52

Equivariant point theorems and their applications

Minoru Nakaoka

I will report the results obtained in [1].

Let N be a closed manifold with a free involution, and M be a closed manifold with an involution which is free or trivial. We shall give theorems on the existence of equivariant point of a continuous map $f: N \longrightarrow M$. The theorem for free case is similar to the classical Lefschetz fixed point theorem. The theorems are applied to the problem of which finite groups can act freely on a sphere, and are also used to show a generalization of the Borsuk-Ulam theorem and a formula relating the semicharacteristic class to the Stiefel-Whitney classes.

Throughout this report, the homology and cohomology with coefficients in \mathbf{Z}_2 are to be understood. For brevity, manifolds and actions on them are assumed to be differentiable.

The equivariant Lefschetz class

Let N and M be closed manifolds with involution T, and assume that the involution on N is free. Regard the product $M^2 = M \times M$ as a manifold with involution by defining $T(x_1, x_2) = (x_2, x_1)$, and define an equivariant embedding $d': M \rightarrow M^2$ by d'(x) = (x, Tx). Consider the orbit manifolds $N \times M$ and T under the diagonal action, and define

$$\Delta \in H^{m}(N \times M^{2})$$

to be the Poincaré dual of the image of the fundamental class $[N \times M] \in H_{n+m}(N \times M) \quad \text{under the homomorphism} \quad (1 \times d')_{*} :$

 $\mathbf{H}_{n+m} (\mathbf{N} \times \mathbf{M}) \longrightarrow \mathbf{H}_{n+m} (\mathbf{N} \times \mathbf{M}^2) \text{, where } \mathbf{n} = \dim \mathbf{N}, \text{ } \mathbf{m} = \dim \mathbf{M}.$

Let $f: N \to M$ be a continuous map. Define $\hat{f}: N \to N \times M^2$ by $\hat{f}(y) = (y, f(y), fT(y))$. Since \hat{f} is equivariant, it induces a map $\hat{f}_T: N_T \to N \times M^2$ between the orbit manifolds. We call the element

$$\hat{\mathbf{f}}_{\mathbf{T}}^{\star}(\Delta) \in \mathbf{H}^{\mathbf{m}}(\mathbf{N}_{\mathbf{T}})$$

the equivariant Lefschetz class of f. If n = m, the number

$$\hat{\mathbf{I}}(\mathbf{f}) = \langle \hat{\mathbf{f}}_{\mathbf{T}}^{\star}(\Delta), [\mathbf{N}_{\mathbf{T}}] \rangle \in \mathbf{Z}_{2}$$

is called the equivariant point index of f.

Denote by A(f) the set of equivariant points of f:

$$A(f) = \{y \in N : fT(y) = Tf(y)\}.$$

We have

Theorem 1. If $\hat{f}_T^*(\Delta) \neq 0$ then dim $A(f) \geq n - m$. In particular, if $\hat{I}(f) \not\equiv 0$ then f has an equivariant point.

2. The equivariant point theorem — free case

In this section we give the equivariant point theorem in the case the involution $\, {\tt T} \,$ on $\, {\tt M} \,$ is free.

If M is a closed manifold with a free involution T, it can be proved that a non-degenerate symplectic pairing \circ : H*(M) \otimes H*(M) \longrightarrow Z₂ is given by

$$\alpha \circ \beta = \langle \alpha \lor T * \beta, [M] \rangle.$$

Therefore the vector space $H^*(M)$ has a symplectic basis, i.e. a basis $\{\mu_1, \cdots, \mu_r, \mu_1', \cdots, \mu_r'\}$ such that

$$\mu_{i} \circ \mu_{j} = 0$$
, $\mu'_{i} \circ \mu'_{j} = 0$, $\mu_{i} \circ \mu'_{j} = \delta_{ij}$.

For the equivariant Lefschetz class Δ , we have

$$\Delta = \sum_{i=1}^{r} \phi * (1 \times \mu_{i} \times \mu_{i}^{!}),$$

where $\phi^*: H^*(N \times M^2) \longrightarrow H^*(N \times M^2)$ is the transfer homomorphism. It is also seen that for a continuous map $f: N \longrightarrow M$, the number

$$\hat{\chi}(f) = \sum_{i=1}^{r} \langle f^*(\mu_i) \lor T^*f^*(\mu_i^!), [N] \rangle \in Z_2$$

is independent of the choice of symplectic basis for H*(M), and if $\{\nu_1,\cdots,\nu_s,\nu_1',\cdots,\nu_s'\}$ is a symplectic basis for H*(N) and

$$f^*(\mu_i) = \sum_i a_{ij} v_i + \sum_i c_{ij} v_i'$$

$$f^*(\mu_i') = \sum_i b_{ij} v_i + \sum_i d_{ij} v_i'$$

then

$$\hat{\chi}(f) = \text{trace } (^tAD + ^tBC).$$

We call $\hat{\chi}(f)$ the <u>equivariant Lefschetz number</u> of f.

We have the following theorem analogous to the classical Lefschetz fixed point theorem.

Theorem 2. Let N and M be the same dimensional closed manifolds with free involution, and $f: N \longrightarrow M$ be a continuous map. Then the equivariant point index $\hat{I}(f)$ is equal to the equivariant Lefschetz number $\hat{\chi}(f)$.

By Theorems 1 and 2, we have

Theorem 3. Let N and M be the same dimensional closed manifolds with free involution, and let $f: N \to M$ be a continuous map such that $\hat{\chi}(f) \not\equiv 0$. Then f has an equivariant point.

For a closed manifold M such that the dimension of the vector space $H_{\star}(M)$ is even, the number

$$\hat{\chi}(M) = \frac{1}{2} \dim H_{\star}(M) \mod 2$$

is called the semicharacteristic of M.

From Theorem 3 we obtain the following generalizations of Theorem 1 in Milnor [2].

Corollary 1. Let M be a closed manifold with free involution, such that $\hat{\chi}(M) \not\equiv 0 \mod 2$. Let T, T' be free involutions on M such that $T_* = T_*' = \mathrm{id} : H_*(M) \longrightarrow H_*(M)$. Then, any continuous map $f: M \longrightarrow M$ of odd degree has an equivariant point. In particular, T and T' have an coincidence.

Corollary 2. Let M be a closed manifold with a free involution T, and assume $\hat{\chi}(M) \not\equiv 0 \mod 2$. Then, any continuous map $f: M \longrightarrow M$ such that $f_{\star} = \mathrm{id}: H_{\star}(M) \longrightarrow H_{\star}(M)$ has an equivariant point.

3. Applications of Theorem 3

From Corollaries 1 and 2 we get immediately

Theorem 4. Let M be a closed manifold such that dim $H_*(M)$ \equiv 2 mod 4, and G be a group acting freely on M. Then we have

- i) G can have at most one element T of order 2 such that $T_{\star} = id : H_{\star}(M) \longrightarrow H_{\star}(M)$.
- ii) If $T \in G$ is an element of order 2 such that $T_* = id : H_*(M) \longrightarrow H_*(M)$, T lies in the center of G.
 - iii) If $T \in G$ is an element of order 2, T lies in the

centralizer of $G_0 = \{S \in G : S_* = id : H_*(M) \longrightarrow H_*(M) \}$.

Let D(2l) denote the dihedral group with presentation $(X, Y; X^2 = (XY)^2 = Y^l = 1)$.

Theorem 4 implies

Theorem 5. Let M be a closed manifold on which $D(2\ell)$ acts freely. Assume that $\hat{\chi}(M) \not\equiv 0$ and ℓ is an odd > 1. Then the representation of $D(2\ell)$ on $H_{\star}(M)$ given by sending $S \in D(2\ell)$ to $S_{\star}: H_{\star}(M) \longrightarrow H_{\star}(M)$ is faithful.

Let $Q(8n, k, \ell)$ denote the group with presentation $(X, Y, A; X^2 = (XY)^2 = Y^{2n}, A^{k\ell} = 1, XAX^{-1} = A^r, YAY^{-1} = A^{-1})$, where $8n, k, \ell$ are pairwise relatively prime positive integers, $r \equiv -1 \pmod{k}$ and $r \equiv +1 \pmod{\ell}$. Milnor asks in [2] if $Q(8n, k, \ell)$ can act freely on a 3-sphere. Recently R.Lee [3] has obtained the following partial answer.

Theorem 6. If n is even and l > 1, the group Q(8n, k, l) can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8.

By applying Theorem 4, we have another proof of this result.

R.Lee states in [3] that the group $O(48 ; k, \ell)$ with $\ell \neq 0 \pmod{2}$, $\ell \neq 0 \pmod{3}$, can not act freely on any mod 2 homology sphere whose dimension is 3 mod 8. His proof is incorrect if $\ell = 1$, and application of Theorem 4 gives another proof of the result for $\ell \neq 1$.

By applying Theorem 2 we can also prove the following theorem on the semicharacteristic.

Theorem 7. Let N be a closed manifold with a free involution T. Denote by $\tau(N_T)$ the tangent bundle of N_T , and ρ the line bundle associated to the O(1)-bundle π : N

 \longrightarrow N_{T} . Then we have

$$\hat{\chi}(N) = \langle \chi(\rho \otimes \tau(N_{T})), [N_{T}] \rangle$$

where X stands for the Euler class mod 2.

From this we get the following formula of Uchida.

Corollary. For a closed manifold with free involution, we have

$$\hat{\chi}(N) = \langle \sum_{k=0}^{n} c^{n-k} w_k, [N_T] \rangle,$$

where c is the 1-st Stiefel-Whitney class of the bundle π : N \longrightarrow N_T, and w_k is the k-th Stiefel-Whitney class of N_T.

4. The equivariant point theorem — trivial case

In this section we give the equivariant point theorem in the case the involution $\, { t T} \,$ on $\, { t M} \,$ is trivial.

For a closed manifold N with a free involution, we consider the operation

$$Q : H^r(N) \longrightarrow H^{2r}(N_T)$$

defined by Bredon [4]. This is defined to be the composition

$$H^{r}(N) \xrightarrow{P} H^{2r}(E \times N^{2}) \xrightarrow{T} H^{2r}(E \times N) \xrightarrow{Q^{\star}_{T}} H^{2r}(N_{T}),$$

where E is the universal Z $_2$ - bundle, P is the external Steerod square and \mathbf{q}_{T} : E X N \longrightarrow N $_{\mathrm{T}}$ is the projection.

We have

Theorem 8. Let N be a closed manifold with free involution, and let $f: N \longrightarrow M$ be a continuous map to a closed manifold M. Let $\{\alpha_1, \alpha_2, \cdots, \alpha_s\}$ be a basis for the vector space $H^*(M)$, and define $\eta_{jk} \in Z_2$ (j, $k = 1, 2, \cdots$, s) by

$$X = (\xi_{jk}),$$
 $\xi_{jk} = \langle \alpha_j \vee \alpha_k, [M] \rangle,$
 $Y = (\eta_{jk}),$ $Y = X^{-1}.$

Then the equivariant Lefschetz class $f_{T}^{\bigstar}(\Delta)$ is equal to

$$\sum_{i=0}^{\lfloor m/2 \rfloor} c^{m-2i} Q(f^*v_i) + \sum_{j < k} (\eta_{jk} + \eta_{jj} \eta_{kk}) \phi^* (f^*\alpha_j \vee T^*f^*\alpha_k),$$

where v_i is the i-th Wu class of M, and ϕ^* is the transfer homomorphism.

By Theorems 1 and 8, we have the following generalization of the Borsuk-Ulam theorem [5].

Theorem 9. Let N be a closed manifold with a free involution T, and let $f: N \longrightarrow M$ be a continuous map to a manifold M. Assume that $c^m \neq 0$, and $f_\star: \tilde{H}_\star(N) \longrightarrow \tilde{H}_\star(M)$ is trivial. Then the dimension of A(f) = $\{y \in N : f(Ty) = f(y)\}$ is at least n-m.

Theorem 8 can be applied also to prove Theorem 5.

References

- [1] M. Nakaoka: Continuous maps of manifolds with involution I, Π , Osaka J. Math (to appear).
- [2] J. Milnor: Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), pp.623-630.
- [3] R. Lee: Semicharacteristic classes, Topology. 12 (1973), pp.183-199.
- [4] G.E. Bredon: Cohomological aspects of transformation groups. Proc. Conf. Transformation Groups, New Orleans, 1967, Springer-Verlag, pp.245-280.
- [5] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps. Springer-Verlag, 1964.