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Introduction.

Having split the category of all ergodic normalized
dynamical systems (2, %, m, T) in the measure-theoretical
sense ‘into isomorphy classes, one would next try to establish
a system of nice representatives in these classes. The
definition of "nice" is, of course, partly a matter of taste,
but a rather natural approach is offered by topglogical
dynamics. In that theory one considers systems (&, T) where
§ 1is a compact metric space and T a homeomorphism of Q
onto itself. The natural analogon of ergodicity in topologi-
cal dynamics is minimality, which means that there is no non-
empty préper subset of Q which is closed and T-invariant.
It is well known (see Oxtoby [17], Keane [14], Jacobs-Keane
[11]) that minimal invariant sets, carrying always at least
one T-invariant normalized measure by the Markoff—Kakutani
fixed point theorem, may quite well carry several ones. If
one, however, imposes the condition that there be exactly one
T-invariant normalized measure m 1living on the minimal
compact metric £, one arrives at the definition of a strictly
ergodic @, T), and these give rise to well-defined measure-

theoretical dynamical systems (Q,ﬁﬁ;nh’T) which are, in



addition, ergodic, and thus candidates for the task of being
"'nice" representatives in the isomorphy classes mentioned
above. The question "Is every ergodic (Q, %, m, T) measure-
theoretically isomorphic to some strictly ergodic system?"

or, more suggestively "Can every ergodic (m, T) 1live in a
strictlj efgodic (2, T)?" is at present practically definite-
1y answered, and‘it is the purpose of this article to give a
sﬁrve? of the answers obtained so far. - The time-continuous
analogon of the prqblem’and it§ solutions will be included

- here. I am, however, not to govinto\a description of the
combinatorial devices which have been invented in order to
obtain even mechanizable constructions of strictly ergodic
representatives of various kinds in shift space (see Kakutani
[13], Hahn-Katznelsbn [7]1, Keane [14], Jacobs-Keane [11],

Grillenberger [5]1, [6], compare also Jacobs [10]).

§1. Strictly ergodic generators.
It was R. Jewett [12] who proved first the following

Theorem 1.1. Let (9, ﬁi m, T) be any weakly mixing

dynamical system such that (ﬂ,jﬁ,m) is a Lebesque measure
space with m(9)=1. Then there exists an isomorphic dynamical
system living in a strictly ergodic (R°', T')‘ where Q' 1is

a totally disconnected compact metric space.

The following improvement is due to W. Krieger [16]
(see also Denker [1]). |

Theorem 1.2. Let (9, iz‘m, T) be any ergodic dynamical




system such that (9,55, m) 1is a Lebesgue measure space
with m(Q)=1. |
1) If the entropy h(m, T) is finite, then there is a
strictly ergodic invariant subset of the shift space with
[thm’T)]+1 symbols, which carries a dynamical system

isomorphic to the given one.

2) If h(m,T)=~, then there is a strictly ergodic
compact minimal invariant subset of the shift space with
countably many symbols, which carries a dynamical system

isomorphic to the given one.

This theorem may equivalently be stated as a theorem
on the existence of 'strictly ergodic generators”™ in the
original (Q, %, m, T) together with a bound of the length

of the generator in the case of finite entropy.

The following theorem of Denker [2] more or less brings

the theory to a definite conclusion.

Theorem 1.3. Let (9, 22 m,T) be as in theorem 1.2.

Then for h(m,T)<~» the finite strictly ergodic generators
are dense (with respect to the entropy metric) in the set
{0 |a a finite measurable partition of Q, h{(a, m, T)=
h(m, T)} of all partitions with maximal mean entropy (this

set is closed).



§2. The continuous case.
In the time-continuous case one considers a one-parameter

group of automorphisms of a given Lebesgué space

(Tt real
9, &, m, T). Under mild regularity assumptions this system
(e, ﬁi m, (Tt)t real) can always be viewed as a flow under

a function, and this representation is one of the most effec-
tive tools in squeezing it isomorphically into a strictly

3 1 1]
ergodic system (Q', (Tt)t real)'

In the time-discrete case we chose (two-sided) shift
space as an appropriate topological system in which sub-
sequently a strictly ergodic sYstem was to be establised.

One of the most important question in the time-continuous case

is what is to be the most natural time-continuous analogon of

shift space. Physical considerations lead to the choice of
Lip1 = {w]|w:R » <0,1>,‘lw(s)-w(t)| < |s-t|}

of all unit-interval-valued functions on the line which have

Lipschitz constant 1. It is obviously a compact metric space

with the compact-uniform topology, and the shifts T, (t real)

defined by

(Tt w){(s) = w(s + t) (s real)

~form a nice one-parameter group of homeomorphisms of Lipl.

The points of Lip1 may be viewed as the possible outcomes



of a time-continuous experiment watched by instruments which
have a certain inertia. '

A time-continuous generator theérem by Krengel [15]
(and 1ikeWise another generator theorem by Eberlein [4])
allow to embed every reasonable flow into Lip1 with its
shifts. The task of making these embeddings strictly ergodic
~requires a formidable arsenal of techniques and has been
settled in the form of the following theorem by Denker-

Eberlein [3] which strongly improves my result [9].

o ime -
Theorem 2.1. Let (9, &/, m, (Tt)t real) be a time

continuous ergodic dynamical system representable as a flow
under a function, such that (h, Zﬂ m) is a Lebesgue space
with m(Q)=1. Then there is an isomorphic str{ctly ergodic
subflow of Lipl, with its shifts as transformations.

It seems to be difficult to even fdrmulate an analocgon
of the discrete-time density theorem 1.3, for the time-
continuous case. Nothing is known about time-continuous

analoga of the combinatorial constructions in [13], [14],

{11y, [71, [5], [6]..
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