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A Note on Finite Element Approximation of Evolution Equations

Hiroshi FUJII, Kyoto Sangyo University

0. "Introduction

In this note, we consider the finite element method for approximate solu-
tions of mixed initial-boundary value problems of both parabolic and hyper-
bolic types,; including the equation of elastodynamics. The main concern is
the problem of stability in the sense of energy norm for hyperbolic problems,
and in the sense of maximum norm for parabolic problems (i.e., the problem of

discrete maximum principle).
We begin by defining some preparatory notions.
1. Stability Functions and Acuteness of Triangulation

h, Xh, Yh and Yh
o o

1.1 Finite Element Spaces X

Assumption: Q is an m-dimensional polyhedral domain with the boundary T.
Definition: Triangulation Th of Q.
' T is a finite set of non-degenerate (closed) m-dimensional simplices A
such that

1 e = Uh A

AET
h . .
(2) any face of A€ T 1is either a face of another m-simplex, or a portion

of the boundary T.

-Definition: barycentric fragments A!, A=1,..,(m+1)! of AeiTh.

Ai, A=l,..,(m+1)!, are m-simplices which satisfy

. (m+1)!
/ -
(1) =1 AA A (AiEA), |
(2) a vertex of Ai is the barycenter of A, and another vertex of Ai is a

vertex of A, and
(3) the intersection of Ai and a face of A (which is an (m-1)-simplex)
is again a barycentric fragment of the face.
Definition: barycentric subdivision B? (i=1,..,m+1) of a m-simplex AG:Th.
With each vertex P.1 of A, B? is defined to be
B = J AL
- ]
PiLA)\
Note: mes(B?) = mes(A)/(m+1), i=1,..,m+l.



Note: mes(B?) = mes(A)/(m+1), i=1,..,m+1,
Definition: barycentric domain Bi associated with each vertex Pi of Th.
B, = b
- PiCBy

Definition: Yh = Yh(Q;Th) and Yg = YE(Q;Th) (piecewise linear finite element
spaces).

Yh = {$; $€ECO(§) and $|A= linear for each simplex AG&Th}

YZ = {§; $e;Yh and $[r= 0}

Definition: X

ment spaces).

Xh(Q;Th) andﬂxz = XZ(Q;Th) (piecewise constant finite ele-

X = {¢; $IB.= constant for each barycentric domain B, of ™}
Xg = {3; fpé)l(h and $|r= 0}
Definition: We say that functions &éiYh and 565Xh are associative if $(Pi)=
5(Pi) for all vertices Pi of Th.
Definition: Let'@ie;Yh and éieth be such that -
(1.1) $i(pj) = 8;;, and 51(Pj) = 83 (655 Kronecker's delta).

The sets {61}151 and {éi}ifl form the bases of Yh and Xh, respectively.

The space X is sometimes called ''the lumped space', since it is used to de-

fine the so-called lumped mass type approximation.

1.2 Acuteness I of the Triangulation
Knin (Kmax] is deflneg to be the minimum (maximum) perpendicular
length of all the simplices A of T .

Definition:

Definition: Acuteness vof a simplex A of Th is defined as:

. =R VR
(1.2) O'A = I-Ilil}{—COS (V)\j,VXi)} = mln‘—-:——————;———
i#j 1#3|VAj|E|VAi[E
where ii (i=1,..,m+1) are the barycentric coordinates of a point x&€A with
respect to the point Pi' The vector Vi., j=1,..,m+l, denotes the gradient of

the function ij’ j=1,..,m+l.and ( , ) and | IE respectively denote the
Euclidean inner product and Euclidean norm in R".

. 2 = 5 | 1= .
Note: xi ¢i’A (i=1,..,m+1)
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Definitioti: Acuteness I of a triangulation Th is defined to be the minimum

of all the o, , i.e., '

(1.3) £ =min o
peTh

Definition: We say that a triangulation is of acute type if £>0, and of

Strictly acute type if I>o.

A

Example: m=1: By definition, I= 0p= 1.

m=2: Let ny (i=1,2,3) be the three angles of a triangle A. Then,

(1.4) o, = minteos(ny)
m=3: Let (i,j,k,2)}=(1,2,3,4) be the vertices of a tetrahedron A,
and nij be the angle made by the faces Pipkpg and PijPl. Then,

(1.5) o, = min{cos(n; )}
i,]
Hence, ) is of acute type if and only if ”ij < w/2.

1.3 Estimation of Stability Functions

Stability functions will play an essential role in establishing energy

estimates of time-discrete finite element schemes.

Definition: Stability functions Y15V (m;Th) and Y9=Ys (m;Th) are defined as:

2
(1.6) ¥ 2 = k. esu
1 min - hl—
2 2 ~ h - _.h
(1.7) Yy, = Kpin weYy , weX).

An estimate of the stab111ty functions 1 and Y, are given in [1], [2]
for the cases m=1 and m=2. Here, we give an improved estimate of Yy and Y,

with arbitrary space dimension m.

Theorem 1. For any aeY and wext such that w ~w, it holds that

(1.8) Wiz (me1) e2) [[4]°, and
2=1 % K.
min
7 (|2 -2
(1.9) P O [
=1 2 K.
min

where the constant Am is estimated as
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(1.10) m = m+l (T < 0).

To prove Theorem 1, we first show the following

" Lemma 1. For the basis functions $i and éi (i=1,..,N), it holds that

m9¢.y2 : N -
(1.11) ) 5}}‘ < ; (m+1) (m+2) ”¢i“2 (=1,...N),
=1 L K.
min
and .
myo¢, y2 _ _
112 ]| s 35— D) 115,11 (i=1,..,N).
=1 L K.
min

Proof of Lemma 1. Let A be an m-simplex of Th. Let P, and «, be a vertex of

A and the length of the perpendicular line from P., respectively. Then, (1.11)

and (1.12) immediately follow from

a2 2 mes(A)
6.1 = ————,
ol (m+1) (m+2)

- n2 mes (A
13,03 = 2=l
(m+1)
T a<bi - mes (A) < mes (A)
g1l 9% 1 Ki‘ ) Kiin

where ]-”A implies the Lz-integration over the simplex A.

Proof of Theorem 1. Suppose that w and w are expressed as

. m+l . _oomrl _
w = .z wo oy and w = .z We by on the simplex A.
i=1 i=1
Then, we have that
m+1
”@ui - mes() 'y 2 and
. i :
m+l  i=1
m+1 m+l m+l
~n2 2 2
ol = 2R o w e ] wpwy)

m+1) (m+2)  i=1 b i=1 j=i+l
2 mes(d) 1_“%1
(m+1) (m+2) 2 i=1

On the other hand, we can show the inequality

2
ws ).

2 Am mes (A) m+l 2
$ —— w. ,

. i
A K_ . i=1
min

oW

8xR

*) i1
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_where Am is the constant given by (1.10), This is shown as follows:

If & m+1 . 2 mgl
— Z |v¢,§ + w.w, (Y4.,V6.)
41 8 2 io1 i'E i,5=1 ij i’ " "j°E
i#] mil o,
The first term of the rlght hand is bounded by Z w, /K min’ and the second

term is written as {W} [K]1{W}, where {W} (w.,, =1.,w ), and K. .=0, K. .=
1 m+1 ii ij

(V¢ V¢ )E (i#j). We estlmite the spectra1m$%dius p of the matrix {K]. We
make use of the fact that z V¢ 0 (since z 6. =1 on 4). Now, the

j=1 j=1 m+1
largest Gerschgorin radius r of [K], i.e., r = max Z k. Jl is estimated as
m+1 1 J#l 2
=max ] -(76;,9;)p = max|ve;|p < Vg, (22 0)
i j#1 i v
r
m+1 » m+1 2
smax ] |V lglveslp = max [ = < m/cp, (2 <0).
i j#d ; £ T

Hence, the inequality (*) follows, completing the proof of Theorem 1.

2. Approximation of Second Order Hyperbolic Equations and of Equation of

* Elastodynamics

- In this section, we discuss briefly the finite element approximation of
hyperbolic equations of second order and the equation of elastodynamics. The
main concern is the question of stability in the sense of energy for thc scheme
under consideration. We note that the convergence of the finite element ap-
proximate solution follo&éélmost automatically from the stability under appro-

priaté assumptions on the exact solution. See, [1] and [2].

2.1 Model Problems and Accociated Energy Forms

The domain Q is assumed to be an m-dimensional polyhedron. We take the

following as the model problems:

Problem 1. Wave Equation (m 2 1)

3%u N
2:1) — = Au+ f in @ x(0,T]
at?
(2.2) u = 0 on FDX(O,T]
du
(2.3) el 0 | on PN (0,T]

where I'= fDLJPN, T T, = ¢ and n is the outward normal direction.
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Problem 2. Equation of Elastodynamics (m = 2 or 3)

. Bzui m 3
(2'4) p — = z HTl + fl’ i=1, :m’
3t2 j=1 %5 M
)
(2.5) T,.[u] = C..ro €p,lul, 1,j=1,..,m,
ij K,5=1 * ke kg
1 Bui auj
.6 . . = = (= — = . i,j=1,..
(2.6) El] [u] 5 ( X. + ax.) ejl[u]’ i,j=1,..,m,
; j i

with the symmetry assumption on the generalized Hooke coefficients:

(2.7) Ciska = Gyike = Ckeij

also, for any symmetric tensor Eij’

. m o m 5
(2.8) ij;ﬁ Cikefij ey 2 Yo i; iy
Note. (the isotropic case)
(2.9) Ciirg = M550 * HOqb5e * 12851

where A and u are the Lamé coefficients.

with the boundary condition:

(2.10) u, = 0, i=l,..,m on FDX(O,T]

(2.11)

ne~8
A
1

n. =0, i=l,..,m on FNX(O,T].

Associated Bilinear and Quadratic Forms

We introduce a bilinear and a quadratic form corresponding to each prob-

lem. proplem 1.

T du ou# 1
(2.12) Wlu,ubl = ] <gxaap v . b EH(@)
i=1 i %M
m
(2.13) Wlul = Wuul = ) %%‘ 2,
i=111°%4
Problem 2 m . m
(2.14) Wlu,u#] = ) <Tik[u], gik[u#]>’ u, ut € (H (D)
i, k=1
7 v 1 m
(2.15) Wlul = Woul = ] <t ful, e lul>, ve@ @)
i,k=1



102

Remark: Korn's Inequality

Under appropriate assumptions on the boundary condition, the so-called

Korn's inequality holds:

du. 2

%

N m
" (2.16)

CW[ ul

i,k=1

where C is a constant depending only on the region Q. Hence, W[ u ] can be
an equivalent norm in the space (Wz(l))m. See K.0. Friedrichs[5] for the
case of isotropic elasticity with the first boundary condition, I.Hlavacek-

J. Necas [6] or G. Duvaut-J.L. Lions [7] for general cases.

2.2 Stability Function for Energy Quadratic Form

Definition: Let

1 m
(2.17) v o= 7 max

Cooro.
i,j k,g=1 1IK4

Remark: For the isotropic case (2.9), Vo turns out to be

(2.18) vo= A+ %-u,

where A and u are the Lamé coefficients.

Theorem 2. For any associative functions W éi(Yh)m and w éE(Xh)m, it holds
that ’

v, 2% m
~ 0 C P ~n2
(2.19), Wiwl s —=— 7121”“’1”’
: “min -
and o2
' ' v 2(yy) m
; A o L p - n2
(2.20), Wi T s = ——3 1wl
K. i=1
‘ min
where the constants‘yg and y? are given by
m 1/2
(2.19)b : e _»{Am (m+1) (m+2)}
m o _ 1/2
(2.20)b Y, = {Am (m+1)}

inwhich Am is the quantity defined by (1.10).
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2.3 Finite Element Scheme. Definition+

Let YE (resp. XE) be the set of functions $€EYh (resp. ée&xh) which
satisfy the geometric boundary condition, i.e., 6= 0 (resp. $=0) on FD.
Definition: Finite Element Continuous-~Time Scheme of Consistent Mass Type

Seek a function v = G(-,t)éi(YE)m for each t, 0 < t < T, such that

32 ~ - L . .
(2.21) <p;zévi,¢> + j§1<Tij,5§5¢> = <fi,¢>, 0< t< T, 1i=1,..,m,

~

. - h .. .
for any test function ¢ €Y,, where the finite element stress tensor Tij is
defined to be

m
(2.22) Ty T Tij[v] = k’%=1cijk£ek£, i,j=1,..,m,
A aﬁj
(2'23) 813 = EIJ [V] = 5 ('B_EJ + ﬁ'): 1:J=1,";m'

Definition: Finite Element Continuous-Time Scheme of Lumped Mass Type

Seek associative functions V = G(-,t)e}(YE)m and v = Gt-,t)e5(x§)m for

each t, 0 <t < T, such that

2 _ . mo. ~
(2.24) <p—8— V.,0> + Z <T_,,—-§- ¢> = <f.,$>, 0 <t < T, i=1,..,m,
52 L j=1 ij axj i

for any associative test functions $€£Y2 and 565X2.

It is easily seen that the "continuous-time schemes' (2.21) and (2.24)

are reduced to systems of ordinary differential equations in terms of
T

e, V. )
’1’ H l,J >

the number of nodes which are in Q or on PN' For detail, please refer [2].

For practical numerical computations, we need discretize the schemes with

the nodal displacement vector {Vi}= (vi i=1,..,m, where J is

. . . A
respect to time. Let tn= nAt, where At =T/p and p is an integer. Let v

and v denote 0(',tn) and Q(-,tn), respectively.

¥ Here, we give the definition of the finite element schemes only for the

Problem 2. Definition for the Problem 1 is similarly given.
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Definition: Finite Element 8 Scheme of Consistent Mass Type (B > 0)

m m
“n s R 2 S NP TN
(2.25)  <pD,D:v.,¢> + .Z <Tiy03x, 87+ 8Ot P <DyDzTs 507, 0 <£.,8>
. j=1 j j=1
n=1,2,..,p-1, i=1,..,m,
for any test function $E§YE.
Def%nition: Finite Element B Scheme of Lumped Mass Type (B 2 0)
k -n - o n- 2 & n 3 2 n -
(2-26) <thDEViJ¢’> + le<T13 )'a—x'jq‘»’> + B"At JZI<DtDET1] ,ﬁ'.¢7>= <fi’¢> 3

n=1,2,..,p-1, i=1,..,m,
h

for any associative test functions $é§Y2 and ¢€X,.
Remark: A special case B=0 is the so-called central difference scheme. It
is noted that the central difference scheme with lumped mass type approxi-
mation is of explicit in the sense that it can be solved step-by-step ex-

plicitly, while all the other cases are of implicit type.

2.4 Energy Stability of the Finite Element Schemes

Obviously, for the "continuous-time' schemes of both consistent mass

and lumped mass types the a priori energy estimate of the form

A T
(2.27) (K+W)M <sC{(K+W)O + S‘ B 23t 11
(o]

holdé, where W (t) = W [;(-,t)] (see Eq.(2.13) or (2.15)), and K (t) de-

notes either

- . m yov.y2
K (t) =K [v(:,t)] = %— ra for the consistent mass case,
i=1
) _ m V.2 v
or K (t) = K [v(-,t)] = %— Z T for the lumped mass case.
i=1

With regards to the time-discrete scheme, that is, the B scheme (2.25)
or (2.26), the discrete analogue of the energy inequality does not hold,
unless some restriction on the ratio (At/Kmin) is fulfilled. In fact, we

can show the following



- Theorem 3. (Energy Stability of the B8 Scheme of Consistent Mass Type)

The B scheme of consistent mass type (2.25) is unconditionally stable

if B > 1/4, or stable under the condition

At 1 Yz2(1-p) 1
K

(2.28)
min Jvo/p V1-4(1-)B yg

(¥z>0)

if B < 1/4, where ¢ is any positive constant, yg is the quantity given»by (2.19)b,
in the sense that, in both cases, the following estimate holds:
2290 & TUnTP e w 57 < c@ TUnP + w 5% + T oot TP

245 ¢l - 24op t n=1 i=1 °*

= 2,3,..,p; where p*At = T and C is a constant independent of

At and the triangulation.

Theorem 4. (Energy Stability of the B Scheme of Lumped Mass Type)

" The B scheme of lumped mass type (2.26) is unconditionally stable if

B > 1/4, or stable under the condition

At 1 /2(-z) 1

p < — (¥t7>0)
min /bo/p V1-4(1-7)8 Yy,

(2.29)

if B < 1/4, where £ is any positive constant, y? is the constant given by (2.20)b,
in the sense that, in both cases, the following estimate holds:
T -1 2 ~T T -0y 2 ~0 ol 2
2.31) - & Tl e w v <ty [ o w0l e w VO] « T oac £ I0D,
| 25 v 2zt i1 if1

r=2,3,..,p; where p*At = T and C is a constant independent of

At and the triangulation.

Remark: For the proof, see [1], [2] or [4], where the stability conditions and
the convergence in energy norm are discussed for two-dimensional elasto-
dynamics and wave equation. These Theorems give an improved estimate of those
results, including three-dimensional cases also. It is also noted that the
convergence of those schemes to the solution of the original equation can

also be shown under the assumption that the stability conditions are satisfied.

The key to those discussions is the estimate of the stability function

Y? or y? given by Theorem 2.
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2.5 A Remark on Linear Visco-Elastodynamics

An interesting generalization of the results in the previous section
is the problem of linear visco-elastodynamics.
The linear visco-elasticity with materials of long memory is charac-

terized by

m t
(2.32) MOE §= IPEING +‘o By s1eq (8-8) €1, (5) ds,

k,2=1

where Cijkz are the generalized Hooke coefficients which satisfy the con-

ditions (2.7) and (2.8), and Bijk£= Bijkz(x’t) are bounded functions of x
and t, such that
(2.33), Bijke™ Bjike
and that
2 2 *
(2.33)b Bijkl’ aBijkl/at, ) Bijkg/at &L (9x(0,T))

The equation of motion of linear visco-elastodynamics is again given

by Eq.(2.4), i.e.,
: azui
(2.34) P =

at2 j

I
0~

9 .
. 3§7~Tij[u] + fi’ i=1,..,m,
J
with the stress-strain relations (2.6).
For the sake of illustration, let us consider the phenomena of wave
propagation on a one-dimensional material of long memory. Eq.(2.32) is

reduced to
(2.35) t{u] = Ceefu] + fg B(t-s)-e[u] (s)ds.
Since efu] = du/dx, Eq.(2.34) is written as

%u _ 93 du t 9 du
(2.36) P T (C 33 )+, 55 (B(t-s) 32(s)) ds + £,

which is a differential-integral equation.
Existence and uniqueness of the solution of Eqs.(2.32)-(2.34) are dis-

cussed in Duvaut-Lions [7].

Let us construct a finite element approximate scheme for Eqgs.(2.32)-
(2.34):



o= ? C.... el 4 E At ? i3 ¢S
ij ijke ke L ijke k2
(2.37) k,2 s=0 k,2
- ~ n ~ n
= (1) +o(ty)yye

Corresponding finite element B scheme may be obtained by substituting

this expression into Eq.(2.25) or Eq.(2.26).

Remark: 1In practical computations, the expression (2.37) may cause diffi-

culty in storage of those element-wise strain data € s=0,1,..,n. In many

s
ke’
cases, however, the functions Bi (.,t) take an exponential form in t, and

which makes it possible to compugzl(fl)gj recursively from ({1)251 and 522-

Our main result is that the introduction of long memory term does not
destroy the energy stability. In fact, we have the following
Theorem 6. (Energy Stability of the Finite Element 8 Scheme for Linear
Visco-Flastodynamics)

The finite element B scheme (2.25) (resp.(2.26)), with the memory term
(2.37) is stable in energy, i.e., in the sense of Eq.(2.29) (resp.Eq.(2.31))
under the same condition on the ratio At/ncmi i.e., Eq{EZ.ZS) (resp. Eq.
(2.29)).

n’

Since all the novelty comes from the long memory term f?, we show only

a brief discussion about the treatment of this term: We let

n n
H[B ,U,V] = -.Z <Bijk£ ekﬂ.(U), ElJ (V)> 3
ijke
and
- sup(B) = max sup|B.

..o (X,t) ] sup(B') = max sup
i5ke x,t! K s

ijke x,t

9
3t Bijkz(x’t)l.

What is necessary is to show the inequality

-1
7 at § At-n[Bq‘S;GS,%{Dt+D-)Gq]
t
q=0 s=0
(2.38) m
<sC{& ] ID-vP)2 + W[WP] } + C,(1+1/8) E At-W[v®]
< obyv g Libg 2 L ’
i=1 s=0
s > 0).

When this inequality is established, then the first term is absorbed by the
energy at the left hand of Eq.(2.28) for small § > 0, and the second term can
-be, thanks to the discrete Gronwall lemma, eliminated, which leads to the

desired energy stability. Now;
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= - v v . l - q-5.,:5 ~q
z At\qZSAt H[z(Dt+Dt) Bt T;v ,v']

Joat {n[BP 17855 9P] + mpP 27505 5P - H[Bp‘l's;ﬁs,AtDEGp]}

Q)

—

-5 ]t (n[e%;9°,9%71 + npe 495,05t

(I) + (I1) + (III) + (IV) + (V) + (VD).
With the help of Korn's inequality (2.16) and Theorem 2, we see that

p- . p-1 .
| 1| <sup(8)e1T ] at J e, 07 s ¢ [ atew[s],
s=0 i,j I s=0

. P21 R
CInfelanls supe) T lleg GRI L ot T fley GOl
| i =0 1.3

A

~ Pl ~
§+CW[VP] + %- T oatew[vs],

s=0
[V|+[VI] < sup(B) E At'z‘“eij(ﬁs)nz < C E AteW[V'],
s= i,j s=0
and : |
. p;l -5 ~p
|IV| < sup(B) Z At ‘E‘Heij(v )}-lsij(At-DEv )“
s=0 i,j
<C {2 pil w[v® WP
< T OAt- [v ]+ 6-T°W[At-DEV 13}
S=
p"l R V) 2 m .
<cC {%- Joatew[v®] + 7" é%-(yg)z ) “vaﬁﬂz}.
s=0 e i=1

K .
min

Combining the above estimates, we obtain the inequality (2.38).
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3. Parabolic Problems. Discrete Maximum Principle and Lz—sense Stability

It is an interesting question whether or not a parabolic scheme con-
structed in a Finite Element-Galerkin manner still retains the maximum
principle property. In this section, we investigate this discrete maximum

principle property, as well as stability in the mean square sense.
3.1 Finite Element Scheme

We consider the Dirichlet problem of the simplest parabolic equation,

that is, the heat equation:

m 2
(3.1) %%- = q 97U, ¢ in @x(0,T], (a = constant > 0),
© g=1 3x2
'8
(3.2) u = g on I'x(0,T],

subject to the initial condition

(3.3) ' u' = u in Q.

Here, appropriate smoothness of the data f, g and uy is .assumed. The weak
form corresponding to the differential problem (3.1)-(3.2) is formulated as:
Seek a function u é;Hl(Q) such that u-g € Hé(ﬂ), and that
" T du 9 1
(3.4) <=, 0>+ Z < == , 9% . . <f, ¢>, 0 <t < T, for any ¢ € H (Q).
ot : 0 9X X - o
2=1 L L
The finite element scheme of consistent mass type is defined to be:
Seek a function v = v(-,t) € Y" such that

Aa h
(3.S)a vV -¢g E;Yo and

m .
T v - . _.h
(3.5)b 5 6> ¢ Q§1<u° 5;@, 5;k> = <f, ¢>, 0 <t < T, for any ¢ € Y.

Similarly, the finite element scheme of lumped mass type is defined with the

aid of the lumped spaces Xh and Xg: Seek a function v € Yh and its associ-
ative function v € X" such that

~ A h
(3.6)a v -g E_YO and

~

V. - T A a$
(3-6)b <'a_t"’ ¢> + Q/Zl<ao X' 3% >=<f, ¢>, 0 <t < T,

axz I}

for any & € YZ and its associative function ¢ E»Xg.



110

Here, in Eqs.(3.5) and (3.6), é is defined to be a function of Yh which
coincides with g at each node points.+ ‘

As in the hyperbolic case, the scheme (3.5) or (3.6) is reduced to a
system of ordinary differential equations
\
G
where [MO;MS] and [KO;KB] are N by N matrices (N: number of nodes in Q, N:

.7, M) %{ }+ %% {‘é} = {F},0 <t <T,

number of nodes in Q) with

%<$j’ $i> (consistent mass) (1 <ic< N)
3.7y Mij = <§j, $,>  (lumped mass) 1<j <N/,
o m AT 1<ic<N
3d. 9¢. - =
(3.7, Kis = L 205 993 ( )
‘ 2=1 "o sz’ ax, 1<j<NJ.

Corresponding to the continuous-time scheme (3.7),.we make use of a
family of finite difference approximation in time with a parameter 8, 1 <
0 <1: forn = 0,1,2,..,p-1; p*At =T,

n n+1 n
(3.8) I R R N O L M N S G R !
tlgn ¢ 1"

where D, denotes the forward difference operator in time.

t
Note: © = 0  : the forward difference scheme
0 = 1/2: the Crank-Nicolson scheme
© =1 : the backward difference scheme
8 = 2/3: proposed by Zienkiewicz in [8].
+



3.2 Study of Discrete Maximum Principle
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In this section, we study .the discrete maximum principle problem of

the finite element © scheme (3.8). The key in this argument is the notion

of "triangulation of acute type', introduced by Ciarlet and Raviart [9].

The first step is the following

Theorem 6.

Assume that the triangulation Th

is of acute type. Assume also

that the time increment At is taken so as to satisfy

(3.8) Mii - (l—G)At-Kii 20 forall i, 1 < i
and ‘
(3.9) Mij

Then, the discrete maximum principle

. n+1 n
(3.10)  min{ 0, g t-, W], } At-fging
holds for n = 0,1,2,..,p-1, where
ot = max{0, max_ Ve 1, o,
max ; min
1<j<N
(3.11) fﬁax = max{0, supfn(x)}, fﬁin
‘ x€ Q
n o _ n n
and Imax = max{0, max _g. }, Imin

lsjsNa J

For the proof, see [10].

= min{0, min

<

N,

* 00tK,. < 0 for all i and j such that ifj, lsisN, 1<j<N.

n+
V.
1

min{0, min_ v },
1<j<N

-

min{0, inff"(x)},
Xxe

ag? 1.

1<j<N° J

The conditions (3.8)-(3.9) guarantee the maximum principle (3.10) of

the finite element scheme (3.8). Those conditions, however, give no infor-

mation whether or not the maximum principle holds for a given pair of At,

-

6 and a triangulation Th, until the matrices [ M ] and [ K ] are actually

computed. Also, Theorem 6 gives no guiding principle how to modify the tri-

angulation Th along with At and O, when they violate the conditions (3.8)-

(3.9). Thus, we need some criteria to check the conditions (3.8)-(3.9)

a priori.

Lemma 2.

ficient condition for (3.8) is given by

(3.12) o (1-9) B < 2
0 Kmin (m+1) (m+2)

Assume that the triangulation Th

is of acute type. Then, a suf-

for the consistent mass case,
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or by »
(3.13) a, (1-8) St < 1 for the lumped mass case.
Kmin - (m+1)

Proof is easily obtained from the estimates in Lemma 1. With regard to
the second condition (3.9), we remark that it does not impose any restric-
tion on the time increment At, if [ M ] is the lumped mass matrix, and <f
the triangulation is of acute type. While for the consistent mass type ap-
proximation, the situation becomes to be rather restrictive. In fact, the
following lemma implies that the time increment At cannot be taken too
small (and, at the same time, it cannot be too large from the condition (3.
12))..

Lemma 3. Assume that the triangulation is of strictly acute type.. Suppose
that [ M ] is the mass matrix of consistent type given by Eq.(3.7)b; Then,

if At is chosen as

(3.14) e ﬁg >
max Ze(m+1) (m+2)

then the condition (3.9) is satisfied.
Proof is given from Eq(l.2) and <<1A>i,$j>A = mes (A)/ (m+1) (m+2), IV-@ilE
= 1/Ki. For detail, see[30]. Now, combining Theorem 6 with Lemmas 2 and 3,

we finally obtain the following
Theorem 7. (Maximum Principle for Lumped Mass Type Scheme)

Assume that the triangulation Th is of acute fype. Then, the solution
of the finite element scheme of lumped mass type (3.7) satisfies the dis-

crete maximum principle (3.10) if

(3.15) o (1-6) —o% P
. (o] K&,
min (m+1)

Theorem 8. (Maximum Principle for Consistent Mass Type Scheme)

Assume that the triangulation Th is of strictly acute type, that is,
£ > 0. Then, the solution of the finite element scheme of consistent mass

type (3.7) satisfies the discrete maximum principle (3.10) if

(3.16) o (1-9) At < -2z
o] K2.
and min (m+1) (m+2)
: At 1
(3.17) o 0 — >

“max T (m+1) (m+2)



Remark: From Theorem 8, we see that the value of © cannot be taken arbi-
‘trary. For example, let us consider a triangulation with regular simplices.

Let k. = K = K. It is easily seen that I = 1/m, and that the condi-

tions (3.16) and (3.17) are reduced to

(3.18) . T W 2
0+ (m+1) (m+2) (1-8) (m+1) (m+2)

where we put A E'uOAt/KZ. In order to let the two inequalities hold simul-

taneously, © must be greater than or equal to m/(m+2), i.e.,

e

v

1/3  for one-dimensional case,
(3.19) 6 = 1/2 for two-dimensional case,

~and 6 = 3/5 for three-dimensional case.

3.3 Stability in the Mean Square Sense

In this section, we assume for simplicity g=0. We say that the finite
- . . . '\n
element scheme (3.7) is stable in the mean square sense if the solution vy

satisfies the inequality

pg2 . Til 802 ~o|( 2 rol n, 2
(3.20) s oD sz | < IV + ¢ Joat et >0,
n=0 A n=1
r=1,2,..,p; pAt =T,
where Gg = 0. L (1-0) -v".

Such a pribri estimates have been used by several authors to study
stability and convergence of discrete approximations for parabolic equa-
tions. Douglas and Dupont [11]have investigated a class of step-by-step
Galerkin schemes with the case © » 1/2, and obtained unconditional stabi-
lity and error estimates in the mean square sense.

, This problem, i.e., obtaining a priori estimates of (3.20) type is es-
sentially that of a priori estimation of the spectral radius of [MO]"I[KO],

and Theorem 1 has already provide an effective tool for this purpose.
Theorem 9. (Stability in the Mean Square Sense for Lumped Mass Type Scheme)

The finite element scheme of lumped mass type (3.7) is stable in the
sense of (3.20), if
At 2

- (3.21) max{ 0, o (1-26) —5— 1 < ———,
where min Am(m+l)
f 2 (z =2 0)
(3.22) A

L 1 m+l (T < 0).

113
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Theorem 10. (Stability in the Mean Square Sense for Consistent Mass Type Sc.)

The finite element scheme of consistent mass type (3.7) is stable in
~ the sense of (3.20), if
At 2
) e =,
min Am(m+l)(m+2)

(3.23)  max{ o,'ao(l-ze)
where Am is the constant defined by Eq. (3.22).

3.4 Some Numerical Illustrations

' ! ‘ In the following,
l X
A ] we give some numerical
illustrations on L2-
3 | : : sense stability and
' the maximum principle
sense stability (Lw-

stability). All the

examples are one-dim-

ensional; the acute-

1—
( 30)

/121
\

ness assumption is

Il

L2-stable automatically satis-

, fied.

(1) i1 shous ¢
_ . Fig.l shows the
/

~y

2 (m)

stability region for

X
{

QQ— . the lumped mass type
/ scheme, where A 1is
aoAtynz. (Mesh spacing

X ; o is assumed to be uni-
// ////. » form.) In this case,
X o | | the situation is not
/2{/ ”/’.//// I.2-stable so much d%f?eren? from
’ "’,. : that of finite differ-
)//' & L~-stable ence cases.
Fig.2 gives the cor-
responding stability
region for consistent

mass type scheme.

oL 1 | L 0 1 1 ] |6
0 1/2 1

Fig.1 Stability Region for Lumped Mass Type Scheme
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It is seen from Fig.2 that the consistent mass type scheme is more

restrictive from the standpoint of Lw—stability. For a fixed O, too small
X as well as too large A

may yield L”-unstable solution, and which is
clearly shown in Fig.5.

Fig.3 and Fig.4 show an example of L2/Lw-stable computation (Fig.3),
and an example of L"-stable, but not Lm-stable computation (Fig.4).

A |
I ®
0
]
L
3 - X
|
2 s
| ~ |
P < &
t & I
|l - | ~
i Z
| © )
bl L
|
| |
T (N) X ®
\ L?-stable
\
‘ .
\ (1m) (1)
Y ®
1 \ ////
\\
. />< " L*-stable
\\ ) ()
‘e ,o/ - & L~-stable
1/2 - “.‘_‘_;;x\. )
1/3e=-"*" /| e
I % --."‘-0
1/6x—>" . L?-stable (1) S—o—,
ol N
0 1/3  1/2 1

Fig.2 Stability Region for Consistent Mass Type Scheme
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Lumped Mass Type
Crank-Nicolson (8 = 1/2)

— 0.5+ — A =1/6"
—1.0 l I L1 1
o 2 4 6 8 10
Fig., 3 L2—Stable and LZStable Computation

B4

N

Sy

1

Consistent Mass Type
Crank-Nicolson (8 = 1/2)

x =10

—1.0

4 Lz—stable, but not L”-stable




A=1/2.

A=1/10

—1.0
0

—0.05r

—1.0 | ! | l -0.1 l | I |

(1]

(2]

(3]

[4]

(5]

[N =

10 0 2 4 6 8 10 ~0 2 4 6 8

Fig.5 Too small ) causes Lm—instability, as well as too large !
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