 onto Gi)*., Hence for any z'e GI'),,< we have

Hz'[]p*=inf{ﬂx'”q; x'e L' andt’l(x')ztﬁ(z')}. (1.1.3)

Proof. Let peSpecE. Then p* is a seminorm on G.
Since @ is open, there exists a seminorm re Spec G such that the
following holds. If zeG and r(z)= 1, then there exists yeF
such that p(y) =1 and $(y)=2z. Hence it follows from (1.1.2)
that p*(z) £ 1. Thus we ha{re proved that p* is continuous.

Next take a seminorm re Spec G. Then re f is an element
of SpecF and hence ref is equal to pe? for some pe& Spec k.

Therefore it follows vthat'r-.—-- p*. loreover there exist P€B and
p-ﬁc-p1 in E, hence
a constant C > 0 such thﬁt}?o $ = C-p,e2 . Then we obtain

r(z)gc'inf{p1(y); yeF and f’(y)=z}

= C-pf(z), ze&G.
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Therefore the former part ofr Propo"sition 1.1.1. is proved.

Let p, neSpecE and q= p% § on I'. Then for any x'e

e ]*"c'1 we have

P2 Ol = xS Ixl < oo,

and hence it follows that t'z,(x' )EF:J_“L = FIS*of . Therefore t’z

d 3 2] . ‘ bR kR ol 1 )
induces a CQHtlHU.O\lu linear operator of Ly into rqoz . Ify el‘q.'z, ,

the‘iﬂequali'ty ]y'l g'ﬁy‘”qoz-qoi holds. Hence from the Hahn-

Banach theorem there exists x'e<E' such that |xt] =y .q on E

=1

and x'e 1 =Y'.- Theﬁ.we have ”X'Mqéﬂy'”q

., and te (x')=y".

Therefore °7 induces an epimorphism of E{ onto Tl , .
 Now take z'€Glyx. Then for every yeF we obtain
I<v, 5P 2)>| = [<P&), 2>
=z p*-P*e...?(Y)

[ 2 prrats)-

I

Hence it follows that tf(z')ei‘*é‘,& and Htf(z')llqdé!lv/fp*-

Therefore t? induces a continuous linear operator of GI')* into F('lo,z— .
If y'€Fhy, o » the inequality |y'| g}ly'[[p*,f -p¥e
implies that ’Kerf‘ C Kery'. Then there exists z'«€G' such that .
2'e p = y" .  Hence it follows that y' = tf (z') and
E3 - =int{C >0; <z, 2'>|=¢-pNz) for all 26}
=inf{C >0; |<v, y'>| = c-p% ply) for all ye_F}

""—""—”y'“p*. $



L
Thus we have proved that tf induces an isomorphism of Gﬁ* onto

Fé.',L , and this completes the proof.

Proposition 1.1.2. Let Ej, j=1,2,---,1 be locally

convex spaces, and F their product space. Let d3j be a basis of

SpecEG for each j=1,2,:',1. Then the following seminorms in T
| - L .
(XJ)P.-}q((Xj))za:‘lpJ(kJ)’ p‘]easj) J=1,2,--°,1

form a basis of SpecF. Moreover we have the following isomorphism

JI.H‘( )
M o= E.)!
q j=1 Jpj

The proof of this proposition is easy and then we omit it.

§1.2. The main theoren

Let T be a densely defined linear operator of E irto T,

and N a subset of F.

Definition 1.2.1. The pair (E, N) is called T-convex
if "for every seminorm pe Spec E there exists a seminorm
geSpecF such that the following holds. If y'eD(tT) and

"tT(y')”p is finite, then y' vanishes on N Kerq.

This definition is a generalization of the P-convexity
condition found by‘Malgrange[17] in the theory of general partial
differential equations and then generalized by Treves f25] in the
theory of locally convex spaces. The following theoreﬁ is &

generalization of their results. The essential part of the proof
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has been already well-known in the study of the open mapping

theorem (cf. Ptak [21]).

Theorem 1.2.1. Let E and F be Frechet spaces,. T a
densely defined closed linear operator of E into F, and N a closed
subspace of F containing the range R(T) of T'. Let BE and BF
be bases of continuous seminorms on E and F respectively. Then
R(T)==N if and only if the following conditions (1) and (2) hold.
Moreover (2) and (3) are equivalent.

(1) The pair (E, N) is T~-convex.

(2) For every yeN and qe JBF there exists xeD(T) such
that q(y=—T(x))=0.

(3) For every seminorms peBE and g€ ‘BF there exist
re BF and a positive constant C such that the following is true.
To every y'éD(tT), which vanishes in Kerq, there exists z'eD(tT),

which also vanishes in Ker q, such that

<y, y'>=<y, z'> for all yeN, (1.2.1)

fal =clfrznl,. (1.2.2)

Remark 1.2.2. If E is a B-complete space (cf. [21 ])
and § is a barrelled subspace of F containing R(T), then the

conclusion of the theorem is also true.

Corollary 1.2.3. Let E and F be Frechet spaces, and T
a densely defined closed linear operator of E into F. Let 03E

and 33F be bases of continuous semi-norms on E and F respectively.

Then the range of T is closed if and only if the following two
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conditions (1) and (2) hold. Under these conditionsi the 'range of
T is equal to the polar of the kernel of “T.

(1) For évery Pe JBE there exists qe?SF such tha£
y'eD(tT) and HtT(y')”p<oo implies the existence of Z'éD(tT),

which satisfies tT(y')_.——:.tT(z') and z'==0 in Ker a.

(2) TFor every seminorms peJS’E and q€J3F there exist
a seminorm re?é’F and. a positive constant C such that the following

is true. For every y'G.D(tT), which vanishes in Ker q, there exists
another z'eD(tT), which also vanishes in Ker q, such that
tT(y') =tT(z') and
t
Izl =cl ],

This corollary follows from the above theorem. 1Its

simple proof may be left to the reader.

§1.3. The proof of Theorem 1.2.1.
(I) Conditions (1) and (2) imply R(T)= N.

Let U be a neighbourhood of O in E. Then there exists

a seminorm pe Spec E such that its closed unit ball'Bp={x &kE; p(x)é?}

is contained in U. Let B be a subset of N defined by
— . ! t : 1] ] t
B={yeN; [<V¥, ¥ >|= [ *r(y )HP for any y'e€D("T){. (1.3.1)

From the T-convexity of (E, N) there exists q&SpecF corresponding

to p.
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Now take an element-'y in N. TFrom the condition (2),

there exists xe&D(T) such that q(y=—T(x))==0. Then y—T(x)

» . Suppose £ £

is contained in NaKergq. A y'e D('T) and ” ’I‘(y')”p is finite,
. V

'fthen' Ly=T(x), y'>==0. Hence we obtain

<y, v' > =<0, y'>|=|<x, "oy >

= P(X%UtT(y')]{p. (1.3.2)
according as p(x)==0 or =0,

Taking A=p(x)"'1 or :.-?l/\,f—we have Ay&€B. Thus we have proved
that B is absorbing in N. Therefore B is a barrel in N. Since
N is a barrelled space, B is a neighbourhood of O in N.

Next we prove that B is contained in [T(Bp)]N—’ the
closure of T(Bp) in N. Take an glement y&€N which does not
belong to [T(Bb)JN' Then by Mazur's theorem there exists z'&N!
such that »{<y‘, z,'>] =1 and ]i'{§1 ' [T(BP)JN. From the

Hahn-Banach theorem z' is equal to the restriction of some y'e

to N. Then |<y, y'>|=1 and |y'|=1" ,[T(BP)JN, which implies

that |<T(x), y'>]|=p(x) for all x=D(T). Ience the linear
functional x+—><T(x), y'> is continuous linear on D(T), and
then there exists x'&E' such that <T(x), y'>=<x, x'> for
all xeD(T). Therefore y' belongs to D(tT) and t‘I‘(y')—_.- x!'.

Since ltT(y')} =p, We have
UtT(y‘)”pé1<{<y, y'=>|.

Then y does not belong to B.
We have proved tnat B[T(B)] C[1(0)]y so that.

[T(U)}N is a neighbourhood of O in N. Therefore T is almost open

-12 -



as an operator of © into N. Since E i B-complete, we can conclude

that (T)==N (cf. Ptdk [21] and Mochizuki [19 J).

(II) The relation R(T)==N implies the conditions (1)
and (2).

The condition (2) is trivial. Let p'eSpec E. Lef B be
the subset of N defined by (1.3.1). Then B is absorbving in N.
In fact take an element yeN. Trom the hypothesis there exists
x&D(T) such that y =T(x). Then we have the same incguality as
(1.3.2) for every y'e D(tT). Hence Ay is contained in B if we
take /\=p(x)—1 or A =1, | |

Since N is barrelled and B is a barrel in II, the set B
is a neighbourhood of O in N. Let 9, be the seminorm on N defined
by , |

0,(y) =1inf{C >0; yec-B}, yeN.

Then dg is a continuous seminorm on N and hence it is the restriction

of some q & SpecF to N.

Now let y be an element of N/\Kerq and: y' an element

of p(*r) such that Ht'I‘(y')up is finite. Since y belongs to the

kernel of g there exists a sequence of positive constants Cn>0,
ne=1,2,++*, tending to 0 as n tends to infinity, such that

yeCn'B, n==1,2,"*. Then we have
<y, y'>!_§_0n-HtT(y’)ﬂp

and the second term tends to O as n becomes large. Hence it
follows that <y, y'> ==0. We have thus proved that (E, N) is

T-convex.

- 13 -



(IIT) The condition (2) impliec (3).

lLet pe J3F and quBF. We denote tle ce2nonicel epimorphism
of F onto ¥/Kerq by §. Let Tq= §eoT. Since f is open, the

image P (N) is also a barrelled space. From the condition (2)

we have R(Tq)= g’(N). Then from the open mapping theorem Tq is
an open mapping of E onto Q(N). Hence Tq(Bp) is a neighbourhood

of 0 in P(N). We define the seminorm r, on PN) vy
ro(v)=1nf {0>0; yyeC-T (3}, v e p).

Then r, is a continuous seminorm on ?(N). From Proposition 1.1.1.

there exist re& /3y and a constant C =0 such that r gcdr*

)
on F(N), where r* is defined by

x : L. :

r (yq).—:lnf{r(y), yeF and P(y)qu}, yqe:-_F/Kerq.

Let y'e D(tT) and <y, y'> =0 for all yesKerqg. Let

~

Yy€N and 9(y)eC-Tq(Bp), Then there exists x&D(T) such that

p(x)=1 and P(y)==C- PoT(x). Then it follows that y—C:-T(x) e

< Ker g and hence we have

I<7v, ¥'>l =c|<I(x), y'>| =c|<x, Ty >|
=c- [,

Therefore we obtain

<Y, y'>f = rye ?(Y) HtT(Y' )”p

x t
= o, e - [*2tyn) [,
for all yeN. From the Hahn-Banach theorem there exists z'& [

-y -
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< Y L ! E— C I ° ( )’ N I ( ' )”

for all y&F. Then z' vanishes on Kerg and for every xeD(T)
we have <x, t‘I‘(y')>=~"<’I‘(x), z'>. Hence it follows that z'e

eD(tT) and t'I'(z')=t',[‘(y'). tloreover we have
t . t
” Z'”récol{ T(y' )”p""co ” T(z' )Hp’
Therefore the condition (3) holds.
(IV) The condition (3) implies (2).

Let qe JSF. Take a seminorm peBE and define the set

B' by
B ={y,e P |<vyr ¥ >|=[*1, 0l for a1l y en(*r)f.
Then we can easily obtain the fact that B' is equal to
{pGr)i yen ana <y, 7> =] oy, 1t y'ep(*n)
" and y' vanishes in Ker q}. |

We can prove that B' is absorbing in P(N). In fact let yeN.

From the condition (3) there exist re BF and a constant C>0

such that the conclusin of (3) holds. Then for any y'e& D('T),

which is equal to zero on Ker q, we obtain for some z' e (*1)
<y, y'>l= <y, 2> =Wz . =
-_<_=C-r(b’)”tT(z')”p=C-r(y)|]tT(y')“p.
Hence we have Af(y)eB' for some A

- 15 -
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We have proved that B' is a barrél in Q(X), and then
B' is a neighbourhood of 0 in ¢(N), Moreover as in the proof

N T . py s . ' Y

of (I) we can prove the inclusion B C[Tq(Bp)] P (N) Therefore
the set [Tq(Bp)]_f(NO is a neighbourhood of O in $(N). ‘in other
word Tq is almost open, and hence the range of Tq is equal to

-?(N). Then the condition (2) is valid and the proof is complete.

Figure (see section 2.2.)
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Chapter II. The spaces F (&, @ ;E).

§2.0. Introduction.

In this chapter we define our basic spaces and prove some
of their properfies’in order to apply Theorem 1.2.1. Roughly
speaking, :}(fi,ﬂu];E) is the space of all distribution sections
of the vector bundle E, which can be extended from w to be an
element of 7 and vanishes outside the subset QVT of the boundary.
This function space plays a central role in the following chapters,
where a unified treatment of boundary problems for linear differential
equations will be done. Because the topological structure of
5(}1; @H;E) is very complicatéd, we have to solve many delicate
problems.

In the first section we state some elementary facts on
the spaces of sections of vector bundles. Sometimes we will have
to calculate on local coordinate patches. In section 2 we define
?(fi,CUT;E) and show that our definition is independent of the
choiée of subsidiary sets. Section 5 is devoted to the study of
d”(fz,aﬁ;E),vwhich consists of C% sections. In section 4 we
study Sobolev spaces, but we have to impose some restrictions on
the boundary, that is, we have to assume curve segment property.
The author has not succeeded in proving Proposition 2..4.1. without
lthis hypothesis. Section 5 is preliminary for the consideration
of linear diffefential equations with constant coefficients in
Chapter 1IV. |

having

Aftegﬂfinished the calculations of this chapter, we can

apply Theorem 1.2.1. and immediately obtain conditions for the

solvability of boundary problems. We will meet many such applications

in later chapters.
- 17 -
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§2.1. I'reliminaries.

Let M be a o -compact C® manifold (without boundary)
of dimension n. Take a family X of C®° coordinate systems X
on M. Then K is adiffeomorphism of an open subset Uk ;of M onto
X (U, ) < R". We can chooce them such that {Uy; %e){} is a
locally finite open covering of M. Fix a family of functions
Xxecgo(UX) such that 0= K (x) =1 ‘and %{Xf(x):—-‘h xeM.

In the following sections E denotes an N-dimensional
complex C* vector bundle over M. Let 7t be the projection of E
onto M, and Ty, K€} a family of C* coordinate charts over X .
Then Py is a diffeomorphism of U,x @Y onto n;—](U,c). If gx%) is

the C* transition function on U?r/\UK” then.we have
Byl(x, W) = Fp(X, Epgr(x): W) | (2.1.1)

for all erxnUx/ and we .
By C*(1; E) we denote the space of all C> sections of
E over M with the usual topology (cf. Schwartz [22]). Then it is
isomorphic (as. locally convex spaces) to . the ‘spade of all
o N . . .
families (u,.) e Tl C¢*%(u, ))" which satisfy the following
%/ e xey x , v

relations:

u,(/=—'({§7(,xogc'~"'1)-(uxo(xx’—])) on ' (U AUx’). (2.1.2)

The latter space is endowed with the weakest locally convex
topology such that the mapping (ux)ke% ;-—-—>u,<ec°°(x(u,<))N is

continuous for all xe}{. This correspondence is given by the
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following relations:

u(x)= Fp(x, uyex(x)), for all xely. (2.1.3)

Proposition 2.1.1. The cpace C°(}M; E) is Frechet-
Schwartz, i. e. a 1limit of a compact (or completely continuous)
projective mequence of locally convex spaces (cf. (14 ] and the

references therein).

Proof. Take a sequence Kj, j=1,2,-+- of compact subsets

‘of M such that each Kj is contained in the interior of K and

J+1
the union of all Kj is equal to M. Let Xj be the space of all
Cj\sections of E over Kj such that they can be extended as Cj
sections of E over M.v The topology of Xj is induced by the
restriction mapping of Cj(M; E) onto Xj' Let ?j be the restriction

map of Xj into Xj—J' Then ‘?j is a compact operator. In fact

we can use local coordinates to reduce the problem to that in R™
Then the Ascoli-Arzela theorem can be used. We leave the details

to the reader.

Then the sequence X1<

compact and its limit space can be identified with C™(M; E).

By C:(M; E) we denote the space of all C*™ cross sections
of £ over M with cbmpact sUpport, This space has the usual
Schwartz topology. Let LY be the volume bundle of M, and E¥ the
dual bundle of E. Then the space  '(}M; E) of all distribﬁtion
sections of E over M is defined as the dual space of C:YM; eol)).

By &'(M; E) we denote the space of all distribution sections
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in @'(M; E) with compact support. As locally convex spaces
D' (M; R) is isomorphic to  the dual space of C:(M; 7). Similarly
a‘(M; L) is isomorphic‘ to the dual space of C™(M; E) as locally
convex spaces. In fact it is enough to remark that C™(M; E) and
c*(M; E*@{)) are isomorphic. The space @'(il; B) is canonically
isomorphic to.  the space of all families (Ux)xex éxU)<f3'(X(U"))N
satisfying the same relations (2.1.2). Then we can choose the
duality bracket such that the following relation holds:

<9, >=k%<<(x,fox“1)3;c, (22 Dy > (2.1.8)
for all ?'ecg(m,,m) and ue ' (M; E).

Let s€R. Ve define the Sobolev norm of ue a'(mn) by

bull gy = ( J1a0E)] 21415 2)%48) /2 (2.1.5)
if the integral is finite, where 6(§)=<e ™%, u>, ang
'$3 =-..—(27£}-nd§. If the integral (2.1.5) diverges, then we write

uu"(s)=00. We ‘derfine the Sobolef norm of ue £'(M; E) by
| | =1y y1/2 |
Iluil(s)—:(,%CH (2,3 ) wff )12 (2.1.6)
By H%S)(M; E) we denote the space of all ue £'(X; E) such that

its norm |ull 4y is finite. By H%‘;‘)’

all ue P "(; E) such that ?-ueH‘(:s)(M; E) for every e C':(M).

(M; E) we denote the space of

This space is endowed with the family of seminorms uo—-——)}[?-uﬁ(s),
?eC?;(M). Then this is a Frechet space and its dual space is

H(f_s)(M; E) with respect to the following duality bracket:
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—_— = -1 =1 ,
<u, V>—'x4ek<<x’f°" Ny, (KpeodC  Ivpe > (2.1.41)
loc

for any ueH(q)(M; E) and veH&fs)(M; E). DBoth spaces H(

(¢]

s>(r«:; )

and H%E%(M; E) do not depend on the choice of X and {Xk; XEK}.

From (2.1.4') and (2.1.6.) we obtain
<u, v =lef oy lvl e (2.1.7)

for every ueH(;>(M; E) and veH(ES)(M; E). The set of seminorms

on C (M; E):

w—>[3uf 5y, sER and F=C M)

s . . . 00O,
is a basis of continuous seminorms on C (M; E).

] b}

§2.2. The definition of the spaces F(, w. : E).

Let £ be an open subset of M, and W an oren subset of
the topological boundary &£ of £2 in li. Take a subset a)] of W,

Ve make the following cdefinitions:

S=0Vw, w=0\w,, w = Int,, (W, \ED)?),

Jo

— - U /50 —_ ) —\°
@jj‘”wj\(w'jo (f2)7), Wyz==TInt, (W;A2)"),

— o )° ) _—
walawz‘hgwwao’ j=1,2. (2.2.1)

liere 0,—-, © represent the int.erior, the closure, and the boundary
in M respectively. On the other hand Int,,, 9‘0 represent the
interior and the boundary in . Then each wj is the disjoint

a

w i3 Wy

union of five sets ij’ ij 327
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If 4 has the curve segment property at every point of

“1 V Wap (Definition 2.4.1.), then

~— g

Proposition 2.2.1. "there exist ‘three open subset _QO,
.Q], ﬂz‘ of M, which'satisfy the following conditions:

, . . (See the figure
(1) Qcﬂjcﬂo, J=1,2.
on page 16)

(2) =202,

(3) QY2

() 245 90 = w.

(5) Q257 90=w;slY Wiz I=1,2.
(6) wjjc(‘_c‘z‘jm_z"); j=='1,a.

(7) wko/\(ﬂg\ﬂ):% , 3:\: k.

, Sincé there is no difficulty in the proof, we leave it
as an exefCiSe ‘'to the reader. As will be shown in the following
discussions, the choice of _Qj does not affect the results.

By fz'j we denote the union of {2 and its boundary in
_Qo. Fix three open sets 2., 'QT’ ‘QB which satisfy the
cbnditi‘oné of Proposition 2.2.1. Let 7(.&20; E) be a subspace
of ,8'(.(10; E) with a locally convex topology. Let P be the

restriction operator of F(£2_; E) into ' (521; E). To every

ue 34(&'20; E) its restriction $(u) is also denoted by u]Q_ .
1

Definition 2.2.1. By }(ﬁl; E) we denote the range
of p , i.e. the set of all ue '(I2;; E) such that there exists

ve F(£2,; E) and its restriction to .Q.1 is equal to u. This space
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is equipped with the strongest locally convex topolory ruch that
§ is continuous.

Definition 2.2.2. 1If co15 is void, thc space
35(_6:, w.; E) is defined as the set of all distribution sections

in 3‘(§1; E) with its support in f1. rthis space has the natural

topology as a subspace of ?‘(ﬁﬁ E).

Definition 2.2.3. Ry ¢™({Z, “)i; E) we denote the space
of all C* functions u in C”(ﬁl; E) with its support in £ such
that P(u) vanishes in C()13 for any linear differential operator
P (with ¢* coefficients) in Cw(_Q1; E). This space has the
natural topology as a subspace‘ of Cw(ﬁi; E). If w2 is void,‘ Qe

use the notation 8”(fi; E) instead of C”(fz, W, E).

Definition 2.2.4. If W,z is void, the cpace # £, B)
is defined as the set of all distribution sections in 5‘(.(7.0; E)
with its support in ﬁa. This space is endowed with the topology 4

as a subspace of F({L_ ; E).

From Definition 2.2.3. the space 8°({i,; E) is the
collection of all functions u in C“(_O_O; E) such that its support
is contained in fia and P(u) is equal to zero in c<).‘3 for any

differential operator P in C”(ﬂo; E).

Proposition 2.2.2. The restriction operator P induces

an epimorphism of gg(ﬁa; E) onto F(SI, @w,; E).
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Proof. “In fact the set of all u in 3‘4(_&7_0; E) whose

. l ~ QO A
restriction to IZ1 belongs to F(L2, @,; E) is equal to F(I1,; E).

1)

Then the remaining part of the proof is obvious.

Proposition 2.2.3. 1If ?(Q_O; E) induces a sheaf of

C‘: modules over S)_O, then the Spacel\é.s independent of the choice

% (5 3
» Wy E
of 82, 2., 82,, F( 3 E)

“except”a neighbourhood of "
r’

t . . ,
Proof. It is enough to notice that every distribution

section in P, @,; E) can be modified outside £7 and can ve

extended to an element of F(M\(22\w)) which vanishes outside
a neighbourhood offi in .QO. The details will be left to the

reader.
Almost all spéces which we study in the following sections
satisfy the above condition. Since wm and “)24 does not affect

the definition of F(SI, w,; E), we can assume them to be void.

§2.3. The spaces C (L, W ; E).

1

We assume in this section that the sets Wiy Woss 602”

are void, since-they have no meaning in the following discussions. -

Then we have @ (2)°= 0)13.

Proposition 2.3.1. The space Cw(f?:, C()]; E) is isomorphic

to  the closure in C“(ﬁ’_; E) of the set of all functions ¢ in

C':(f‘)_; £) such that the closure of supp ¢ in _SZO does not meet

with C(J1 .
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Proof. Let P, be the restriction mapping of Coa(ﬁ1; E)

onto C’”(f’)_; E). Then the restriction of }’1 to Cw(fi, w1; E) is

by the open mapping theorem this is _
injective, and hence,an isomorphism of C (52, w.; E) onto

» A
?](Coo(fi, CU]; E)). Therefore it is enough to prove that any
function in‘ P.I(Coo(ﬁ, @, ; E)) can be approximéted by functions <
in C:(fi; E) such that the closure of supp9 in _QO does not meet
with 6()1 .

Let u be a function in Pl(Cm(SAi, W, ; E)). Then there

exists v‘e8°°(ﬁ;‘; E) such that vjn=u.‘ Using a paertition of unity
su.bordinate to a family of coordinate neighbourhoods, it is -enough
to make an approximation in ‘éach coordinate neighbourhood. Then
we can use an approximation by multiplying certain C”cutof_f
functions (e.g. Schwartz [22] p-93-94). Hence we have a sequence

of functions v(j), j=1,2,--" in C:(QZ; E) such that v(j> tends
to v in Cm(ﬂo; E) as j tends to infinity. Then the restriction
of v(j) to L gives the required approximation of u, and the proof
is complete. ‘

Theorem 2.3.2. The space C (L%, W, ; E) is separable
Frechet Montel and ej(s'i, W, E) is separable complete bornological
Montel. Moreover the dual space of C (SZ, Wy E) is isomorphic
to &' (f, w,; B).

Proof. TFrom Proposition 2.1.1. the space C”(SZO; B)

o)
is Frechet-Schwartz, (FS) for short. Since C"(ﬁ;; E) is a closed
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subspace of C™(§2,; E), it is also (FS). From Proposition 2.2.2.

) ~ o) o~
the restriction mapping % induces an epimorphism ¢ of C”(.Q_a; E)
onto (£, @.; E). Hence the space c™(SL, W E) is also (FS),
and then it is separable Frechet Montel (see [14 ] and the references

therein). Moreover its dual space C™(&, w,; E)' is isomorphic
to the polar ovf Ker 53'-—={?e 8‘”(57./2; E) ; ?]SZ1= O} in
(&5 B

The dual space of 8"’(5\7:2; E) is isomorphic to  the
gquotient space of C”(Slo; E)' 2= €'(82,; E) by the polar of
8”(5’\12; E). A distribution section u in 5,'(52_0; E) belongs to
the polar of 8""(_{"1’2; E) if and ronly if < ¢ , u>=0 for every
?e%"(ﬁz; E). But from Proposition 2.3.1. it is equivalent to
say that u vanishes in £2,. In fact to every ?58“(5‘2’2; E) there
exists a sequence of functions ?j’ j=1,2,"*- in C:(D.a; E) such
that P, converges to P in C™(£2,; E). If u is equal to zero in

.Qa, then it follows that <‘3>j, u>=0. Hence we have
Opo, o e
Therefore the dual space of C“(QZ; E) is isomorphic to &'(£2,;E).

P O fa'd Pad
Next the polar of Ker § in C™(42,3E)' == &' (L2 ,;E) is

the space of all ue a'(ﬁa;E) such that suppucﬁ . In fact it
' @as_in the above proof,

Goo =
is enough to use Proposition 2.3.1. with respect to C (..Qo\.Q.];E)(

A

We have thus proved that the dual space of (2, W1;E) is
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4
isomorphic to e (&L, W,3E). Since e (&, w,;E) is the dual

of a (FS) space, it is separable complete bornological Montel,

and this completes the proof.

Let € =C"(£2;E) and g.:c""(.s“z’, @ ;E). If 2 is the
Q ~
natural injection of C”(HE;E) into & and )° is the restriction

Opo , 2 . .
mapping of C (S?_Z;E) onto g , then we are in the same situation

\
as in Proposition 1.1.1. Let se®R and QCGC:(SZO)‘,{‘»’!e define

(We can assume that & does not vanish:

two -semlnorms on & by in the interior of supp X .

p(f)=|x-Pll 5y, for all e (R;E), (2.3.1)

and

Q(T)=inf{”'x"¥'”(s); ’l{«eC“’(.Q.o;E) and Y =9 in Sll}'.
(2.3.2)

for all ?GC“(_QO;E). Then p*, 53(7?)=q(?) for every e

e’C“(El/a;E). Here p¥ is defined by (1.1.2), i.e.
2
p¥( 9 ) = int{p(¥); ?eé”{fia;E) and =pP(P)I}, (2.3.3)

for all ?ec'”(f}_', @.;E). We have to study the Banach space g‘;*

Proposition 2.3.3.4 Let K1 be a compact set contained

in the interior of K= supp X. Then the Banach space
{uer?_ y(2,;8); suppu <7, nK, } (2.3.4)
(-g) =3 =/ SUPP TASS! ° e

is continuously imbedded into 5& and 6& is continuously imbedded

into the Banach space

{ueHg_S)(jlo;E); suppu;: ﬁ1AK}, | (2.3.5)
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Where both spaces (2.3.4) and (2.3.5) are endowed with the norm
l! ’ ﬂ(-s)i
Proof. Let ueH?~s)(QO;E) and suppucﬁ_q/\Kr ‘There
exists ocoec:(fzo) such that X_-X ==1 in a neighbourhood of K,.
Then 9(0-'9( ==1 in a neighbourhood of suppu. ILet <P, Q,LECM(_QO;E)

and Y= in S2,. Then we have

<<, u'>=<'¥’y u>=< ?(O'X'7A; u>=<?(-'¢’ XOU>,

‘and hence with some constant C > 0,

l<? » U >,—£~ I]?C-'Z/Jﬂ<s)'”9(o'u”(_s)éC ”X‘?"l&s)'}]u”(_s)'

Therefore we obtain for every ?GC”(.Q_O;E),

<. u>]éc'§(?)‘/lufl(_s)-
Then it follows that uegc‘1 an& fuly= c}]u}}(_s).
Next suppose that ue £). Then u belongs to &'
o £'(S2,;E). 1In addition we have for every ?eC?(QO;E),
(<, u> éq('j‘)-[]u//q
= ﬂuuq-inf{'ﬂx’ﬂks); YeC(2,;E) and p=9 in 0.}
| = | ulyIx Fls)
= clufly 190y
where C is a positive constant. Hence it follows that ueH{_,y(f2;

;E) and Nu“<_s)gcﬂu”q with another constant C. Moreover it can

be shown that the support of u is contained in ﬁ”\K.. In fact
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. . o0 ™ RIS . :
let ¢ be a C® section in C,(L;E) which is equal to zero in an

open neipghbourhood U of ﬁ1/\ K. There exists a function & in

NS

C”(Qo) such that &« =1 in a neighbourhood of 521 and &®=0 in
" a neighbourhood of K\U. Let % =& P. Then it follows that
'l/)o= P in a neighbourhood of .ﬁ:} and Q/*o =0 in a neighbourhood

of K == supp X. Hence we obtain

[<g, u>|=
éuu“q-inf{llx.;b//(s); Y EC™(SL;E) and P=¢ in Q,}

=l 1% %olls)

= 0.

Therefore it follows that <<, u>==0 and the required inclusion

suppuCﬁI/\K holds. This finishes the proof.
Theorem 2.3.4. Let K1 be a compact set contained in the
interior of K= supp X. Then the Banach space
‘ ~ A )
{u € g (L, W,;E); sgppuC.Q./\K] and u=-_v!_Q.2
c .
for some veH(_s)(D.o,E)} (2.3.6)

is continuously imbedded in to 9}')*,vxhere the space (2.3.6) is

endowed with the norm

inf ; B¢ (2 ;E d u= . (2.3.7)
in {Hv”(_s) veHl( o ({2,;E) and v V}QZ}

Moreover the Banach space %* is continuously imbedded into

{u ea’(fi, @W,;E); suppuuC‘S’\Z’/\K and u=vfﬂ2 )
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for some VEH((:_S)(-QO;E)}. (2.3.8)

with the same norm (2.3.7).

Proof. Let K2 be a compact set such that its interior

contains K] and it is contained in the interior of K. Take a
function ¢ in C:(.QP) such that supp ¢ CK, and P==1 in a
neighbourhood of K.‘.L- Let E3’ (}1 , GL+ be three Banach spaces
defined by (2.3.5), (2.3.6), (2.3.8) respectively. In addition
we define the following Banach spaces:
E, -.-_.—{ueH((:_S)(SZO;E); QaAsuppuCﬁR/\KJ,
Eag{uEH?_s)(.Q.o;E); Supp‘uCﬁM\KZ},
EL+=={ueH%_s)(.Q0;E); .QZ,\suppu CﬁR/\K}:
G2={v eé‘,’(fi, a)z;E); V=W ]SZZ and suppvw §1/\I{2
for some weH?__s)(.QO;E)},

G3={ve5|(ﬁ, wa;E); V= WI‘QZ and suppWCﬁ]AI{

for some weH((:__S) (SZO;E)} s

where E;, E,, E, are endowed with the norm Il - ”(-s)’ apd Gy, Gg

are endowed with the norm (2.3.7). From Proposition 1.1.1. the

restriction mapping f’/ induces an epimorphism of 8(‘1 onto 913*
Trom the previous Proposition 2.3%.3. the Banach space EZ is
continuously embedded into 8(‘1 and ‘5(‘1 is continuously embedded
into E3' By A ‘we denote the linear mapping of E1 into E2 defined
by A(u)==P-u, u&E,. Then A is continuous linear and we have
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the following commutative diagram:

™ A ~ TR P »

O I |
1 2 5 g 05 50,

- The restriction mapping P induces five epimorphisms . Three
upper inclusions and A are continuous. Therefore the four
lower inclusions are also continuous, and then the theorem is

proved.

Proposition 2.5%.5. Let K' be a compact subset of Qo

. . . . ” oo .
such that its interior contains K =supp X. Then every C  section

in (&, @, ;E) which is equal to zero in {LAK' is contained in

Ker p¥ . Every element of Ker p¥ is equal to zero in (2 K.

foreover every distribution section in &'(fi, wa;E) is equal to
zero in Ker p* if and only if its support is contained in ﬁ/\ K.

Proof. Let T be a section in Cm(ﬁ.’, CU};E) which

Q A
vanishes in £ K'. Then there exists ’}I'Oé C“(QZ;E) such that

P = ’l/-'o l57—1 and "I/JO-_—_ 0 in K. Hence we have

PHP)= //x.'z,boy(s):.—-_ 0.

Next suppose that eC®{L, @,;E) and (9 )=0. Take any C~

< .
section'in C‘:;(_Q.n K°;E), where I° is the interior of K = supp X.

A

Then K is equal to the closure of X°., Since X does not vanish

in' a neighbourhood of supp X, there exists B eC_:’(.Q_/\KO;E) such
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. _O,““—*‘N !
that X =26 in Q. If $ec™({L,;E) and ¢ =7P|q,, then

we obtain
<o, o> =|<xp, p>=I<g, xy>|
= ”ﬁ”(-s)' //9(’3‘*”(3)

Then it follows that
<, 3> = Fll(_s)-p*( $)=o0.

Hence we have <X, ‘}’> ==(Q for any such X . Therefore P is
equal to zero in QL /\Ko and then in QA K. The remaining part

of the proposition is obvious.

: '1 e
§2.4.- The spaces H‘(‘gg(ﬂ, W, ;E).

For the sake of simplicity we assume in this section
that the intersection of # and (3X)° is void. Take three open

setls SLO, 9.1 , 522 satisfying the conditions of Proposition 2.2.1.

Since we cannot use the cut-off approximation as in §2.3., we

" make the following definition:

-Definition ‘2.4.1,. We say that @ has the curve segment

property at xe w (with respect to L) if there exist
an open neighbourhood V of x in _Q.O and a real everywhere non-
vanishing C* vector field X on V such that any integral curve

of X in V from any point of wn V is contained in 25V,

If @ has the curve segment property at x with respect
to L2, then it also has the same property at x with respect to

Qo\ﬁ. 'In fact every integral curve of —X in V from x is
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contained in V \ SZ.

If w hns the curve segment property at x =w, then wve
cen choose a sufficiently emall neighbourkood V of X in “Q‘o and
a local chart % :V——> (V)<= R" such that to every point

ye %(a)/\ V) the set

lze 2(V); y'= 2' and ¥, < 7’n1

L J
is contained in %(Q/\ V). Here we write y =(y‘ TR ,yn) and
y!' = (y], '“’yn—l ). In order to prove this fact we only have

to solve a simple ordinary differential equation, and we leave

it to the reader.

Proposition 2.4.1. Let seiR. If w has the curve

segment property at W, then the set

{?ECZ(-ﬁﬁE); supp P /\(57.1\ﬁ)=-='~’7b} c(2.4.1)
is dense in H%Zg(ﬁ, wy3E).

"roof. Trom the hypothesis there exist a locally

finite open covering (Vo()o( e A of Wy in _QO and a family of

local charts Xx:vo(—-——a-%x(Vx)C}Rn such that to every

y @2 (W Vy) the set
{ze’)‘(o((\fo(); y'= 2z' and yn<zn} (2.4.2)

is contained in 2¢ (X2 AVy). Then it is possible to choose ._Q1
{_zekd(vx); y'== z' and z_<< y } _ \__\525,
such that the ret is confaine®@in ¢ (52, AV) for all
A S A N

yE (,UH. Take a locally finite open coveiring (Vﬂ),@GB Orf
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Q\(x\e/AV«) in §2 such that “’1/\V,8=+ for all g=B. Then using
a C™ partition of unity subordinate to (V,),_,Ug, " can reduce

the problem to that in each V., o(eAuB. Therefoi‘e it is enough
to make an approximation in each 'V“"—.—:%;((V‘;(), X< A. Then we can
use an approximation by translation. After that we can use
convolution by the usual C*° functions and thén we obtain a
required approximation (see the proof of Proposition 2.5.5.).

We leave the details of the proof as an exerciée for the reader.

Theorem 2.4.2. Let se®R. We assume that « has the
curve segment property and S?.Z can be selected such that its

boundary in D‘o also has the curve segment property at every their

point. Then H%gg(ﬁ, ®,;E) is a Frechet space and its dual space

is weak*-»i,somorphic to . H?_s)(ﬁ, WZ;E).

Proof. Sinée’H%gg(ﬂo;E) is a Frechet space, H%gg(ﬁ,

, w1;E) is also a Frechet space. Let 7 Dbe the natural injection

0 | '
of H%‘§§(§23E) into H%Z%(.QO;E). Then its dual map *2 is a

o) e
weak*-homomorphism of H;(LZ()"(_Q.O;E)' o H?_S)(_QO;E) onto H%gg(ﬂa;E)'.

Let P, be the restriction map of H?_s)(.Q_O;E) onto Hc(;-s)(ﬁZ;E)’

Then for every ueH?_s)(.QO;E) we have t7,(11)-----:0 if and only if

Pz(u)—-—-—o. In fact we have tq(u):—.o if and only if <P, uw>=0 .

o} ' '
for all ¢& H:(Lgc):(ﬁfa;E),and the latter condition is equivalent

with P,(u)==0 from Proposition 2.4.1. Therefore there exists

0 ~
a wealk™-isomorphism of H%gg(ﬁa;E)' onto H((:..s)(‘D-Z;E)'
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. < i . )
Now the dual of the restriction mapplnngf Hz‘gg(ﬁla;}ﬂ)

onto E,I%Sﬁ(fz’_, a).‘;E) gives a weak*—isomorphism of H%Sc):(ﬁf, a/1 ;E)'

0 ~~ '
into H%S?(ﬁ ;E)'Q_é.H(SS)(_Qa;E). Because § is an open mapping,

the range of t)o is equal to the polar of Ker . Then u belongs
to the range of ty if and only if <9, u> =0 for every

0 ~
P H%gg’(.ﬂé;E) which is equal to zero in _Q]. From Iroposition

2.4.1. the latter condition is eguivalent with the inclusion

relation suppuc:ﬁ. Therefore the range of tf is equal to

H‘(:__S)(S'i, w,;E), and the proof is finished.

Theorem 2.4.3. Let s,teR. If K is a compact subset

of f?:, and s << t, then the inclusion mapping of the Banach space
{ueH%t)(ﬁ, w1;E); suppuCK} (2.4.3)
into the Banach space
{ueH?s)(fl’, 0)1;E); SuppuCK} (2.4.4)
is completely continuous. Here (2.4.3) is given the norm
inf{”vf{(t); v‘eH((:t)‘(.Q_O;E) and u=v‘nl}, (2.4.5)

and (2.4.4) is given the similar one.

Conversely if the inclusion mapping is completely
continuous for one K with interior points, then it follows that
5 << t.

Proof. Let 7X be a function in C‘:(QO) such that X =1

in a neighbourhood of K. Let V be the closed unit ball in the
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Banach space (2.4.3). Then to each u &V there exists ﬁeH((;t)(SZ

)

o
F) wd
Q

such that ﬁ!'(zl: u and Hﬁu(t)-C 2. By V we denote the set of

—

%- 4 for all ue€V. Then it follows that $(V)=V and ¥V is a

bounded set in the Banach space
c
{VEH(t)(QO;E); suppvcsupp?{},

which has the norm "V”(t)' Hence V is precompact in the Banach.

" space

?

{VEHC(;S)(_QO;E); Supp v < supp X | -

Therefore V = f(f/‘) is precompact in (2.L4.4).

The latter part of the theorem is obvious,

Using the same argument as in Theorem 2.3.4. and

Proposition 2.5.5, we can prove the following theoren:

Theorem 2.4.4. Suppose that @ has the curve segment
property at evbery its point and we can choose 'Q‘Z such that its
boundary in ’D‘o also has the same property at every its point.
Let seR and %ecg(ﬂé). Take a compact set K1 in the interior

of K= suppX. Let p* be the seminorm in @=H%Z§(ﬁ., @Wq;B)
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N . 1 T
P*(u)::inf{ ,{X‘VH(S)’ VEH((S)(;(-Q.O,B) and u = V{n]},

(2.4.6)
for all uéll%g():(fi, OJ.I ;E). Then the Banach space (2.3.6) is '

continuously embecded into gx'}*, and gi)* is continuously embedded

into the Banach space (2.3.8). Noreover if ueH((:__S)(fi, W,;E)

|

and suppquZ'nKl, then u is equal to zero in Ker p*. If u is

equal to zero in Ker—p*, then it follows that suppuCﬁ.nK.

loc

o n
p,k('Q’ w]) vhen M= IR".

§2.5. The svaces g3

In this section we assume that M=R" and E is the
trivial line bundle ®®x @. As in the previous section we also

assume that W p (_If)O:c}S. Take three open scts _QO, ..(7_1,_522

satisfying the conditions of Proposition 2.2.1.
We use the notations of Hormander [ 8 ]J. Let 1= p <oo
and ke K(mn), the set of all temperate weight functions. Then

Ve
dBp | 15 defined as the space of all distributions ved (R™®) such
’

that its Fourier transform i is a function and
full, o=CJ (g 00CE)| Pag) /P00, (2.5

For the sake of simplicity we assume that ¢ has the

segment property defined as follows:

Definition 2.5.1. We say that W has the segment property
at xsw if . there exist a neighbourhood V of x and a

vector eeR" such that for every ye waV and O e
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vyt e .D./\V.

We can repeat the same argument as in section 2./. and

obtain the following four propositions:

Proposition 2.5.1. If w lhas the segment property at
every point of a)], then the cset
{95l g p\D=F}
is dense in Gloc(ﬁ’ W, ).

P,k

Theorem 2.5.2. Jg%oﬁ(ﬁ; 601) is a Frechet space. If
9

@ has the segment property at every its point and we can choose

‘QZ such that its ‘ooundary’ in 520 also has the same property at

every its poinf, then the dual space of B%oﬁ(ﬁ, 6U1) is weak’ -
. ) s

. - c k ] 1 -
1somorphicv to d3p' ,1/1&(’.&:2, 602), where -§-+-—p-. =1.
Theorem 2.5.%. Take two temperate weight functions
ky, ke (RY). If |
k(€ )/k,(§)—>0, as §—>009, (2.5.2)

then for every compact subset K of fi the inclusion mapping of

the Banach space
{ueB %, (£, w,); suppuck} (2.5.3)
7 P,k » Wels op e De
into the Banach space
@ Ar
{ueagp,ka(ﬂ_, w,); suppucK J (2.5.4)
is completely continuous. Here the former space is endowed with

- 38 -



the norm
inf{”vh’p’}, ; vé(Bp, (QO) and u—'vii?_]}

and the latter space is endowed with tac similar one.
Conversely if the inclusion mapping is completely
continuous for one set K with interior points, then the condition

(2.5.2) holds.

Theorem 2.5.4. ouppooe that w hao the segment proocruy
'1t every its ooa.nt and we can choose ..Q such that its boundar

4

in ‘Qo also has the same property at every its point. Let

1=p<oo, —;}-— -%—,-—-—-1, and keﬂ{(ERn)‘ Take a function X in

C?(QO) and a compact subset K, of the interior of K = supp X.

1
Define the seminorm p* in Q:@%Of{(ﬁ,d)” by
p*(u) = : loc SRR
(u) = 1nf{[l%vpk, ve@nk(ﬂo) and u_v{Q1}
for all ue@loc(ﬂ 0) ). Then the Banach space'

c o . o _
{ueBp'ﬂ/k(Q’wa)’ ouppuCK.]/\Q and U.—V!'Sza

c
for some ve&3p, ,1./1:('(,20)} (2.5.5)
is continuously imbedded into gé*,.and Qé* is» coptinuously
imbedded into the Banach space
{ueB © (5L, w )3 suﬂnpuCK f andu=v
pt,1/k52s Wo)5 sur n =V|g,
- C N N
for some ve@p, ,T/k(’Qo)}' (2.5.6)
Here (2.5.5) and (2.5.6) is endowed with the norm

2

int{Ivily, 1 VERBLT |/ Q) and umv) o
- 39 -

2



28

. . ' c &y - s
Moreover if ue dap, ,%/k(D" @,) and guppuc:.Q/\I\1 ,

then u vanishes in Ker p* . If u vanishes in Ker p*, then it

follows that suppucC ﬁ/\ K.

Provosition 2.5.5. Suppose that we can choose ﬂ1 such
that the boundary of 57_1 in D_o has the segment property at every
its point. Let K and K' be two compact subset of _Q_O such that

K is contained in the interior of K'. Then there is a positive

constant C such-that for every function u in C:(ff, ,a)1 ), whose

support is contained in ﬁnK, the following inequalities hold:

¥

inf{"v”n K vecf;(ﬂo), supp v CK', and uz—_vf_Q }
P ‘i

ine{lv], i veBS (2 and v=v|g

(i

I

C-inf{"v}lp’k; veB;’k(.Qo) and u—_—:viﬂl}. (2.5.7)

Proof. It is possible to take any _(21 , because the
~ inequalities (2.5.7) are essentially independent of 'Q'V Then
from the hypothesis we can take _Q1 whose boundary in ﬂo has

the segment property at every its point. Choose two compact sets
Kl and K, such that each K, Ky Xy is contained in the interior

of Ky, Ky, K respectively. Let X be a function in C:(H?n) such

that j%(x)dx =1.. Set 'X&(x)-_—_ E:nx(x/g) for €>0.
Jinite number of,
From the selection of _(21 there exist a 4 open sets

Vis Voy ooy Vp, which is contained in XK', and the same number of

vectors eé], @y, in R? such that Vs's are a covering of
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KZ/'\ Q_QOQ1 and

{3/\ _Q +£ee CK'O\Q_P 0< £<1 and j=1,2,"

Then there exist functions Pt ?2,"', T in C (.Q. ) such that

supp ?J. v

T j=1?j=1 in a neighbourhood ‘of‘kv\aﬂ_ﬂ.’, and

-0

(supp <J>j)\Q1 -+ a-eejCK'°\ﬁl, 0<E<1/2 and j=1,2,"

(2.5.8)
Moreover take functions ?1_‘_1 7 Py in ‘C:(.Q.O) such that
suUpp ?J/‘]Q_QOQ‘]:% ’ J=~n-+1 y 7% " I,
and
= Fy=1 in K,
J=1

Since the first inequality in (2.5.7) is trivial, it
remains to prove the second inequality in (2.5.7). Now let

uezc;"(ﬁ, w.) ‘and supp uC.Q./\K. Then there exists a function

u_ in CDS(QO) such that u=u

o and supp uOC'_ K1 . Take any

OIQ';
. . c ‘ .
t h that . If we te
function v .in Bp,k(Qo) suc at u=v l'Ql we wri
Wy == ?j(v-—uo), j=1,2,"-,m,
then it follows that w.ed3 .S (£2 ) and
3 P,k o]
suppch:(supp ‘393.)\_(21, j=1,2,"" ,m, (2.5.9)
Here we define translation operators by
ft(g)(?)(X):—- P(x—egey), PeC(R") and xeR",

for eeR and j==1,2,-*",01. TFor distributions ue,S'_(R{n) we

- 41 -
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define 'c(&j?(u) by
<3, tPw>=<c(9), v> fecrd).
From (2.5.8) and (2.5.9) we have

Suppwj+a'eejc,K'°\fi1, 0O<e<1/2 and j=1,2,+- 4,

and hence it follows that

sUpp fc(é)(wj)CKto\§1, 0<e<<1/2 and j=1,2,+",4L.

Then there is a constant So > 0 such that
: (3) 6210 5

for every 0 <<e<1/2, O0< $<SO, j=1,2,"--,1, and moreover
W x. e CXx'©° ), j=la1,---,m
J* SE o 177 J= ’ g tile

Now ‘define the functions VE'S by

é . m
_ iw Y.
Ves = b S0k kg 2wk X

. o9, 1’
Then it follows that VE,SECO(‘Q‘O)? suppva,sc_l{" u=va.s[:2_]'

and in addition

| ” Ve, s ” p,k = :

m 1 .
=] 1 ~§1v’j}lp,k+j§;lfVJj - 'C(aa)(wj)* X5 “p,k |

== DELAT N

=t
= ”(% ?j)vﬁp,k'f' .t
. m

-2 - (2.5.10)



bl
where the positive constant C is independent of u and v. Since

the last two te'rm of (2.5.10) tends to zero as g, § —>0, we obtain

Tmv, |, =Clv|
Flve sl p e = Clvlp o0

]

and then the proof is complete.

' N\ ‘ '
Lo a %

<~ N\
\N©9 ./

V2

Remark. For many reasons the following definition of
‘}(ﬁ, a)1;E) is better than that in sectioQ/Z-.Z. We need not assume

that 013 is void..

o . : O A l ) '
Definition 2.2.4'. By F({1;E) we denote the closure
of COOO(_Q_;E) in ?(.QO;E). This space has the natural topology as

a closed subspace of F(L1L. ;E).

0}
If %(M;E) induces a sheaf of Cgomodules over M, the

4] —~ 4 ~
definitionA?(Q;E) (and ZF(£) ;E) also) does not depend on the

choice of _QO.
Definition 2.2.2'. By ?(ﬁ, a).l;E) we denote the space
[o] ~ ' .
5 (?(QZ;E)), that is, the space of all distribution sections ue
A : <] ~
e@'(Dﬂ;E) which is the restriction of some v& 59(_(22;143) to Q1'

Using Whitney's theorem [28J (also [18]), we can easily
prove that ¢°° (ﬁ,(dﬁE) does not depend on the choice of _QO, QT’
and “Q‘Z'
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Chapter iII; Elliptic boundary problems.

§3.0. Introduction.

This chapter deals with boundary problems mainly for
elliptic differential equations. Some results are not restricted
to elliptic operators. If we combine the results of Chapter I and
II, we immediately obtain nécessary‘énd-éufficient conditions for
solvability of equations (Lemma 3.2.2., 3.3.2., etc.).' They are
constructed by two types of copditions. One is on semi-global
solvability, that is, whether the eqﬁation is solvable in any
compact subset. 'We can write necessary estimates using Sobolev
norms. - The other condition is on the relafion between the boundary
and the characteristics of the differential operatdr. They are
represeﬁted using support of distribution sections. These facts
aré essentially well-known if the boundary is void (e.g.[ 8 ]).

In section one we prove some préliminary prorositions.
Reduction of the problem to the usual form is done. In the next
section we treat differential equations in the space C?(ﬁZ;E .
This is an almost trivial generalization of the classical theory
of differential equations without boundary conditions. We have
to study differential equations in the boundary which is induced
by the boundary conditions. 1In section 3 we state and explain our
main theorem of this chapter (Theorem 3;3.1.). We can prove the
existence of solutions for eiliptic boundary problems ih non-compact
manifolds. Unlike the case of compact manifolds, solutions always
exist. The lasﬁ section is devoted to the proof. We can shorten

the proof using parametricies for elliptic boundary operators.
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§3.1. Preliminaries.

Let M be a ¢g-compact C™ manifold of dimension n. Let
52 be an open subset of M, @ an open subset of the boundary of
fL in M. We assume in this chapter that @ is smooth, that is,
& is an n—1 dimensional submanifold of M. \Virite fZ=_QUa) as

before. Now take an open subset _QO of M such that () is contained
in _Q_o and the intersection of ﬂo and the boundary of f2 in M is

equal to @W. Let E and E' be two complex Cc* vector bundles on M.

As in section 2.1. fix the duality between C::(M;E) and 9'(M;E),

etc. Take a nontangential real C*® vector field 2 in a neighbour-
hood of @. Fix connections for each E and E'. By D,, and D}, we
denote differentiations in the direction ¥ of C* sections of E and
E' respectively. Thus D,, is a first order linear differential
principal

operator from E to E in a neighbourhood U of w and its/\symbol is

<Y(x),&> , x€U and e ‘IZt(M), By R we denotes the trace

operator of Cw(ff;E) onto ¢ (w iE), the space of all C* sections

of Ela) over w . Here E]w denotes the bundle obtained by restrict-
ing E to w . By R' we denote <the trace operator of C”(fi;E') onto
C°°( W ;E'). Then the composition ReD,, is a continuous linear
operator of C*({I;E) onto ¢ (w ;E), and similar for R'eD). For

any s> 3/2 we can extend these operators as continuous operators

loc, =~ . loc (. loc,s .oy .loc
of H(S)(_Q_,E) onto H(s-}/a)\“’ ;E) and of H(S)(SZ ;E') onto h(s-}/a)

(w ;E') respectively.
Now consider a linear differential operator P from E to
E', i.e. a continuous linear operator of C(M;E) into C(M;E')

such that supp P(u) C suppu for all ueC”(M;E-). Then to every'
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local chart %:U,(———->’f(U,C)CRQn there exists a matrix “F of usual

differential operators with C°° coefficients in 2%(U,.) such that
(P(u)),, ="P(uy) in *(Uy), ueC (ME), (3.1.1)

where u,cand (P(u)),. are defined by (2.1.3) with respect to some .
local charts of E and E' over o¢ respectively. Then we have the
following proposition. We omit the proof, because we will use a

similar argument in the proof of Proposition’ L.1.1.

Proposition 3.1.1. If P is of finite order- in a
neighbourhood of w, there exists a positive integerl and linear
differential operators with C° coefficients Ays Ayy e ,4, from
E]'w to E'IQ) such that Aﬁvis not identically equal to zero and
2

R'oP(u) = ZJAjéRng(u), us (S E). (3.1.2)

j=0
This representation is unique.
Suppose that N==N' and P is an elliptic operator of
order m in .Q.O,‘ thaf is, its principal symbol Pm(x, E) is a
’ bijéctive mapping of Ex into E}'( for every xeﬂo and every
non-zero ‘géT’;(Qo). Here E,_ is the space of all fibers at x.
Then it follows that L =m and A 1s a zeroth order isomorphism

vof C(w ;E) onto C“(w;E' ).

Consider another complex c*® vector bundle E'' and a
linear differential operator B from E to E'' which is of finite
~order in a neighbourhood of @. Let R'' be the trace operator of

C“(fi;E") onto c°°(a) sE''), Write
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2
;
R 0 . 2
RM = JUEE and B™(D, ) == | *»
0 R m-1
\—-/Tn“\d Dp

Proposition 3.1.2. Under the above conditions there
exist two differential operators B, from Elw to E' '[w and B

from E'lw to E"]w , such that the operator
(P,R' ' B): ¢ (&;E)~—=C"(;8) x P(w;E' )
is decomposed as the composition of three operators:
_R' 'oB=T3oT20T1 . (3.1.3)
Here we have
T, = (P, R"B"(D,)): C™(L;E)—>C"(L;E") x ¢ (w ;)"

id. © " ' o '
T2==( ): Cx(.Q;E' Yx C(w ;E)m——-—a»-CM(SL;E' ) x ¢ w ;Er)
0 By

1 O ~F A, o0
T ——(ng ); c”(sz;E')xc“(w;EH)—-—->C°°<.Q;E')xc (w ;E'"1).
\WReb' 1 |

wle

Proof. From Proposition 3.1.1, we have two decompositions

m .
R'oP = = A.oRoD;")
and
= K
R'"1'oB = B, °ReD.
k=0 K Y

Because Am is a bijective operator of order zero, we can write

R''0B =" A-]cR'*’P +E. B12°R°Dk
n s T =0 Y
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with some differe'nt‘;f‘a'tl‘ ‘operators BO, Bﬁ, k=0,1,2,---,m~1 from

.E

w to E”lw . Then it is enough to set Bw=(B° B --- BC )

0’71’ ’m-1

and B = B . This finishes the proof.

§3.2. Differential ecuations without boundary conditions.

First we consider the following differential equation
Plu)= ¢ (3.2.1)

for uecw(fi;E) and fe‘Cw(ﬁ’;E'). To study this egquation we need
t

not assume that @ is of C°° class.

Theorem 3.2.1. Suppose that P is elli}:otic. Then the
equation (3.2.1) has a solution u<C”(fY ;E) for each fecm(ff;E'),
which satisfies <f, ®>=0 when 9e £ (f1;E) and tP(ﬁ’)= 0,
if and only if the following condition holds:

(4) Tc; every real number s and every compact set I{C_ﬁ,

-there exists another compact set K'< £l such that e 5,' e,

° ~
tP(? )EH?S)(Q ;E), and supp tP( P ) K implies the existence of
another %Y e é' & ;E'), which satisfies if‘P( <P ) = tP(’&{)) and
supp ¥ CK!'.

Proof. From Corollary 1.2.3., it is enough to prove the
following statemelnt:

(B) To every real number s and evei‘y compact set K Cﬁ',
there exist a real number t and a positive constant C such that
Pe é‘(fl/;E'), supp P <K, andbtP(j> )Eﬁ%s)(ﬁ:;E) implies the

existence of another 7 &€ £'({L;E') such that supp % K, tP(’}/"):

-_-—_.tp(?),‘ and P | gy = o))
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Since P is elliptic/, there exists a positive constant C,
! )
which depends on K and s, such that ?eéo‘,' (£2;EY), tP(?)GH((:S)(fZ 0)

and supp K implies
191 (ppmy = C U2 gy + 1] pnmry Be222)

Set t=s+4+m. Now assume that the conclusion of (B) does not hold.

Q AL -
Then there exists a sequence ?ne EV(L2;E'), n=1,2,-++ such that
(1) su =k, (9 )eHS \(;E), and [tp(5 )| s
PP ?n ’ ?n (s) ’ J i n’li(g)y—™>"
30 88 N300, |
2 P .
(2) there exists 'l)bnea'(Sl;E') which satisfies
supp ‘an.K, tP('L}"n).-.—_._--JCP(?“n), and ”Q/Jn”(s-i-m)=1’ and finally
0, ar : t : t A
(3) e & ({LGE'), supp P CK, and P(P ) ="P(P)
implies | QPI{(s+m)Z 1.
From Rellich's theorem the sequence %Ln" n=1,2,---

has a subsequence which converges to some 4'0 with respect to the

norm | - H(s-{-m-—-l)‘ We write the subsequence by the same letter.
Then °P( ’I[Jn)==tP(?n) converges to tP( ?O):-—O. Set ?l;:’gbn—gbo,r
n=1,2,-**. Then it follows that Q'br'x e é" (& x ), supp '4)1'1 <K,

too P.) =tp('7.}:r'1),' and [{1}»;}{{(8+m_1 y—>0 as n——s=00, From (3)
we have “?ﬂ}{(s-}-m)zh But this contradictswith (3.2.2), and the

statement (B) is provéd. This finishes the proof of Theorem 3.2.1.

Corollary 3.2.2. Suppose that P is elliptic and _(z is
compact. Then the equation (3.2.1) has a solution uecx(ﬁ;E)

t

s (o] ~r
for £eC ({L;E'), if e &' (f;E) and “P(P )==0 implies <f,P>==0.

3

Corollary 3.2.3. Suppose that for every relatively compact

open subset U of .(7.0, the union of all compact connected components
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relatively ~
components of 2\ U isAcompact, and {2 has no relatively compact

component which is open in L. If in addition £ is a real

analytic manifold and P is an elliptic operator with real analytic
coefficients, then the equation (3.2.1) has a solution ueCm(ﬁ/;E)

for every feCm(fZ';E' ).

Proof. It is enough to prove that {1 is P-convex. Let
K be a compact set in . 1f se é'(fi;E) and supp tP(?)C K,
then we have tP(=}>)=O in _(ZO\K. Therefore ¢ is real analytic

in _Qé\K. Let U be an open relatively compact neighboufhood of

, , the closure of - UnS{L

K in £2.. We define K' as,the union of and all compact components
: ° ‘ compact!\ A :

of jz_\U. Then K' is . If K is empty, then K' is also empty.

We have supp ¢ CK' and the proof is finished.

Without the hypothesis of real analyticity there arise
difficult problems (e.g. Hormander [ 8 ] or Harvey [ 7 J). For
subelliptic operators we can prove a similar theorem, using the
results of Hormander, Egorov, and Treves [26]. Moreover we can'
immediately obtain theorems on the existence of solutions in
Sobolev spaces H%gg(fi;E). We leave the details as an exercise
for the reader.

Noﬁ consider a linear differential operator B, of
Cc*(w;E)® into C™(w;E''). We will prove two propositions on

sufficient conditions for Bw-convexity.

Proposition 3.2.4. If By, is a differential operator

of order zero and its symbol Bw(x) is a surjection of EE onto E}’{’,

Xxew, then  is B ~convex, that is, for every compact set KC w

there exists another compact set K'< w , which can be'taken as

empty if K is empty, such that @ «g&'(w;E'') and supp th(?)C.K
- 50 =
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implies supp < K'.

Proof. Since B, (x) is surjective, its transpose "Bw(x)
is injective. Therefore if ¢ e £'(w ;E'') and th(cy)'—-—-?O in an
open subset U of W, then it follows that P ==0 in U. Hence the

proposition follows.

Proposition 3.2.5. Let w be an open convex subset of

n—1

R , and By, be a differential operator with constant coeffiicients.

Assume that N''= mN and the rank of B, (§ ) is N'' for some § & 22

Then W is Bw—convex.

Proof. We can write B, (&) ==(B1(§‘), «Ba( §)), where
B1(§') is an N't xN'' matrix and detBT(EO)={= 0. Then W is

det B, (D)-convex. Let K be a compact convex subset of w, If
1
te
e (W B'') = &' (w )N and supp th(D) P < K, then it follows

that supp ( det tB] (D) ¢ )<ZK. Hence we obtain supp <K, and

the proof is complete.

§3.3. Elliptic boundary problems in non-compact manifolds.

In this section we assume that SZO is a real analytic

manifold and P is an elliptic operator with real analytic

coefficients in IZO. Without these assumptions we have to deal

with some kinds of pseudo-convexity conditionson the boundary
of £. The order of P is m==21 and the dimensions of E and E
are the same, that is, we consider only determined systems.

Let E,, j=1,2,"+,1 be N-dimensional complex C° vector bundles

J
on IZO and let their direct sum be denoted by E''. By Rj we denotes

~ Co .i
the trace operator of C({Z ;EJ,) onto C (w 5Ej)' Let Bj be a



s

differential operator from E to Ej and its order is mj in a

*»By).

Then we have the decomposition (3.1.3). Since ’JI‘3 is an iso-

neighbourhood of w, j=1,2,'--,1. Set B=(B1,Ba,--

morphism, it is enough for us to consider only T2°T1 . VWrite

o~ 1 bo
- BwoRmoBm(Dp)::—"‘(p‘l’pz’u.,p_l): C(ZE)—>= P C (w ;E,).

j=1

Then each pj is of order mj. By Bg and pg. we -denote the principal

part of B. and Py of order my respectively. We say that (P, R''eB)

J

is an elliptic boundary system if and only if the system

(P,p],pa,-n ,pl)'is ellilptic in the usual sense, that is, to

every local chart »: frx-—ax(ﬁ,()c_mﬁ and every point xe wp fIx

the boundary problem for a. ‘ differential equation

"Pm(k(x) ,Dz)u(z)= 0 in R

"pg(x(x),DZ)u(z).-: 0, when z, = o,

has no solution of the form u(z)= ei<z' ’ §'>w(zn) such that

1 an N-vector of

g'emn— , E'=0, and w(zn) isA nonzero bounded functions

for z = 0. ce.[ 8, 10, 24].

Theorem 3.3.1. Let s=m. Assume that f?: has no
compact component and to every relatively compact open subset

U of _QO the union 6f all compact connected comvonents of ﬁ\U
relatively .
is alsoAcompact. If (P, R''oB) is an elliptic boundary systen,

then the following three state-ments are equivalent:

(i) To every compact set KW there exists another

compact set K'C &, which can be chosen as empty set if K is empty,
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such that 9 € @ P

: (,n+m+ 1y(@w;E;) and supp “B v (PI<K
j= ,

implies supp ¢ CK'.

(ii) The equation

P(u)=TF _
. (3.3.1)
Rj°Bj(u)=fj’ j=1,2,""-,1,
has a-solution ueCoo(ﬁ';E) for every Fe Coo(ﬁ;E’) and fjec”(w ;Ej)’
Ge=1,2,+,1.
(iii) The equation (3.3.1) has a solution ueH:(LOC(SL;E)

for every FGH%ZEm)(ﬁ; ') and f. eH:(LngJ 14)(a) ;Ej), j=1,2,"-,1.
If @ is B -convex, then the above condition (1) is wvelid.

Therefore we obtain sufficient conditions for (i) from Propositions

3.2.4, and 3.2.5. Thé well—-}mown Dirichlet condition satisfies

the hypothesis of Proposition 3.2.4. Therefore under ﬁhe

assumption of the previous theorem the Dirichlet boundary problem

always has a solution. The following lemma is an immediate

consequence of Theorems 1.2.1. and 2.4.4.

Lemma 3.3.2. The equation (3.3.1) has a solution

loc loc loc JEEEY
ueH )(xz E) for every FeH(O)(SZ E') and f, eH(m “n- ;)(w,“j),
j=1,2,~+-,1 if and only if the following two conditions are valid:

(1) To every compact set K< £ there exists another

compact set K'c£) such that §i_eH )(.Q;E'), 3"3 e +_2_)

(w ;Ej), i=1,2," 1 and supp ("P(E) + Z. P (?J))CK implies
j=1 .
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supp ¥ —K' and supp ‘?jc‘a)/}\x', j=1,2,7",1.

(3) To every compact set K< £I there exists a positive

o ~
constant C such that §eH?o)(ﬂ;E'), ?jeH((;—-m-f'-vr _*_%_)
Lij

(a);EJ.),
supp <K, and supp ?jc;w/\K, j=1,2,---,1 implies
1 , , 1 '
t t
ﬂﬁﬂ(o) +j}5!}<33 "(-—m-z-mj+é-) = c['»(3) + ‘_12;;71 D5 (P ¢y

(3.3.2)

§3.4. The proof of Theorem 3.3.1.

If (ii) is t}'ue, there exists a solution ueCm(a) ;E)m

of e eguation B u)= for every f& w . et e a
£ th ti (W)= f f feC™w;E'""). Let K b

compact subset of W, and s<< min (-—m+mj+1§-). Then from Lemna
CJ=T1,00,1
3.2.2. there exists a compact subsetvof @ such that ?eH?S)(a} s EVY)
K!

and supp th(? ) < K implies supp PCK'. Hence (i) holds.

If (iii) is true, we obtain (ii) from the regularity
theofem for elliptic boundary problems. Then we have to préve
(iii) in the case when s =m. Therefore it is enough to check
two‘conditions (1) and (3) of Lemma 3.3.2. under the assumption

that (1) is true.

(I) Proof of (1) in Lemma 3.3.2. Let K be a compact
set in S2. Choose a relatively compact open subset/\of .Qo which
' the closure of o
, denotes, the union of Und2 and all compact

A

connected components of ﬁ\U From an assumption of the theorenm

contains K. Let K

Ki is a compact set in L), Since we have assumed that (i) is true
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there exists a coupact set I*Ia C W such that (i) holds if K and
K' is replaced by K]/\w and K2 respectively. 8et K'= ,KjuKa.

If X is empty, we can take K! to_ be empty.

- E c . . _9c er '
Write X =j§‘]H('—m+mj+%—)(w JES). Letv' ’Qéﬂ(o);(.(l_,& )y
iy ' £ 1l ¢
P =( Py ?Z,...,?l)ex, and supp ( P(8 )= j;-] Pj( ?j)).C:K‘

Let @1 denotes the restriction of S to L2, Then it follows that
8, E'(LI;E) and supp t_P(Exé1 < Kn£2. Since Y is elliptic
with real .analytic coefficients, &, is real analytic in .Q_\K.
Therefore we have supj)“ §1~CK1‘A.Q‘.

Now let '§2 denotes the restriction of & to the complement
of K1 in 'Q‘o' Thén §2 is a distri‘bution section of order‘ zZero

and its support is contained in @ . Hence there exists '2/1 =

e’ (C()\K.l ;E') such that §2 ="' (’7}1). Cf. Schwartz [22 J. Then.

we have

1
ot t
0="P(E,) + j§=':1 Jt.>j(“3’j){(‘,\1<1 pvrressn.

1 | ,
t, tho, t m

= PeR (a}z)-j-jz__i (BoR"B (,DV))J'(?J'IQJ\KR
Lt kot t M=l g % o tro,

=’1?=—:.:6 DpanoAk(np)+l§O D, R BK(?ICU\KI)',(B'I*','”

llere we have used the representation (3.1.2), and wrote Bw===(Bg,

1 Yo (3.4.1) impligs that tAxn(?f‘)=0. Since tAm is

bijective, we can conclude that % =0, that is, &,==0,

- 55 -



74

' ‘ . . t . .
VThen (3.4.1) implies that Bw( CJDIW\K1)=O, that is, supp th(?)C

C':K”\a) . From the hypothesis (i) it follows that supp ¢ <K,.
We have thus proved that supp SC XK' and supp C)DCK'A(U , and the

proof of (1) is complete.

(II) Proof of (3) in Lemma 3.3.2. Let K be a compact

o AL
.set in ﬁ. Take any E&H?o)(Q;E') and < ==( Py ?2,'-- ,‘fl)&x

such that supp @ CK and supp ?CI{A\Q). Write T_—-..BwoRmoBm(Dy):::
=‘(P1 spzt""Pl); and |

1 ‘
| CPIHS) = ?:_;1" ?j”(s+mj+1§-)'

In the following C or C' represent generic constants which does

not denercd o2 the choice of & and ?j' We have proved the

Follcow:. i’v e, simate in the proof of Theorem 3.2.1.:

[l = cl*e@| - (3.4.2)
'This implies

1=,y =

JI

c[*p (&) + *2(P ) [y + 1P ()
= c-ntp(i)'+tT(<f)[!(_m)+¢'II?IIE~m>- (3.4.3)

Let X be a function in C:'(w) such that X =1 in a

neighbourhood of K, W . Because the system (P, T) is elliptic,

we can prove the existence of a continuous linear operator S of

1 ;
Y= & gioc (w;E.) into Hloc(ﬁ;E) and a pseudo-differential
J=1 (m-mj"'a—) J . (m) _
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operator (_  of degree —oo from E'' to E'' such that PeS(X-u)==0
and

Tos(%u)::?c-u—}-Q_m(?C'u), ueY. Ve can modify the proof
in the case of compact manifolds to show the above fact

23,24).

. See (8,10
Then for every u <Y we have

<u, P> ==

— < %-u, ?7}

=< TeS(%-u) — Q_ (xX-1), $>> +<PoS(x.u), &>
< l<s(xw), () + R(E)>| +kau,

Q_,,(2)>]
ot , t | ,
= ofxafl [*2(@) + ") |y + clxafl ]2ty
Here t is any real nﬁmber and (';'I'X H{ denotes a seminorm in Y
Then we obtain
[ lt-n) =

= (@) + ()] Ly + Sl loper )

(3.4.4)
From (3.4.3) and (3.L.4) we have the folloWing estimate

":l‘(o).l_”?” = !{ =) + T(?){l( m)+C/{ /-m 1)°
This kind of estimate appears in Peetre [20]
Now prove (3.3.2).

From (3.4.3) it is enough to prove
the following estimate for every &

19 0tmy = CIEP(@) + PPy, PEX and supp T

‘ (3.4.5)
Assume that this estimate does

not hold. Then there exists a

sequence of distribution sections C}>/‘€X and §/‘~EH(O)(Q"“ ),
HA=1,2,-+. such that supp ?/AC'K/\

? ”3?(4{{(-1'11):—.: 1 ’ SUPP EIU'CK’
and |l P(E )+ T{?ﬂ)fg(_m)———}O as M—>00. From (3.4.3) there
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there exists a constant C  such that ”§/‘”(O);,\: Cpr p==1,2,""

From Theorem 2.4.3. there exists subsequences of ?/4 and Z.E/q, ’
which we denote by the same letters, such that CJD/( colnverges to

some 3>0 with respect to the norm ”'“m-l)’ and §/‘ converges to

some 3 with respect to the morm |- [ ). Then “P( )+ NPy)
converges weakly to tP( §O) -+ t‘1’(<j>0)-_—-= 0. Hence we have tp(*fo):o

in £2. since .ﬁ‘.m_;@s P-convex from Corollary 3.2.3., we obtain
. 2 -
,§o ,nzo But _§0 is assumefi to be an L™ section of E! ) and

hence we can conclude that ¥ = 0. It follows then t‘l‘(?o)r——: 0.

H e h S- Ko R.PRO( @ )==0, which implies B, (@ )==0
ence we ave » ° B}( ?O =40V, wihlcC lmplLiles W ?O == 0.

k=1
From (i) we can conclude that ?O--—-—O. But this contradict with

(3.4.4), since |9 [i_py==1. This contradiction completes the

proof of (3.4.5), and then the proof of Theorem 3.3.1. is finished.
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Chapter IV. Evolutional boundary problems.

§4.0, Introduction.

. This chapter is devoted to the survey of boundary problems
for evolution operators such as hypefbolic, parabolic, and some

other such operators. If we use the results ofVChapter I and II,

we can immediately obtain such necessary and sufficient conditions

of solvability for many boundary problems as Theorem 4.2.1., Lemma
4.3.1., 4.3.2., etc. If we want to solve equations in Eﬁ(fi,a)I)-
instead of imposing such boundary conditions as Cauchy data, then

- we do not meet with any essential difficulty except in éalculations.
But if we consider boundary conditions of Cauchy type on a bouhdary
which is not normal (Definition u.1.1.),'we have to solve a collection
of differential equations on the boundary, which are induced by the
original differential operator. In some simple cases we can solve
such a family of differential equations. 1In section 4.1. we explain
such a family of differential operators induced on the boundary.

In section 4.2. the reduction of boundary conditionsvto our function
spaces is done. We give a necessary and sufficient conditions of
s0lvability for a mixed type problem in Theorem 4.2.1. They consist
of two types of conditions, which have been explained in Preface.
Almost all our results are concerned with C™ solutions, because

the investigation of the regularity properties of solutions in Sobolev
spaces leads us to such a complicated situation as in Theorem L4.2.4.
Finally we comment on the equivalence of solvability of the equation
in F(§,w,) and the extension property of solutions (Proposition
L.2.5.).

In sectioh L.3, we state two basic lemmas obtained from
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the results of Chapter I and II, and then give remarks on elliptic
and strictly hyperbolic equations. In section 4.4. we study a
special case where the differential operator has constant
coefficients. In this case we can obtain many good results.
Especially we can find a necessary and sufficient condition for
differential operators in Theorem 4.L4.2., using a result due to
Hormander [11]. If we apply the theory of overdetermined systems of
differential equations with constant coefficients (Ehrenpreis [57)
to boundary systems induces by the boudary condition, then we obtain
compatibility conditions on the boudary data (Corollary 4.L.3.).

If the boundary condition is determined in the sense of Corollary
L.h. L., we can find a more refined condition on the boundary. If
the differential operator is hyperbolic, then a complete geometfic
characterization of P(D)-convexity is obtained (Theorem 4.4;5.).
Section 4.5. is deﬁoted to the study of the case where the differential
operator is not hormal with respect to both parts of the boundary.
Then we have to solve a system of boundary problems for the induced
‘differential equations on the boundary. We can solve many Cauchy
problems for wave eguations with their data given on characteristic
boundaries. The Goursat problem is solved there. For the sake of
simplicity, we restrict our considerations to single differential

equations. An extension to determined systems is rather easy.

- 60 -



§4.1. Treliminaries.

Let M be a o —compact ¢” manifold of dimension n. Let
2 be an open subset of 11, @ an open subset of the boundary of {2

in M, and @, a subset of @W. Take tiree open subset {2 , {1, SZZ

of M which satisfy the conditions of Proposition 2.2.1. For other
notations we refer the reader to sections 2.1. and 2.2. In the
following we use the letter M to denote the order of the differential

operator I, since this will cause no confusion for the reader.
. . . . > oo
Now assume in this section that «w 1is of C class. Let

Y be a real C* vector field in a neighbourhood of &, which is

not tangential to @. By Qu we denote the first
order linear differential operator with the symbol <y (x), §>,

gesTi(IZO). Let P be a linear differential operator (with C°7
coefficients) in Ilo such that its order is M< ©©. Then we have

the following proposition:

Provosition 4.1.1. There exist an integer m= M and a unique

family of differential operators in the boundary w ;

i=0,1,2,"* ,M and s= si,siﬁ—l,

where s, == max(0,i—m), such that there exists a non-zero operator

A; o with i=s5-4m and the following relation holds:
»

RoDJoP—~ ZA<J)uRoD , §=0,1,2,""" . (4.1.1)
=0

Here AES) is defined by
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= ;’“:in(k . (14 )a fo=k=
k i=max(0,k-J) i+ j=k/7i,it+j—k? |
AV =0, if j4m<k.
Especially we have
, "
(J) ”“m"‘"’)'¢+m J )A if i
] i-m’ J+m=0. (4.1.3)
j+m lg:;max(o m)(l—m i,l-m - |

Proof. To every local patch U in £Z, we can choose a
local chart 7 :f——> x(ﬁ)C-R?i ={x=(x',x )= R"; ‘XnZQ} such
that x(ﬁ/\(u)z{xe >x(0); x --—-O} and the vector field ¥ is
transformed by ¢ to a unit vector parallel to the X, axis at

very point of x(ﬁ/\ @ ). Then the symbol of P is written as
| - " i . , i
P(x, g)=Z.oAi(x,§')~g_n, xe?c(ﬁ') and §=(g', g,) €R",
- le= ' .
If we define
Al’s(x, ') = (5% 9 ) A, (x, g'), xex.(U,\w) and ¥'e R -1,

Then the above proposition follows. The details may be left to

the reader.

In the following discussions Afj?;-)xrl , J+m=0, play a central

»x"ole. We have to calculate A s for i=s+m, if we want to apply'
)
the following results to concrete dn.fferentlal equations. See

Example 4.4.6., 74.5.2., and Theorem 4.5.3.

Definition 4.1.,1. We say that P is semi-riormal of degree

m=0 with respect to w if

Ai,s=o’ n+s=i<Mand iskm, (ho1.4)
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in Proposition 4.1.1. for some vector field ». If in addition

Am 0 is a multiplication operator by an everywhere non-zero function,
4

then we say that P is normal of degree m with respect to w.

This definition does not depend on the choice of Y.
We leave its proof as an exercise for the reader. If p is semi-

normal of degree m with respect to «, then we have

Ag.i)m =,Am"o , j=0,1,2, "

and . -
. j+m—1" ‘
N sRepd iy (3),pepf 5
ReDjoP == %,o ReD;, +k2‘_‘,=0 A eReD), §=0,1,2, 4.1.5)

-8§4.2. Reduction of the problem.

We refer to section 2.2. for our notations. Set c:‘):j:.-_~
== “’jkjauax' j=1,2, and suppose that'a)la is empty. Moreover

for the sake of simplicity we assume that @15 6113, @,, are void,
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that is, we assume that w 1is the union of Ct)m, (Uao, and @

21°
We can generalize some results to the case when the above sets
are not empty. Assume the existence of two n-1 dimensional C*°

submanifolds Wig, J= 1,2 of £ such that each é)'j is contained
1n‘ «)35,and the intersection of C(/j5 and the boundaryof cujo in

sz is equal to Cl)m. Moreover assume that 603.5 does not meet

with SL. By Rj we denote the trace operator of C*(£L) onto CN( a“/’j),

the space of all ¢* functions in a).o which can be extended to a
C® function in w 5 Take a real ‘

c” vector field ))j, in a neighbourhood of (UJ.5, which is not

tangential to @;g, j=1,2. By D) we denote the first order

j »,

J
linear differential operator with the symbol <2/j(x), >, %‘cm:T::(SZO).

In the following all linear differential operators which we condider
have C%° coefficients. Let P be a linear differential operator of

order M in .D_O, and B ==-(B] By, ,Bm) a linear differential

operator of CP(T ) into ¢(&)®. As in section 2.1. we fix the

duality of C2(£ ) and 9'(£2 ), Sobolev norms, etc. Then we have
0“0 o

the following theorem, which can be applied to mixed problems

for parabolic or hyperbolic equations.

Theorem 4.2.1. If P is normal of degree 1 with respect

to a)m, then the following three statements are equivalent:

(1) Let FeC™(&), £;=0%(d)), j=1,2,",1 and g,

S

€C™(&,), k=1,2,: ' ,n satisfy the following compatibility
conditions: Take a function & in ¢®(£Z) such that
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R1°P(§Z)=R1(F) in w4

=1 ' ) ) (L.2.1)
RTODJ)I (F )= fj in Wy, 3=1,2,"-,1.

Then to any differential operator Q in &)’2 the trace of Q(gy'"Rg"

oBk(é)) to w21 is equal to zero for k==1,2,-* ,m. Under the

above condition the boundary problem
P(u)=F in S

-1 . .
R1°D‘LT (W=1f; in Wy, J=1,2,7+,1 (4.2.2)

R2°Bk(u)=gk in @Wogs k=1,2,'"",m

has a solution uec""(ﬁ).

(ii) The boundary problem

{P(V)=G in D‘o

: (4.2.3)
RzoBk(v)-—-—- hk in w25, k=1,2,*"",m

has a solution vec”(fi, C¢)1) for any Gecm(ﬁ,a)’) and any h, €
o ~s
c—:c“(wz), k=1,2,%*",m.

(iii) The following two conditions hold:
(iii-1) To every real number s and every compact set

K — £J there exists another compact set K'Cﬁ_’ such that
A ar t m t t
§€8(-Q’ wz)’ ?‘l, ?2,-1-,?me 8'((1)2), P(§)+I{Z=)1 B}{° RZ(?}.{)G
o t 3 £ N
eH‘(’s)(.Q, @,), and supp p(§)+k§1 tBko R,(P,) CK implies
supp % CK' and supp i‘ﬂ{CK'/\ W oo, K=1,2,%",m.

(iii-2) To every real number s and every compact set

Kl there exist another real number t and a positive constant C
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such that Ee&'(fz, wa)’ q)]v ?2,'“(?1116 &'([Uva)! SUPPEECK,

and supp ?kCKn wao, k=1,2,***,m implies the following estimate:
i f{ﬂ%ﬂ *’GHC (£2 ) and 5
in (1)) BEH()(R) and =2, ]

' m
+ 2 . inf ; F¥e8b, ((@w,.) and =& 1
— n {”ﬂ(t) ¥ (£)(@og) and P ?fwaoj

. m
ég.inf{”?[](s); T EH{(£2,) and tP(§)+k§1tBkotR2(?k)_—.:‘i’)_ga}.

(4.2.4)
7 Proof. From Theorem 1.2.1., 2.3.4. and Proposition 2.3.5.
the equivalence of (ii) and (iii) follows. Assume that (i) is valid.
Take any GE€C (.FL W, ) and h

ec(wa), k=1,2,°--,m. Write

k

F=6|p, f;=20, j=1,2,""",1, k=1,2,*** ,m. Then

8y, ==
k kfalao’
the compatibility conditions in (i) are satisfied by F, ( J A(gk
In fact we can take =0 for a solution of (4.2.1). Hence we
have_ a solution uecw(ﬁ) of the equation (4.2.2) with the prescribed
conditions.

Because P is normal of degree 1 with respect to wm,
.~ we have the following decomposition from (4.1.5.) with a family

of diifferentiél operators Ay and A}((j) in W,y

1—1 .
Joop o i1 T ) KL
R, oD))1°P AjoR;eDy) +kZ=O, » oR1oDy1-, i=0,1,2,

(4.2.5)
From (4.2.2) and (4.2.5) we obtain, by induction on j,

R,eDItXu) =0, j=0,1,2,""".
1 Y4

Here we used the fact that A, is bijective. Define a function v,
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which is equal to u in f) and is zero outside L2 in .fl1 . Then v is
oo . . oo, . . .
a C function in C ({2, w1) and satisfies (4.2.3). Therefore (i)
implies (ii).
Next we assume that (ii) is valid. Take FeC™(£L),
i‘ ec” (W ), j=1, ;1 and g €C e ) k=1,2,+++,m, which
satisfy the compatibility condition of (i). Define fj+lec'°(c«’>’1),
j=1,2,*-+ by induction on j and
J+1-1
"(R,°D} (F)— 5= A(J)(f

1 k=0

f ). (4.2.6)

JH11 =4 k+1

There exists a function ug ecC (.Q_) such that R ODJ 1(u )—f.]
(cf. Whitney [28]) g
j=1,2,*°" By G we denote a function in .Q1 which is equal to

.

F-P(uo) in 2 and is zero outside fL. Then G is function in Cw(ﬁf, (U1 ).

In fact we have RjeDJ (F—P(u,))==0, j=0,1,2,"+ from (4.2.5) and
1 ,

(4.2.6). Moreover uo!.Q. satisfies the equation (4.2.1). Define

a function hy in @, which is equal to gk_R2°BL:(uo> in @,y

[~ ~
and is zero outside W, Then it follows that h,_e& C*X @W,), k=1,2,

0° k

ee,m. Hence there exists a solution vst(fi, dd1) of the equation

(4.2.3). Write u.—.—:uo-l-v[_Q_.’ Then u is a solution of (4.2.2)
and the statement (i) is proved. The proof of Theorem 4.2.1. is

thus complete.

The compatibility condition in (i) does not depend on

the selection of ©. In fact from F and fj, j=1,2,+-+,1 we have

constructed a‘family of infinite number of fj’ j=1,2,--- at (4.2.6).
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This family determines a C* jet in 6'51 . Then the ‘compatibility
condition is expressed that the above c” Jjet and [ k=1,2,"-*,m
are compatible at every point of a)21 .

If, in addition, the boundary condition in @sq is also

of Cauchy type, then we can make a further reduction., But if P

is not normal with respect to @,,, then a difficult problem arises.

The next theorem gives an answerin the simplest case.

~S

Theorem 4.2.2. Suppose that 6’()’1 and (UZ are regularly

situated, that is, to every compact sets KJ.C aﬂ//j, j=1,2 there
X
exist positive constants C and « such that d(x,K,) =C-d(x, WPJ) ,

x€K,, where d is a metric in £2 compatible with its topology

(Lojasiewicz [16], and also [18 ]J). We assume that P is normal of

degree 1 with respect to “’10' but semi-normal of degree m with respect

to. was. Then we can write

k4+m—1
ReDX oPp =8 or, o050 > BElg o | k=o0,1,2,:--
2 m 2 Yo =0

Yo MYy
(4.2.7)
with a family of differential operators Bm and B/E‘k) in C(/25.
Moreover if the equation
P(v)==G (4.2.8)

o fagd = ~r
has a solution veCM(.Q.) for every Geéw(-Q), then the following

two statements are equivalent:

S

. ‘ M~ k3 '
(i) Let Feo (52), fjsc"‘(wl), j=1,2,+++,1 and
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ngC”( ﬁz), k=1,2,++-,m satisfy the compatibility condition of

Theorem 4.2.1. (i), where Bk is replaced by D};)q. Then the equation
., _
P(w)=F in (L

RieDJ (W)= f, in @,q, §=1,2,""",1

1, J (4.2.9)
ReD" V(W)=g in W.., k=1,2,***,m
2 })2 —_— k 207 - ’ ? b}
. 00, = |
has a solution ueC (£2).
(ii) The eQuation
B (w)=¢ C(4.2.10)

ooo ~r OM ~
has a solution weC (CUZ) for every geC (0/2)’

A

Proof. Suppose that (i) is true. Let geé‘”(.fua). There

exists FEC™({) such that R,(F)=g, Raobf (F)=0, k=1,2, -
. (Lojasiewicz L[16], and also [18])
and R1oD31(F)=-=O, j==0,1,2,°"/\. Then (i) implies the existence

of ueC™fL) such that P(u)=F in £2, RTB(D, )(u)=0, and
- - 1

m

Ro

. _ . . m .
B (DVZ)(H)_O' Define w to be the trace of Dya(u) in &,

-] ~r
and zero outside @, in W,g. Then it follous that wec"‘(w2>

and (4.2.10) is satisfied.

Next assume that (ii) is valid. Let F, fj’ J=1,2,°,1

and B » k==1,2,°--,m satisfy the assumption of (i). Define fj+1’

j=1,2,+- by (4.2.6). Choose a function & in ¢®(&) such that

J=1 —
Rq° DY, (E)==f1

i -1
1 3’ J=1,2,---, and set hk=R2-D§ (&), k=1,2,-:- .
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[o]

Then the hypothesis implies that Z;k: gk-—hk (=1 Coo(l('f
"+»,m. Hence, by induction on k, the assumption (ii) implies the

~ o ~r :
existence of solutions gk+meC”(w2), k=1,2,--+ of the equation

=T ) :
By (B pmp 1) = Rz“DyZ(F)“F/% Byt (B gy 49 ) By (0

k-+m—1 ).

(4.2.11)

In fact the right hand side is equal to RaoDy (F—P() )~
’ . 2

k+m=—1

—_— B(k)('g' )eé"‘(a'}’) Now write g ==& ~+h, ; k=mn=1
=g P w0 @R , k= Bic| w0 TP ’

ym=2,0°", Take a function % in C (..\2 (U )} such that R2 v ]('LI: )_..
= gk{mao, k=1,2,***. Then we have

Rjoni (F—P(B 4+ F))=0, j=1,2 and k=0,1,2,".
J .

Let G be a function in £  defined to be equal to F—P(2 ~+9) in

00y oo

XL and zero outside it. Since G belongs to C™({l), there exists
. o

vec™(L) such that (4.2.8) is valid. Set u=Z+P+v|n.

Then u is a solution of (4.2.9), and the theorem is proved.

Even if (4.2.7) does not hold, we can use the argument
of the above proof. The essential part of the proof is the equation

(4.2.11). Therefore the following theorem follows immediately.

Theoren L4.2.3. Assume that 43’1 and &72 are regularly

situated, and P is normal of degree 1 with respect to wm. With

respect to w25 we suppose to have the decomposition

-0 =
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: mk—1 p
k m e (k) o
oD” eP =B eR,eD > B R,eD k=0,1,2,"" " (4.2.12)
R2 ))2 mk" 2 )}2"{"/(/::0 o eRs yay 1y sy 4 )

where m k=0,1,2,-++ are assumed to be distinct integers larger
than m = m or equal to zero. If the equation (4.2.8) has a

Ar 4 o~
solution vel™(&) for any GeC(fL), and the equation
B, (w)=3g ‘ ' (4.2.13)
k

[] ~r . o A~ ' ‘
has a solution weC( wa) for every geC’Y( (02) and every k=0,1,""",

then the statement (i) of Theorem 4.2.2. is true.

If P is not normal with respect to both a/m and @y,

with
then we encounter,very difficult problems. We will investigate

this situation in/ section 4.5., where the Goursat problem is our
main concern. ’

Up to this point we have studied only ¢® solutions.
We can study the regularity of solutions. But the situation

becomes very complicated. As an example we state the next theorem:

Theorem L4.2.4. Let «w be equal to (020, and assume

(4.2.7). Let p be a positive integer, s and t be real numbers such
that m = s g m+p and M—n =< p(M—m—t). Set X = (p—1XM—mn) 4
-f-—p(l—-t). Assume that the equation (4.2.8) has a solution

(o] ~e [o]
veHJ('gg(.Q.) for any GeH:(Lgc):(ﬁ), and the equation (4.2.10) has a

solution weH%?,();(w) for any geH%g.c_t)(a)), if rg-l:,-. Then for

’ loc, =~ loc —
every FEH(A)(Q) and every ngH().+M-=k--—;—)(a))’ k.__1"2,...,m
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loc

there exists a solution u in H(S)(fi) such that P(u)==F in (2

and R2°D)};2(u)'= 8, in @, k=1,2,--* ,m..

Proof. Trom (4.2.7) the order of Bm is smaller than

M—m and the order of B;,l_{) is smaller than M—max(0,X—k). Let
FEH%X‘)’(fZ) and f’ngHl(/.?j_M__k__L)(w), k=1,2,--+,m, then the

2

loc

equation (4.2.11) has solutions g, € H(; Lt 1 (Mepgeto] )__%_)(w ),

k=1,2,"' , Where we can set 'ékz &) - Then it follows that u e

H%gg(ﬁ). We leave the detsils for the reader.

Now we have shown that in order to solve boundary
problems (4.2.9) we should solve differential equations (4.2.8)
and (4.2.10). This kind of equation will be treated in the subsequent
two sections. Before going to the next section we comment on the

‘extension of solutions.

Let 3’-(_(2_0) and. g(.Q_O) be suitable subspaces of 9 (.D.o),
and P a differential operator of F({l ) into ;(.QO). Then we

obtain the next proposition, whose proof may be left for the reader.

Proposition 4.2.5. The equation

P‘(u) = f

has a solution ue?(ﬁ, 0.)1) for any fe& g(ﬁ,w]) if and only if
ve FEZ\Q), g€ @(£I;), and P(v)= g in 2N\ inmplies the
~existence of v € ?(ﬁi) such that v=v_ in _(21\.&‘ and P(vo)= g

in 32,

- 72 -



§4.3. Differential eguations in E?(ﬁ,CU]).

In this - and the next sections 6010

necessarily assumed to be smooth. From Theorem 1.2.1. and the

and 4}20 are not

theorems in section 2.3. or 2.4. we obtain the following two lemmas:
Lemma 4.3.1. The differential equation
Plu)==T¢f (4.3.1)

has a solution uec™(fI, w,) for every rec™( (L, @,) if and only

if the following two conditions (1) and (2) are valid. Moreover

(2) is equivalent to (3).

(1) To every compact set Kcﬁ and every real number

s there exists another compact set K'<SfJ such that Pe 5’(fl, CU2),

tP(ﬂ> )GH?S)(ﬁ, ((/2), and supp‘tP(?)CK implies supp @ <K'.

(2) To every compact set K =8 and every feC™({Z, w1)

there exists ueC (L, @,) such that (4.3.1) holds in K°
(3) To every compact set K< S£I and every real number
s R there exist another real number t and a positive constant C
such that e a‘(ﬁ’,wa)" and supp ¢ € K implies the following
estimate:
. ' A~ A c Q — ~ 2
inf {|Fyys § €H{;y(2,) and Cj’—-—‘}’]gzj |
_ . (4.3.2)
. c
= c-lnf{){w”(s); e y(£2)) and P(C}>)=="H:22}.

Lemma 4.3.2. Let s, telR. Suppose that w has the curve

segment property at every its point and we can choose ‘QZ such that

its boundary in .SZO has the same property. Then the equation
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(l:.3.1) has a solution ueH%gg(fi, CU1) for any féH%gg(fl’, (U‘l)

if and only if the following two conditions (1) and (2) are true.

Moreover (2) and (3) are equivalent.

(1) To every compact set Kcﬁ there exists another

coinpact set K'<fI such that ?eH((“_'_t)(SA?:, 602) and supp tP(Cj> )<ZK

‘implies supp PCK'.
(2) To every compact set K CDux and every fEHloc(ﬁ, a)1) |

(t)
there exists uen%g‘;(fi , W) such that (4.3.1) holds in the interior

of K.
(3) To every compact set K< £l there exists a positive

constant G such that P&H{_,,({Z, W,) and supp P <K implies

inf{”§7f(-t); %er_t)(-O_o) and ?':?’1:2 }- ’
R O 1D
= C'inf{”?”(-s); @?H?;s)(ﬂo) and tp(?)gq/llﬂa}.
Definition 4.3.1. The pair (£, ®,) is said to be

P-convex (with respect to support) if and only if to every compact

set K =l there exists another compact set K'<SZ , which can be

chosen to be empty if K is empty, such that ¢ & E‘,‘(ﬁ:, wZ) and

sUDD tP(‘}’)CK implies supp < CK'.

If (ﬁ’, 0)1) is P-convex, then the conditions (1) of Lemma

L.3.,1. and 4.3.2. are valid. If the boundary @ is void, this
definition is essentially the same as the well-~known P-convexity

condition [13 ].

If the equation (4.3.1) has a solution ueCw(va, Q)1>
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for any fecC (L, @,), then Peg (€7, (()2) and tP(<39)=="--O implies

== 0. Hence the above difinition is reasonable.
statement

We can obtain the following / using the method of
{

proof in sections 3.2. and 3.4.

Reipark 4.3.3. Suppose that JZO is a real analytic
manifold and P is an elliptic operator with real analytic coefficients
in it. Moreover assume that £ has no compact connected component
which is open ih 121, and to every relatively compact open subset

U of J2O, the union of all compact components of (JZL/Q/1Y\U is

relatively ~ :
also,compact. Then it follows that (d2, Qﬂ) is P-convex.

A
Next consider strictly hyperbolic differential operators.
Under the geometric conditions due to Leray [15], we can say that
(fi,a)) is P-convex. Remark that the estimation (4.3.2) was
investigated by Hormander [8], and was applied to prove semi-global
exisfencé of solutions. . We can combine their results and our
previous theorems to obtain some theorems, but we leave it as an

exercise for the reader.

§4.4. Evolution operators with constant coefficients.

In this section we consider linear differential equations
with constant coefficients in R", that is, P==P(D) has the symbol

r(E ), which is a polynomial of degree M. Then we obtain

Theorem 4.4.1. Assume the existence of a closed cone [7

with its vertex at the origin in ®R? such that P(D) has a regular

..‘73..
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o~ . n
For every compact set K {1 there exists e<®R such that
K+ececll, 0<e<1.

fundamental solution E with support in [7, i.e. EEJ:J}SCP(H?H),
H

supp EC[” and P(D)E==% , and moreover the following conditions

hold: There exists a closed neighbourhood U of .6. in fia

and for—every xe—‘.;a)1 there exists a neighbourhood V of x such that

U+ [P={y+z; yEU and z&[7} does not meet with V\U. Let 137p-=a"
and k € H(R™). Then the following six statements (i) to (vi) are

equivalent. If in addition @, is of C® class and P(D) is normal

of degree m with respect to WIO’ then all seven statements (i)

to (vii) are equivalent.

(i) The pair (ﬁ, 6U1) is P(D)=-convex.
(ii) The equation
P(D)u==f : (4.b.1)
has a solution ue& C“(ﬁ.',a)l) for every fGC“(fZ’,WI).

(iii) The equation (4.4.1) has a solution ue@;of{p(fi, w,)
?

for every féBloc(ﬁ, w.).
P,k 1

(iv) The equation (4.4.1) has a solution ue@'(ﬁ,-C%)

for every fec‘”(fzf, a)1).
(v) 1f fec™L)), wec®(E\2), and P(D)u=*f in a\Z,

- [ d — -~ —~ ~ =f
then there exists uecm(.f2.1) such that u== ul.ﬂ1\Q and P(D)u

in IZ1

‘ ~ loc (& = f
(vi) 1f £em;°0{Z), ue B gp(SL\R), and P(D)u

~¢ . - loc (& —_ ~
in £2,\f2 , then there exists uedgp,k-l-j(fz_.‘) such that u u‘ﬂl\ﬂ

and P(D) i=f in £2,.
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(vii) The equation

P(D)u=F in 12
(1+~L¥--2)

o Ty e PR
R, Dz)1(u)"‘fj in w,,, 3=1,2, M,

has a solution ueC () for every Fec (Z) and fjecm( a’/v1), j=1,

2’--v’m.

Proof. The equivalence of (ii), (v), (vii) and thét of
(iii) and (vi) follows from the results of the previous section.
It is trivial that (ii) implies (iv). Theorem 1.2.1. and 2.5.4.
c

impliy an analog of Lemma 4.3.1. for ds’%ok

P ]

Let fe@%?ﬁ(ﬁ'_, w?) and K be a compact set contained

‘in SL. There exists 'i‘edff; k(.Q.O) which coincide with f in a
b
neighbourhood V of K, £2 in Q], and supp f << T. Set u=E*E’/_Q_1.
loc A ‘____ . . %) ‘
Then we have ued3p k13(.(2., w1) and P(D)u=f in V. If fis a C
b4

function, then u is also of ¢* class. Then we have provéd the

semi-global solvability condition (2_) in Lemm 4.3.1. and the

loc
analog for .

g 3 .k
Next prove that (i) is equivalent with the following

condition:

(1') To every compact set ¥k <5 there exists another
compact set I{'Cfi, which can be chosen to be void if K is void,

such that Cfec‘:(f\i,wa) and supp tP(st> )K implies supp o TK'.

In fact it is enough to make an approximation using
translations and convolutions. Take a compact set K. From

the hypothesis of the theorem there exists a vector eeeERn such
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that K-+€e < I, 0< e<1. If we use translations in the direction
& and uée convolution such as in the proovf of Proposition 2.5.5.,
then the statement follows. Details may be left to the reader.
Finally the implication of (i) from (iv) can be proved
using the same method as in the proof of Theorem 3.5.4., [8]. Then

the proof is complete.

Theorem L4.4.2. Let 1= p< oo and ke Kmwh., 1f &

is contained in Vthe"closed half space H and &)10 is non-void and is

contained in its boundary. Then the following statement (i")
and the five statements (ii) to (vi) in Theorem 4.4.1. are
equivalent. |

" (i%) The pair (I, w,) is P(D)-convex and P(D) is
gvolutional with respect to H, that is, there exists a fundamentél
°1og(H).

solution in 43, ¢
- ’

Proof. We have to prove that (ii) or (iii) implies (i').

loc

P(D)-convexity follows from Lemma 4.3.1. or its analog for B g
b

Now assume that (ii) is true. Let X € a)m and s €R.
Choose a compact neighbourhood K of xo‘ and a co_mpact set
K, < D..‘ such that K is contained in the interior of KO. Then

from Lemma 4.3.1. and Proposition 2.5.5. there exist a real number

o0
t and a positive constant C such that 7600(57.1) and £2supp P =K
implies
. e ar %00 e .
1nf{_l[?”(t); ?éCO(KO) and =9 in _Q} :

(4.4.3)
= Cceinf {5 PSCH(K,) and Pp=P(-D)F in R},
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Now take two positive integers M and 2 such that

F<t-+20 and s=2p. - Then from

(4.4.3) we obtain with another positive constant C',

pp] =
=cr. mf{nff leer2s cfec (k) and F=¢ in 2}
= cr-inf {545 c}acc “k,) and F=(1—a)F in .:2}
= c-ct it {ff 4y Yp<CAK,) and 'l,b-'-",—"P(-D)}(T--A)? in £2f

(botro )

= C-C'-inf { P 3bec (K ) and '2,0 P(—D)(1-—A)‘j’ in Q}

(2p)’
for any theC:(mn) such that supp <3=*CK Write ’c? :—_'(I-A) P .
From Proposition 2.’5.5”. and- (I+.l+.L+)‘we ‘have with another» pbsitive
constant G,
-
9G] = |

‘ . °c '

= C-inf {”'2/‘//(2/0? Q/)GH(E/“)'(KO) and % =P(~D) in Q}.

0
Since C0 (Ko) is continuously embedded in H(E/A)’ we obtain with

‘another positive constant C,

| lse)l=
2]
= C-i f{z ; '< : C‘2 K a =P (=D tin 2
=5 lo<r<2/‘>8{;§{ P pe oﬂ( o) and P=PED)g'in 2}

We finally obtain with another positive constant C,

(x ) éCZ. *D°<A1_ADP_'.D_ ‘ , L.
I? .‘o.I ngluiégl ( )P )?(x?[ (L. 4.5)

for all 760:(13111) ‘such that supp P<K.
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In fact let £ be a ¢ function such that supp P CKO
and j>==='1 in a neighbourhood of K. Define the function ")bo by

P(-D)9!(x), if xeH.

p, (x)= ‘ |
P(x) 2o (20 IP(=D)F! (k=) (< %, o> — o)
J=2p
if x<H.
where 4L is the inner normal to H and 5%,; is the normal deri\}ative
i
<x, > — X
and = 2 .
A <af, 2>

Q .
s s . 2 . .
This implies that ?/Joe-CoI“(KO), ’Z/)O=P(-—D)3>’ in H, and with a
positive constant C',

==, sup |9 (x)] ot = sup pYPEn)P(0) |

l-(léz/u xeKo ® = Lp/M xel

Hence (4.4.5) follows.

Therefore (4.4.5) and ‘a result due to Hormander [11]
implies that P(D) is evolutional with respect to H. If we rassurme
(iii), then we can use ‘a similar argument to prove (i"), This

completes the proof of Theorem 4.4.2.

Corollary 4.4.3. Assume that £Z is contained in a closed .
=
half space HCR®™ with the inner normal «# and a)m/\is contained

in its boundary. Let Bj( £), j=1,2,+--,m be polynomials in faR".

We consider the equation

{P(D)u-—'-'F in £2 (L L.6)

R'l’Bj(D)u::fj in 6(/10, j=1,2,+ ,m.
If P(D) is normal with respect to wm and evolutional with respect
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to H, the pair (&, a)‘) is P(D)-convex, and .o is convex, then

the equation (4.4.6) has a solution wec”(£) if and only if FE€

ec”(£) and fjec”( &3’1), j=1,2,**~,m satisfy the following

compatibility condition:

Let (&), Qj(g), j=1,2,--,m be polynomials in §f<& R

such that Qj(f+'vq}1) is independent of Tw&X and
ACE)-P(5) + 25 0,(8)-B,(5)=0.
J=1
Then we have

m
Ry° Q(D)(F) + %Qj(D)- £5=0 in &,.

roof. Since P(D) is normal (of degrce 1) with respect

to &/ 0’ we have the decomposition similar as (3.1.3). From the

1

hypothesis R}cBl(D)) ) is surjective. Then it is enough to apply
1

the result of Ehrenpreis [ijto boundary system B, , which is a
,Theorem 6.1. 1
system of differential equations with constant coefficients.

Details may be left for the reader.

If the induced boundary system Bw is determined, we can
1

obtain a more refined result. For the sake of simplicity we assume

that £2 is contained in IR_I}_ and w10=:2./\mg. Moreover assume

. . m-1
that p(§,)=§aj(§v)§g and Bj(§ )—-_—_Bj(f).p(g )+§Objk(§v) ;

j=1,2,---,m. Set Bw1(§')=(bjk(§')), which is an mxm matrix of

polynomials in §! e ®""'. Then the next theorem holds:
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Corollary . L.L.4. Assume that P(D) is evolutional with

respect to H and (L1, W1)~ is P(D)-convex. Moreover assume that

N 3 0
det Bwl(g')$ 0, and W, is am(D')-convex. Then the equation

(4.4.6) has a solution ueCN(ﬁ) for every Fec () and £.ec™( & ),
J 1

J=1,2,¢«*+,m if and only if W}O is Bw (D! )-convex.

1
Proof. Theorem 4.2.2. implies that the equation

P(D)(u)=F in L2
) . ' ‘ (L"-l#vI?)
R1°D3«1(u)=fj in CU';O’ j=1,2,**",nm

has a solution uecu(ﬁ) for every Fec™(&) and fjec""(a’)’1), j=1,

2y**-,m, if and only if'@(1 is am(D')-convex. Then we have to

obtain a condition for Bw (D*) to be surjective. Hence the theorem
: 1
follows.

Next consider the geometric meaning of P(D)-convexity.
some

We can obtainadelicate conditions using results on the uniqueness
of solutions (see Hormander [12] and the references therein).

Here we give a necessary and sufficient condition for hyperbolic

10
satisfies x+edell, 0<&£<g, for some €,>0 and x & wW-

Theorem 1+g4¢5a}”§§§££se that P(D) ie hyperbolic with

equations: CLet £ ve connected and W= be non-empty. Let Fem™?

respect to a vector 4F and let e P*(P,ﬂﬁ—) be its forward

propagation cone. Then (f¥, w ) is P(D)~convex if and only if
to every point x 82 the union of x-—-—r’* and w is compact

and in addition x— 7’* does not meet with 2 \@w , where L2 is
the boundary of Lu in R
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Proof. First assume that the above geometric condition
is valid. Let K be a compact set contained in £2. By U we denote
the union of x+[’* where xc—:ﬁ and x—}-P* does not meet with K.
Let K' be the closure of the complement of U’ih fi From the

hypothesis K' becomes compact. In addition <e &’(.ﬁ:, wz) and
supp P(=D) < K implies supp < K'. Then (ﬁ, a/]) is P(D)-convex.

Now let E be the fundamental solution of P(D) with its
support in ]"*. From Atiyah-Bott-Gdrding [1J, Theorem 8.9. there
exists an integer k such that supp <5 ==-=-]"* , 1f we set

§.—=—.(‘-E)*(-E)$~? #(-E). Moreover we have supp P(D) C}’""* ,
\——-—'—"‘Iﬁ e e .

since P(D)B =pP(D) " T kL * -~ KkE == SxkEx - %5,
T —T

If there exists xe£2 such that x— ]"* meets with Qﬂ\w,

then translating this cone we can find y & 20\« and yO@;_Q_ such
that y&€y — ¥ and in a neighbourhood U of y, the intersection
of y,— r’* and U\QO is void with a suitable IZO¢ Then using &
we can prove that (ﬁ', &/1) is not P(D)-convex by the standard
argument ([8, 13]). This completes the proof.
‘ . 2 2 2, e ot
Example 4.4.6. Let n=3 and P=D1+D2mD3+ = ae((x)'D
‘ 1K=
. 6o, .3 o 3, 2 e, .2
with 2, &C(®R”). Set .r'f*..._..{x»eaa 5 X;Z0 and _x5gx.j+x?_}, Let
_@: z,g“z,uq; be a subset of 7’"’*\\{0} such that Wz&).i Uwas' 5(}2 C:af"’*,
and @"*1 is a space-like C*™ surface. Let M be a real ¢*® vector
field which is not tangential to @q- Suppose that to every xe f2

the intersection of x— /7% and £ is compact. Then the eguation
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( P(u)=F in $2
R1(u)==f1. in W,

R1°Dp(u)= fa in W

L Ra(u)-—==g in w,

has a unique solution uecm(ﬁ'), if FeC“(.ﬁ'), f1 ,faecoo( a’)’.‘) and
g 472) satisfy the following compatibility condition:

Ro4 (f1 )= R21 (g) in wa

In fact we can write P using the polar coordinate as

follows:
2
-1-4-2 cos 2 4 fed 1= 2r .
P=——r7—_£D9 {(?+,/2)D+_TD- .

Then we obtain

2
=20, A == , o
L) 2,1 rz
O.._.( +¢2)D -—:2—, ‘e

— (3) — U B
Hence it follows that m==1 and Ay =4 0+JA2,1"'(T+J_2-)DI~—""‘

Therefore we can apply Theorem L4.2.3. and a result due to Leray [15].

§4.5. The Goursat problem.

In Theorem 4.2.2., 4.2.3. and L4.2.4. we made an assumption

that P is normal with respect to wm. In this section we drop

this hypothesis. We use the same notation as in section 4.2.

Theorem 4.5.1. Assume that P is semi-normal of degree
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respectively :
1 and m with respect to both &, and WEO/\' Then we can write

. ' . J+1—1
b o i+l 203),5 . DK
Ry=D) sP==4;eR;°D °Ry° D)

—+ =
Ty, VY =0 AR
(4.5.1)
. Jj+m—1 .
B j4m , w—— (i) k .
oDJ oP=B oR oD = BiIVeR DS , §=0,1,2
R2 Y, Yo 'g=o0 kK e ¥y ’

M
In addition assume that ((71 and fx')z are regularly situated and

0/21 is an n-2 dimensional C“submanifold of ’Q'o' Trace operator

to &)21 is denoted by R,,. Two vector fields J and 2/2 are assumed
P A

to be tangential to Q)a and &, respectively at any point of 02‘1'

Assume that A1 is normal of degree m with respect to 6(/21 , and Bm

is normal of degree 1 with respect to éjz.l. Finally assume thst
the equation
P(W)=TF in S2 (4.5.2)
ON O°° A
has a solution uec (£X) for every FeC (£I), the equation
Al(v)% f oin @, ] (4.5.3)
p o
has a solution vecn(ﬁ") for every f&C ( &\J/]), and the equation
B (w)=g in &, (4.5.4)
A\

: (2} P (]
has a solution we-Cpo( (02) for every geC“((UZ). Then the equation

P(u)==F in J2

J=1 ; -
Rye D (u)——f in @4, i=1,2, ,1 (4.5.5)

Ra" k);;(u)= &y in wao: k=1,2,-,m
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has a solution ueC™() for every Fe¢ (&), fjeCN(f’/-;), i=1,
2,+++,1 and gkec"‘(d)fa), k=1,2,"+*,m if and only if the following

compatibility conditions. are satisfied:
R, DN 1(f ) =R ( ) in & (4.5.6)
21" =521° €k 21 =

J=1,2,°--,1 and k=1,2,---,m.

Proof. First we._ solverthé following two boundary problems:

' - _ (0) .
A (£ 44) —Rw(“ Z:A 3+1> in W,
R, (f,..)==R,.eD (g,) in @
21 141) = R0 D) 08, ' 21
' 1 S
| R21'?Du2(f1+1)=R21°D»1(ga) in &,
. (4.5.7)
R, oDP (£, ., )=R,.eD* (g.)  in @
21°P0 1417 = Rao g, (& 21
and ,
B ( ) =R (F)-‘-E (g . ) in w
B 1) =Rl ) B By 20
: —_— ’ m V .
Rot(Bpy1) = RzoD) (£7) in @y
R,.eD (g ,,)==R,.eD® (£,) . in @
21 me+1 21°0) i 21
e 2 » (4.5.8)
RyqoD'5 (8,0 1) == RpqDf) (f ) in @
21 pep m+17"" 721 21
Th probl 7h luti e P,
These problems hawe solutions f; ;<= (4)1) and g, . sC ~( 2)

because A, is normal of degree m with respect to @5, and (4.5.3)

is always solvable and similar for Bm; These fl-H anfi Bpp are
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. . - m 1 .
compatible in the sense that D;)Z(fl-H ) ------D))1 (gm-H) in @y,

Next we solve two equations' for f1+2 and gm+2, and then
these two functions are compatible in Wai" Repeating this process
we obtain fjecm(a')"), j=1,2,+-+ and g}recm(ﬁa)’ ke=1,2,

such that

-1 emcgmnl L2 j-1 3 [ 1 * e
R 1"Dk))2(fa) -——R21 Dz)1(gk)’ J’k‘—lazr <4-5¢9)

and satisfies the equations

J+1l-=1

(3)
RyoD? (F)-—Al(f3+l+1)+z A (E )

k1

ot (4.5.10)
k £ 5 (k)

2Dy, ()= B(gk+m+1)+3{_<:0‘_3 (85417

R

From (4.5.9) there exists BC (£2) such that

R j=1,2, "¢

eI —
D»1(§)—f-,

1 J

- ‘ (4.5.11)
R2°D))2(§)=gk’ k=1)2’

®

Then (4.5.1), (4.5.10), and (4.5.11) implies

R1oDJ (F-,P(i))—-—-o, j=0,1,2, - - -

(4.5.12)

R °Dk (F-—P(E))—-—O k=0,1,2,

2

If we define a function G, which is equal to F—P(Z) in f2 and
‘ %0
is zero outside it, then (4.5.12) implies that Ge&C (d2). Since
O -
we can solve (4.5.2), there exists vecw(ﬁ/) such that P(v) == G.
Set u-:-vzn-}-'i. Then u is contained in ¢ (&) and satisfies
(4.5.5). This completes the proof.
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Exemple 4.5.2. Let P(D)= D{+D5—D5+ Z a,(x)p"
=
s oo, 05 & 3. —
with a &C (R”), .QC{X €R’; x;Z0 and XB_..}XZI},
wi-._:,ﬂ/\{_x ERQB; X, = szo},
— & 3. —
w,=%3, {xer’; Xy ==X, o},
and 0)21=_Q/\{XGR?3; Xg== O}.
Assume that fi is connected and for every xe& {) the intersection
of xX— 1'* and $2 is compact, where /"’* is the forwai‘d light cone

defined in Example 4.4.6. Then the equation

(P(D)u===F in 2

Rj(u):'-"f in 6)1

Ra(u)—:—-g in (u2
~ . OG, A o0, As 0, AL
nas a unique solution ueC (L) for every FeC (£2), f&C (wl)
and geC™X ﬁa), which satisfy the compatibility condition

R21(f)==R21(g) in a)m. .

In fact if we take a coordinate §'.—_x3-l--x2 and 7 =Xz=X,,
then we have P ==D]2—-l+ Dg__D,( and hence
A1== --L+D§ and B1= —-L+D7.

Therefore we can apply Theorem 4.5.1. and the uniqueness of solutions

can be proved rather éasily.
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If A, or }3m is not normal in the previous theorem, then

1

we have to solve some eqﬁations in 4’(}2]. We stop to go further

and state a result on a special case, the Goursat problem

a
(see Tsutsumi [2'7:( for/\related result ). The proof consists
of repetitions of the argument in the proof of the previous
theorem. N |

Theorem 4.5.3. Let X be a multi-index such that D(j =0,

j=1,2,°+-,n and set P(D) =D + 41.» ﬁ(x)-D@, where a, < (2, )
K ]
Suppose that £7 is contained in the set ]"*:{xemn; Xj =0, j==1,2,--

-- ,n} and s'ét @3={x€.§_’; X jo= O_} and &Jjo"——-{xefz’; xj==0

and x_>>0, j=f=k}, j=1,2,-++,n. Let Ry be the trace to W,

~S

and Rjk be the trace to é/jkr—-— 6?)/3/) l()k. Assume that to évery point

x&€f), the intersection of x—/’*andﬁ is compact. Then the egquation

P(D) u==F in %

R.®

]D’““‘(u)—:.f“) in @4, A=1,2,0,K

o?Ll (n) . —
RyeD (u) =1f, in & 5, A=1,2, ,°(n

unique o (k) _ 00 A
has aAsolut:Lon ueC (.Q_) for every F&(C ( ) and f; '€C ((ok),

A=1,2,"" ’O(k which satisfy the compatibility conditions
7Sy, =12,

=12’ "-"
A, p=120350 00

(f(k))_—R

R
ik’ J A h)3
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Chapter V. Differential equations in '(, @, E)

§5.Q. Introduction.

‘ This chapter is devoted to studies on the existence and
the prolongation of singular solutions of boundary probiems for
linear~di£férential equations. .

When the boundary w 1s empty,

(see [§, 13])
our results are malnly due to Hormandeﬁ If there is non-empty

boundary, we encountegiggny technical difficulties, but the principle
of the proof is almost the same. 1In section 5.1.some topological
proPer%ies of the space D'(LL, QH;E) will be studied. Essential
difficulty of'thé,proof arises from‘the well-known fact that a
subspace of an (LF) space does not necessarily become an (LF) space
again (Dieudonne-Schwartz[ 2 J and Grothendieck[ ¢ ]). Fortunately
we can overcome this difficulty in our case (Lemma 5.1.2.).-

In sections 5.2. and 5.3. we extend some results due to
Hormander to our boundary problems. 1In addition to an extended
veréion of 'P-convexity condition with respect to singular support!,
we need another condition (S,B);on'C“Lextendability of solutions.
This seems to be rather restrictive,'but we héve not studied it well
enough. As in the previous chapter; the existence of solutions is
~ closely related to the extension property of soluticns. Vhen
differentialvoperataﬁshavé constant coefficients, we can obtain
better results. These are presented in section 5.3. 1In this paper
we have not studied the geometric meaning of P-convexity with respect

to singular support. We refer the reader to the recent studies

of Hormander and others [13, 4]. We can use their results and

obtain many geometric conditions of P-convexity rather easily.
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§5.1. Basic properties of the space b'(fi, w]_;ga_z.

Let M be a g —compact C” manifold, and E a complex
C” vector bundle over M. Let {1 be an open subset of M, « an -

open subset of the baundary of 2, and w, a subset of w. Other

notations will be the same as in sections 2.1. and 2.2. Take

three open sets .Qo, D_?, .Q.Z which satisfy the conditions of

Proposition 2.2.1.

Theorem 5.1.1. The space Cooq(fi, @,;E) is a strict

inductive limit of Frechet—Schwartz ‘spaces. Therefore it is
separable complete bornological Montel. Its dual space is

isomorphic to - @‘(ﬁ, wz;E):
co(SX, w3E) 22 ' (82, W,;E). (5.1.1)
Proof. Choose a family of open sets Uj’ j=1,2,++- 1in

‘Q‘o such that Uj‘s cover .QO and the closure of each Uj is compact

and is contained in TJJ._+_1 . From the definition C:(.Q.O;E) is the

o) _
strict inductive limit of C®(U;E), j=1,2,-":
AR _GE) = lig C™(TT; E) | (5.1.2)
o O’ -~ j, . o .
Since the union of all Uj/\QZ’ j=1,2,"-- is equal to D‘Z’ the
Opo, & 0 .
space C:(.QZ;E) is the union of all C“(Uj/\_QZ;E), j=1,2,+-+ as

a set. By 63. we denote the set of all C™ sections ¢ in Co (L2, E)

_92;
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such that there exists qbegw(W;E) and its restriction to

_Q1 is equal to 9. Since the restriction mapping of 8:(ﬁ2;E)
onto C':’(f?:, @,;E) induces a surjection _f’j of 8”(’['1‘5}\—3'7__5;13) onto
cc)j, we give the topology to élj which is induced from cC)""(ﬁg7\"__(_2'5;E)
by f;. Then Co({Z, @,;E) is the union of all Ej, ij=1,2, -

as a set.

Lemma 5.1.2. The space 8:(fi2;E) is the strict inductive
limit of C“(Ujr\_Qa;E), j=1,2,:
an~r\/ . om.___.._._....
CO(QZ;E) & lip C (anﬂ_z;E). (5.1.3)
v o
Proof. The natural injection of C”(Uj/\_(za;E) into
8:(_6:2;13) is continuous, and hence the natural bijection of
N O3 S — Ow ﬁ Eal ] 3
llg C (Uj/\ QZ;E) onto Co( 2;r.,) is continuous. Then we only have

to prove that it is an open map.

0 60 e
Let p be a continuous seminorm on lip C”(Uj/\_ﬂ_a;E).
| S
Then the restriction of p to each C”(an_(za;E) is continuous.

[ B
Hence there exists a family of continuous seminorms pj on C”(Uj;

0 gt e
;E) such that p; is equal to p in c“(Uj,\_o_a;E), j==1,2,""".

O — o0
Now take C°° functions 9(3. in C”(Uj\Uj_a) such that Zl 7CJ-=-'1

in _Qo. Then define a seminorm on C?;(.Q.O;E) by

wWp)=Z_ py( x5 P), P2 ;E).
than
AP

continuous. In fact for every ?eaw(UE;E) we have

(] ~s
The restriction of q to C:(D_Z;E) is larger "~ Moreover q is
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J+1 ;
Since pk's are continuous, theré exist functions #ﬁ{ in C:?IZO),

real numbers s, k=1,2,""",j=1 and a constant C >0 such that

J+1

s J§ 1 Flesy» =BT

Then it fol;ows from (5.1.4) that
q(?)gcg‘j}{(ap %, e 87T E)
T k= k Tk (Sk), A

0 o, e .
Hence g is continuous on each C“TUj;E), and then from (5.1.2) it
is continuous on CS(SLO;E). We have thus proved that p is
smaller than the restriction of a continuous seminorm on~C§?S?o;E).
0 A

Therefore p is a continuous seminorm on C:Yfla;E), and the proof

of Lemma 5.1.2. is complete.

Lemma 5.1.3. The space C:Yfi,401;E) is the strict
inductive limit of 63., J==1,2,0
SE) 2= lip E.. (5.1.5)

Proof. To each j=1,2,-~ we have the following

commutative diagram:
(T AT B S g ST 52 E)
§3 lP
E; — . lip élj

Then it is easy to prove that p is an epimorphism of SSTSZZ;E)
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onto lip £j. Hence C:(ﬁ, (01;E) is isomorphic to lip £j as

locally convex spaces.

Proof of Theorem 5.1.1. (continued) Since every 63.

is Frechet—SchWartz, C:(ﬁ, wl;E> is separable complete bornological
Montel. Moreover its dual space is isomorphic to . the'projective
limit of 5'1., j=1,2,""":
Co(S2, W 3E) o lim g} (5.1.5)

But from Theorem 2.3.2. the space 5:}. is isomorphic to

& (U,,J.A_Q_ N ‘”a/\Uj?E)' Then their projective limit lim 8,3 (fan
be identified with @'(fﬁ, Q)Z;E) as sets. Since 55. is topologically

o] ) ' e . . .

a subspace of C”(UjAQE;E)' o= 5'(Uj/\_(22;E), their projective
limit :?.s topologically a subspace of lim a’(Uj/\_QZ;E) =3 (fj_'a;E).

Hence it follows that
in el = ', wyE). (5.1.6)

From (5.1.5) and (5.1.6) we obtain (5.1.1). Then the remaining
part of the theorem is obvious, and the proof of Theorem 5.1.1.

is complete.

§5.2. Existence theorems in D'(f}, Wﬁ@l-

Let E and F be complex Cm vector bundles over M, and P
a linear differential operator (with C®°coefficients) of D'(M;E)
into H'(M;F). Take a positive integer 1. We consider the following '

two properties:

- 95 -



113

(5.A) To every compact subset K of {7 there exists

a compact subset K' of 3 such that we can take K'le=<c if K_—=<f»

¥

and the following statement holds. If ¥€Cl({L, W,;F) and

‘tP(_",b)’nz\Ke C”(W;‘E), then the singular support of @ is
contained in Q’/\K', i.e. % is ¢” in _§7.2\K'.
(57}.B) To every X € w, there exists an open neighbour-
“hood V of x in .Qo ‘such that %acl(m, WynViF), tP(’%)e
€¢I A V;E), and o}»éc”(:zz,\v;p) implies ¥&C™(fA V;F).

The next theorem is a generalization of a result due to
Hormander [13]. The principle of the proof is the same as his,

although it becomes more complicated.

Theorem 5.2.1. If the conditions (5.4) and (5.B) are
valid, then for every f e_@'(ﬁ, w, ;F) there exists ues ,8"(.6, CU];

;E) such that f—P(u)eC“(fi,fwl;F).

Therefore if in addition we can find a solution ue

C™({Z, w,;E) of the equation
P(u)==f (5.2.1)

for any feC™(&, w1;F), then the equation (5.2.1) is solvable in

(L, @, ;E) for any fe (&, W, ;F).

Lemma 5.2.2. If (5.A) and (5.B) hold, then the following

‘condition holds:
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(5.C) To every compact subset K of ﬁ there exists a
R K\ ~ ) ’ ]
compact subset/\ofﬂ_ , Which can be taken to be empty if K is empty,
‘ 1 ot 00 . .
such that ﬂ,beCo(.ﬁ’,’wa;F) and P(7% )!D_E\K eC (QE\K;E) implies

‘q'b!_(za\xi' € ¢ (2 \KT;F).
Moreover it is obvious that (5.C) implies (5.A) and (5.B).

Proof. Let K be a compact subset of f2. Then tnere
exists another compact subset K' of £7 which satisfies the condition
" (5.A). We can assume that K K'. Take a compact subset K''!

of f2 such that X' is contained in the interior of K''. From the

condition (5.B) there exists a locally finite open covering

{Vq; x€A} of @\K such that Vo C 2 \K' and the condition

(5.B) is valid if V is replaced by V.
. 1 . t ee .
Now let apeco(ﬁ, W,;F) and “P(% )!-Qz\K € ¢ (T2 XK;E).

From (5.4) it follows that singsupp % {JAK'. Then we have
P {‘QZ\K' e C°°(.(22\K';E). Taking the restriction of % to _Qa/\v,(,

R l, = t .
bt ec V., Wa AVu;F), °P —
we obtain 'HQZ AVx (SLA\Voy Wy V3 F)y PP i:za,\v«) |
==tP("/’)LQ v ECW(SLAV“;E), and 'H-O— v GC”(.Q?/\VX;F).
| 2nVx | 2N Ve
Hence (5.B) implies '2/»‘_0_2 Avxecw(ﬂ/\ Vo 5 (UEAV,(;F). Therefore
it follows that %!Q‘Z\K' ,ec-”(’_cza\K' T ;F),Vand the proof of

SES/Na —
laglll A =
or Y ec”({Z, W,iF) if K=¢,

lemma 5.2.2. is finished.

The proof of Theorem 5.2.1..is complete if we can prove
remaining
the following lemma. TheAdetails may be left to the reader,
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because they are just a repetition of the argument due to

Hormander | 13] Theorem 1.2.4.

Lemma 5.2.3. Let 0 << C<CC', and p be a continuous

. 00, X - ) . o
seminorm on CO(D_, CUZ;E). Let r be a continuous seminorm on

c‘;"(ﬁ, @ ,;F) such that

inf{]qu'”(l-p-n); qlb'(Qa-;—f?l» and ?'eC:(QO;F)}ér('%)
? \ : (5.2.2)
for all 2eCo({l, W,;F). Suppose that compact sets K and X' in

~s

{2 satisfy the condition  (5.C). Moreover take two compact
subsets K'' and K''' of ‘Q‘o such that K' is contained in the

interior of K'' and K''CK'''. Let /“j’ J =1,2,.-- be elements
of ¢(£1, W ;F) with locally finite supports. If %eC (SI, W ;F)
and supp P C‘_‘ﬁ/\K" implies

rw)gc.(p(tpmp>>+2;l<% A2, (5.2.3)
J=

number of

Then there exist a continuous seminorm g on CM(QZ\K;E) and a finite)

elements & * VS of C‘:(SAZ' R a).l ;F) with support. in ﬁAK' ’ such

L
that ’?{JECOS(ILN, @,3F) and supp @DCS}’AK"' implies

r(qf)s_c'.<p(‘°p<af>)+2;l<#, #>| +
. J=
+q°7(tP(’l/'))+if!<7/‘,)JJ>,), (5-2.4)
J= .

~ where ¥ is the restriction mapping to Q_Z\K.

Proof. Since the locally convex space
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{zpec‘;‘(ﬁ, W, 5F); suppﬂ.,bcﬁ\li'} (5.2.5)

is separable from Theorem 5.1.1., there exists a dense sequence
Ai, Ao, t*c in the space (5.2.5). Let q, k=1,2,-- be a
countable basis of Spec C”(ZLN\EK;E) such that 2q = Gy g

k=1,2,*-. If (5.2.4) does not hold, then there exists a

sequence of C* sections ’1/’1 , "f’a, e+ in C‘:(ﬁ, W,;F) such that

supp 'I/JkCQ/\K",", r(’l,bk)-——'— ct, (5.2.6)

and

p(tP( QPK)) -+ JZ.:]' [< ")"k; /Qj>[ -+ qka’r(tP(’éf’k)) '+'

+k§1§]<¢pk, A= (5.2.7)

Therefore we have

T(tP('t}fk)) >0, k=——>00 in c“(na\‘x";z) (5.,2.8)'

and

<%, AJ>{ >0, ke—>00 for j==1,2,**. (5.2.9)

Now‘ by @ we denote the completion of the space
(-] AL
{pecil, w,ir); supp p i pkr 1]

with respect to the seminorms r and qob‘otP; q& Spec C”(.Q.Z\K;F).

Then P is a Frechet space. From (5.2.2) we have
I ~ ‘ ~
§C{2,beco(.§2, @W,;F); supp ’lf’CQ./\K"’}.

From the definit‘ion'of the topology of & it follows that
T(*p(4)) & C(ZTNKGE) for all &P . Then (5.C) implies

~ 99 =



117

(a4 i —
QP[_Q \g' € C (ZZ\KT3F) for all #E€F. By 7' we denote the
2
restriction mapping of £ into C“(.QZ\K';F). ‘Then 7' is continuous

from the closed graph theorem.

From (5.2.6) and (5.2.8) the set {¥; k=1,2,--+} is
bounded in B, and then {y'(ﬁ,bk); k=_—1,2,--.} is bounded in
CM(E—ZKW;F)V. Since C”('ﬁ'a"@;‘r;F) is a Montel space from Theorem
2.3.2., there exists a subsequence of v' (%), k=1,2,"- which
converges to some 4,1’0 in C”(_.r'z"a'\'K—";F). We may denote this sub-
sequence by the same symbol a"(@l)k), k=1,2,'"*. From (5.2.9)
‘we obtain

T (B, A=Yy, A — <%, A >|=0,
as ke300, for ail j=1’2”;” . Hence y'(ﬂf'k) converges to
zero weakly in C”(TZ—Z\'KT;E), which is a Montel space. Therefore

we have

7' (%, )==30, k—=3=00 in C (FINK';F). (5.2.10)
Next take a function X in C‘:(QO) with support in K'!
such that X =1 in a neighbourhood of K'. We write '2/41'{-7-—"?(7/41{
and '5"}';' _—_—_(1—7()-'%{. Then ’z/)l':' tends to zero in'C‘:(S’i, ‘Ua;F)
from (5.2.10). From (5.2.6) and (5.2.7) we have for sufficiently
large k
t : i

O RCRP) + ZICpy, > = x (),

which contradict with (5.2.3). This finishes the proof.
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Corollary 5.2.4. If (5.A) and (5.B) hold, then for
every fe ,9'(?[1;F) and ue@'(pﬂ\g ;E), which satisfy P(u)== f

in _Q1\ﬁ , there exists ﬁeg'(ﬁl;E) such that u is equal to

the restriction of u to _Q]\ff and

P(R) — f e ¢™(82, w;F).

Proof. Take f and u which satisfy the above hypotheses.
There exists u;e $'(ﬁ1;E), ‘whose restriction to .Q]\flv is equal

to u. Write»g=f—P(u1). Then g belongs to D '(LZ, w1;F).
From Theorem 5.2.1. there exists ve .a'(ﬁ, CU1;E) such that
P(v) —g €C ({Z, @ ;F). Write G=1u,+v. Then i satisfies

the required condition, and the proof is complete.
Now consider the conditions (51.A) and (5.B).

From the
results of the previous chapter, (5.B) is satisfied if tP is
hyperbolic with respect to 2 \§2 for some .Q.1. But this is
too restrictive. ' |

The condition (5.A) is a generalization of Hormander's
'P-convexity with respect to singular support'. Then we can

make the following definition:

Definition 5.2.1. The pair (£L, a.)]) is called P-convex

with respect to singular support if and only if to every compact

set K = {I there exists another compact set K'Cff , which can
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be token to be void if K is void, such that o e g' ({7, @,;F)

and tp("'b)lﬂ.z\l{ = CM(QZQK;E) implies sing supp P & ﬁnli' .

If a)lis empty, this definition agreee with that of
Hormander. Then we can survey the geometric meaning of this
P-convexity condition as Hormander did in the case of no
boundary (cf. T4, 13]).

The next theorem is obvious:

Theorem 5.2.5. If P is hypoelllptlc, then any pair

(ﬁ: CU ) is P-convex with respect to singular support.

§5.3. Differential equations with constant coefficients

Let M=R", E=R'x@F, F=R"x@", L=V, and let

P==P(D) be a linear differential operator of ,8'(£ZO)L into
by '(_QO)N with constant coefficients. OQur consideration is

limited to the case of determined or under-determined syetems
A ‘ e .

of differential equaiions because in the case of over- determlned
' different
systems there arise essentially /\ problems (see Ehrenprels [ 5D.

Under the above restrictions we can prove the following theorem.

Theorem 5.3.1. If the condition (5.B) holds,

then the following three statements are eguivalent:

(1) The pair (fL, wT) is P-convex with respect to
singular support.

(2) For every fe @' (LI, %)N’there exists ue ' (&, w, "
such that P(u)—f € C“(-ﬁ/, w, )N
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(3) 1f 1= (APV, ue 9 (TR, and Plw) =7
in Qi\ﬁ, then there exists ﬁe.%‘(fi] )I" such that u==1u in

QNI ana £ —p(R) e (L, Y.

Proof. From Theorem 5.2.1. and Corollary 5.2.4. it
remains to prove that (‘2) implies (1) and that (3) implies (2).
The proof of (2)===>(1) is just a . repetition of the argument
in Hérmander [ 8 ], Theorem 3.6.3., therefore we leave the details
for the reader. The proof of (3)==3(2) is very easy. In fact
let te.9 (S, w )N, Define uey (TN by ux)=0, x= QL.
Then P(u)= f=0 in ..QT\.(ZV ~ Hence (3) implies the existence

of i ey (LT, w, Y such that £ —P(@) e (L5, w )N, This completes

the proof.

Under more restrictions we can prove the following two

theorems:

Theorem 5.3.2. Suppose that {2 is contained in the closed

half space HCR® and @, is an open subset of the boundary of H.

Moreover egssu}ne that P(D) is determined, that is, L=N and det P(}§)=s
3=0, and the condition (5.B) holds. Then the following three

statements are equivalent:

~

(1) P(D) is evolutional with respect to H and the pair

(£Z, “)1); is strongly P(D)?convex, i.e. P(D)A:onvex with respect

to support and singular support.

(2) For every fep' (L7, W, )Nthere exists a solution
ue.)! (ﬁ, w] )Nof the equation
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and
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P(D)u=="f. (5.3.1)

~r e « N
(3) 1f 19 (LN ue 9 (@NZ, and (5.3.1) holds
in _QI\KAZ’ , then there exists ﬁe@'(ﬁ} W such that the restriction
of u to .Ql\le is equal to u and P(D)u==f in .Q.].
Proof. - (1) implies (2) from Th»eorems L.y.1 and 5.2.1.

It is obvious that (2) and (3) are equivalent. Now assume that -

(2) is true. We can suppose that O € @,. Then there exists a

| =3
distribution § in »'(£2, 0)1) such that det P(D)E /'ifin .Q1 .  There
exist a compact neighbourhood K of 0 in 511, positive constants €

C} and an integer m such that <& C:(.Q.I) and supp P << K implies

|90 =<9, s>|=|<?, det pDIE>|=Kdet P(D)P, B>
éC-inf{Z sullz’Dd?(x)}; ’?ﬁeC:(SZ_O) and detP(=D)P=% in.

«j=m
IXIEM 4o

= = sup [Ddet P(=D) P(x)] .

xeH

Hence P(D) is evolutional (see the proof of Theorem 4.4.2 ), and
this completes the proof.
Theorem 5.3.3. Let the hypotheses of Theorem 5.3.2. be
except (5.B) '
fulfille%x .In addition we assume that P(D) is hypoelliptic.
Then the following condition (1') is equi#alent with (2) and (3)

of -the previous theorem.

(1') The pair (£, w,) is P(D)-convex with respect to

support and P(D) is parabolic in the sense that there exists a

real number "'co such that
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det P(E —iT#)==0 if geR"” and ~>T,
where 2% is the inner normal to H.

proof. (1) implies (2) from Theorem 5.2.5., 5.3.2., and
a well-known resﬁlt (e.g. [8] Theorem 5.8.2.). Then we have to
prove that (2) implies the parabolicity of P(D). We can prove
 this fact directly using the argument of Theorem 5.8.1. in [8].
Details may be omitted.

,/'
N

'

N
o

\ 4 N\
° ), \ ¢/

This paper was permitted as the author's thesis at
Tokyo University in 1973. A figure on page 16 and a remark

on page 43 are addied.
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