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;sacu"_sxi% 1 Introfuction-

;Férkth; Bernoulli scheme B (»%3.., %—) there have been studied various
'kind of propertie§ ¢ the fransversal flow, the cenfral limit theorem,
the coﬁstrucfion‘of normal sequence etc. It is the case for the schemes
B ( PyseeaPy ), pi:Z_O , g:§i=l except that the transversal flow must be.
replaced by the transversal field and that the construction of normal se-

quence is slightly complicated. - The difference occurs in that the me-

/
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trical entropy does or does not coincide with the topological entropv.
( For such difference a synthetic treatment will be given in section 6 by
introducing a notion of stafistical‘physics, namely, free energy or pre-
ssuree )

The situation is similar for the Markov schemes, and. so for the dv-
namical systems of finite type with invariaﬁt measures of maximal entropv
( or free energy ). Let us restrict ourselves to study the dynamical
systems which can be realized in a certain natural wav by subshifts not of
finite type, but close to finite type, and, findifig natural invariant
measureé; we shall inYestigate the properties mentioned above for Bernoulli
schemes. »

The main obfects which will be #reéted are ﬁ>7tranéformations (?>’l)
and E QtransformationS\(:é =(§%,.,@Il), ﬁi:>l ) since theyv ﬁave the follow-
ing properties which fit for our purpose: -
(1) Except for a countable number of ﬁrs or @: s ( which are algebraic
and correspond to the case of finite type ) they ate not of finite tvpe,
but close to finite type so that the sequence space obtained by realization
can be well approximated by Markov subshifts.

(2) The Q - and the g;transformatioms are“realized by the sequence
spaces of the same type;énd thé natural inVabiant'meaéures; - and corres-
pond to the measures on the sequence’ space with and without the maximal
’éntropy, respectively.

(3) in general every measure preserving transformations with finite en-
tropy can be represehted as f-transformations for some increasing f on

Lo, 1, and the 8 - and the é:—transformations are €lementary and typi-

b

cal. examples among f-transformations.
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SECTION 2 Definitions and Preliminaries

In this section we state the definitions and fundamental theorems for
} -transformations and related notions for the sake of future.
rd

Let (5 ‘be a real number such that rs—l<§3 < s for some integer s> 2,

the B —expansion of a real number t is the expression of the form:

e : . -n-1
“(1) t= aalf%oangb :

wh'ere’ a_; is ah‘integer and; ~for n20, afA = {O,ln...,s—l&
The éxpressioh can be uniquely ‘determined via fﬂz—transforrmation which has
been studied by Renyi [ ? 1 and W,Parry [ 3 ]»? and is defined on the umt
*interval [0,1) by the relationy 7

(2) TFtEPt (mod 1)

Let ‘K? be the map of the unit interval [0,1) into the infinite product space

FONEE AN: ﬁ O,l;«'; vegs-l & N defined as follows:

(3) ch @) =k , if kBt ™M < (D) 53"1
where -r;t =t Tf;‘ t = Tg(T%l't) (ny0)) , and )zF (t)(n) is a n-th

coordinate of sequence RF t) .

Tt is proved in [ % ] that the expression (1) holds for an'= Kﬁ(t)(n),
- i ‘ .
nz0, a.,=0 in the case of "~ t€fo,l) :

in other words

an. Ct= f‘i('acjau))

where

_ = -n-1
(%) (w) = 2 wm B

| e
for we AN

Let Y\,) ‘be the image TCF([O,J.)) and X[3 its closure in the product space

"with the product topology.
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Definition 2.1. The subshift (X? , Q%) will be called ?msubshift.
In general the transformation of the type
T () = £(x) (mod 1)

where f is a map of [0,1) to [0,+00) is called f-transformation.

If f is piece-wise continuously differentiable,“ £(n) = 0‘, and
f' is positive and bounded, then the symbolic structure is the same as
Xis for some ?

The space (), is endowed with the lexicographical order w>w if _

and only if there exists an integer n such that w (k) =w@'(k)  for k<n

. N
and wn))w' (n) , The shift transformation on the space L)L =A will be

denoted byg-: TwW(n) =w(n+l) . We set
(5) Té’l = Lip Tgt
and ' ]t?(l) = max X? = CU@ -
Proposition 2.2, (Representation theorem)
1. g\u';t§ :'}ty—\'? , on [0,1).
2). j(? : [O,liﬁ?X% is an injection and is strictly ordempreserving,

i.e. t<s implies that th(t)<)§$s) .
3). F%rﬁ? is identity on [0,1]
n), . = Th o on Yg © .
S (R i p
5). fé :X?~§[O,l] is a continuous suriection and is order-preserving,-
i.e. < implies that fﬁ(w) < TP(“")‘
6). The inverse image j$_l(t) of t€[0,1] consists either of a one

point ﬂ?(t)’ov of two points J{g(t) and sum‘ﬂ%{s).
1 . s<t

The latter case occurs only when Tgt = 0 for some nz20 .
7). In particular, ;PP(QJ) is one-to-one except for a countable num-
ber of pointwe X? . '

The sequence a? is called [B—expansion of one, and plays an elemen-
P .
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fary role for the analysis of sequence space Xbas‘we shall see later,
For example,
Proposition 2.3.
(6) XF = {(ue AN{O~nuusa¥ for all ny0 %

For the séke of future we introduce an important class of symbolic
dynamics. A subshift is a pair (X,Qv) ﬁhere X is a @--invariant closed
subset of the product space AZ or.AN'and the letter O~ stands for the re-
strictionﬁ'\x to the subset X of the shift transformation.

Thus subéhift are topological dynamics with canonical generator
{[a] ] aeA } . Here for a word u over the alphabet set A, - in bther
wbrds for ﬁégglAn, [ul] denotes the corresponding bylinder;set ;

) ={w|wo = s,  oxksa |

if u = (ao,..;, an)(ake A).

Definition 2.4. A subshift (X,0-) will be called Markov subshift

{ or subshift of finite type ) of order p if there is a subset W bf-Ap+l

( p>0 ) such that

(7) X =M(W) = {U.J.l(u) (n),...,wW(n+p))€ W for any n § .
"The set W will be called the structure set of Markov subshift (X,Q-).
The structure matrix M = (Muv) is defined as follows:
u,veA o
= : if . = =
(8) ﬂuv {1 if u (ao,,..,ap_l), | v (al,..,,ap)

for some (ao,..f,ap)e W
0 otherwise.
Using above definition, we can see the following result,
Theorem 2.5. Let P>>l. Then the following three conditions
are equivalent (py1)
bl). The subshift (X?,G“) is Mardov and its'order is stfiétly equal to

P.



2). There exist integers a; s i=0,...,0 . 0< a;<s , ‘such that
‘ -p-1 —5-1
a) 1- 5 b= j}%(aj.(? ] .
b) 1- ﬁ“P“1> {gbaj+k @-j—l . (k=1,...,p)
. where we set an+p+l =a, for n2> 0.
3) The sequenc‘e % is periodic with period p+l,
i,e.
a') G\p+lh)§ = UJ$
and 7 |
b') 62wy < for any q = 1,...,p.
» P ‘ ; s sP
Thus the {S—Shifts ar:U?Markovian for countably and denselv manv
@E (1,+00). The following proposition shows that the set X’ﬁ is well-
approximated by Markovian X§ 'é.
Proposition 2.6. ’ ’ , - '
1. If . l<(3§0(_‘, then Y‘;C Yo
2). For any §3> 1, |
a) . XP‘=J¥ Xy - b) g = J:EX“

Let wn(XF ) is the words of length n which appears .in F—subshift
(X B o-) , (nz1). - These word sets are also endowed with lexicogra-
phical order. Let
0 ‘ .
= ) € f .. W :
W { (al, ,an) Wn(X?) (al, ,an_l:an+l) & n(XF )g
(9)

0
W_ogw) _ :
nkW) - i uev € wn+k"‘(xﬁ) l Ue v e wn+k g

where nyl . ue Wk(XSS), k>0, and the symbol "-" denotes the con-
catenation, i, e.

a_,b ..,b )

(10) uv = (a5,00.5a ,by5. .0 5bp

if u-= (al" "an) and v = (bl""’bm,) ( the number m mav be infinite ).
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The emﬁty word € is a symbol such that €°*u = u'g = u for anv word u. N
Fipally we set Wg(u) = { u k
Proposition 2.7. For any k20 and a word ueWk'(‘X F)
R T o RV |
Wo(u) = WIiW () (U?[O,n k) Y 4 max wn(u)k
. s - . - _ n oo K
In particular Wn(f,) =W = kgowk w?[(),n k)
where
(&)F(O),.;.,a)?("ié-l)) G>1D
g€ (empty word) (§=0)

We note that the sets [w] = { we XF l (W(o),...,win) = W} )
W& ﬂn ﬂ(‘x?} form a éartiti_cn ‘of the set X  and that
f? ([wl) = { ?? {w) l we [w] g , WE Wn+l(X) form a covering of the
unit interval by intervals, any twa of which have at most one common point. .
Let Rp(w} be the length of imterval %([w]).

Now we can obtain & convergence theorem on the number of words.

Theorem 2.8. Let ue wk'(x?) and Mg =7£$Q(n+1)(&?(n)'g3 o=k :

a) Lim 8 Pcard ((a)) = BoRe(w)
an poce W) = Fn
| kot
b Lin B7erd (W (u)) = £ s

‘Reﬁyi { ?] showed that there exists an invariant probability ﬁeasure
for ? -transformation on the unit interval [0,1) whic’h; is absolutely con-
tinuous with respect to Lebesgue measure and has entropy lolg ? .

That measure induces a sbift—invériant probability rﬁeasure
d p?(_w Y= ‘f,P(gJi)d‘f‘P(w')v on X? »* where

g ; _ -n-1 -
12) y?(w) = gow(mg%



a P, is Stieltjes integral on the ordered space Xg .

P

(13) £o (@) = Mz~ 7 53““”11( w 5 7o)
- ’ ' np0
(1) Mg = 75 (n+l) J)g;(n) -h= 1
" nz0

and I(w = n) denotes the indicator function of the set &cu ‘ w = n &)

The proof of invariance of M’SS is immediate in our svmbolical form.

We note that the density Function 7S (w) is the unique solution (up to sca-
lar multiplication) of Mf = f where

e(w) =BT 2 Far )

a.we X?

( See Section 4 and Section 6 )

Defiﬁition 2.9. The endomorphism (Xgﬁjﬁ,&) will be called S’g..,
endomorphism and its natural extension (‘)?\5 ,It?,’(]‘) }»»‘au‘tomorphism

The g:b_: ~transformation ( @;«“ (ﬁo,. MR @s-l) R @ ha: and
2 -1 < -1
iee-i <1<s 1 g% ) is an £- transformatlon w1‘t§

£(t) ={f>]-<t)+k S iF R RS PR (53’1 k=0,...,s-1,

i<k igk

It has also a natural invariant measure ,M? in the sense that:it ‘1'_s abs.olute;
ly invariant with fespecf to the Lebesgue measure. (VSee Section U4)

The realized subshift is (X%,O’*) for some F))l . The difference in the
measure-theoretical study of ‘them reflects the fact fhat the entropy h(ug)
less than the topologlcal entropy log}? = h( },LF,) From another point of
view, | there are various shift invariant measures /L g oD the same space

X§ _‘ and corresponding englom??Phisms (,Xg_ ,0‘,{%{3)» (or z:autqmgrnhivsmsbv (S{-P’-G:’}If))

among which (X }g s Ty u?) is characterized as the system with maximal entropy.

SECTION: 3 Periodic Foints and Normal Sequence

Let us show two results obtained from the symbolic structrre of j(,’j—
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shifts. The location (di gtribution) of periodic points is important
for the study of dynamical systems.  For examble, from the denseness
it follows that there exists a regular invarant measure and the iﬁcreasing:
~order of periodic plints is reflecfed to the ergodic propertv of invariant
measures. | |

These properties. of periodic'points are, however, known only for
the dyﬁamical systéms of finite type, 1. e. the systems which can be re-
alized by Markow subshifts. The subshift (X% ,ﬁ\)\offers an example of
non-Markov subshift with these‘properties.

On the other hand normal sequences are constructed for Bernoulli schemes
’(Champernowne) and Markov séhemes (Postnikov). The construction depends
éﬁ‘the fact that the invariant measure is the most,unifoumlv‘distributed-on
‘ the gihén sequence space. This is also-possible for owr systems.

Now we sketch the two facts mentioned above. Let

P :Skw\ ~Pws= w, weX } »
n o

fﬁen'
P = we U nol {uewfm-k’ w}[o,k)-uewn}

~n’ n k=1

_ o el oo
Card(Pn) = Card (Wn) + kzz\lc:ard wnAk( a/);[o,k))

Applyimg the: propérty 2785 =c0f _Saction 2=iwe obtain
Theorem 3.1, The periodic points of (X? ,0) is dense in xﬁ R
and they increase exponentially:

lim @‘nCard (Per, (Xg,0)) = 1
. D0

In particular

az-—l;pno%. log Card (Pern(X?‘ ,O9)) = log)’ﬁ= ent(X\;, ™)

We nofe'that the conclusion of Theorem 3.1. holds also for Markov sub-



shift.

Generally we can show the following property én the periodic Points.
(1) For a subshift (X, o) the periodic points are denserin X if and only
if it can be accesible from below by Markov subshifts in the sense that
X = closure ULy : (V,6~) Markov]
2) If the periodic points‘are dense in X and

v$MBrkoy €0t (¥, 0%) = ent (X, Q)

then the periodic points increase exponentiallv;

lim i-log Card [ Per_ (X,0-)] =€ (X,o )
neoll n ;

For the Bernoulli scheme B( %3£-,..5%§) . Champernowne constructed
"PP : :
the following sequence : Let Vn be the set of all words of length n,
n_'n n: . . . .
and let ViRVp (e gvtpn be its elements in lexicographical order.
Then
- vl vlvv2~ V2 o o Vn+l
[7%) lo......o p0 l.... p;_).....o lc—....g Dno l:...

The normality follows from the "uniform denseness" of the orbit of 173}

in the sequence space.

Analogically, setting v = i V§\§;.... §v§ } “to be»thé set of ail
words of length n in X B> Wwe can prove: o
Theorem 3.2. The sequecce Cw ='vic...,.ov$<,v§o..¢v§o...

: 1 2
is the ﬁ -normal sequence, 1. e.

lim—Ii;Card{,ﬁ }osg<nk, W), 0+k) = u%;}ig[u]
50 ' v .

SECTION 4 Ergodic Properties and Isomorphism Problem
In this section we study the ergodic properties, including certral
limit theorem. We shall sketch the construction of an isomorphism of

? -transformation (X&3 ,U’,r?)to a mixing Markov automorvhism using the
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uniqueness of invariant measure with maximal entropy. Although fhé re-
sult can be generalized t§ é-_- (po,“ ) " ﬁ'sﬁl)nautomorphism we must intro-
duce a new not.ioni, free energy. - - A direct "Vet"ﬁ?ig?i‘.cation of Ornstein's

weak Bernoulli conditiom is give:g in k4.3. In the last Ur.vlt. ) thg cent-

ral limit theorem is studied for our cases,

Theorem 4.1, A é@ﬁﬁ%@ﬁhi&fﬁ is isomorphic to a mixing Markov
automorphism, | |

Theoren 4,2, A RP-autowerphism is isomorphic to a mixing 'Mai;sgov
automorphism, |

Let 35835000y be the ﬁ~ or @r«fsxpansion of one,
and

i-l)

Tlw) = sup {1121, (@(1),..,w (1) = (a_,..,a
e {o,...,00]}
‘The isemorphism § fs given by
i ir W € OJ‘(@;i) iz1
50 (win) = |
| ~w(-1) if we g‘n(téﬁ)
Then: the image of ¥ is contained in a,Mér?cgv subshift (771{?4),0‘;) over

a symbecl set I’ = { P'('éfl),, o =1, Op:dgnye gdoj'where

1) if  d=j#l<oo, if is1l, jgo, or if i=§=00
if 1< ig0® and i=j+l, if izl and 1<js00,
or if i=eco and j<po ,
Hie = 13m sup M,
and
2y M,

o othérwise
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Lemma 1 If M verifies (1), then the invariant measure ;LM of
(m(M).cr) with maximal entropy is unique and Markovian : the stationary

measure (Tfi, ie¢ I) and transition propability (pi‘i’ i,jeI) is

T, = x =, x, /]
i X:Lyi ZJX]V] Pi_‘] Mqu'] f Xi
9

where
st (i21)
X,
1 =
‘ -k-1 .
éOMkf‘ (i%0)
1w K1 '
J 3 St (32 1)
y]- -
1 N GESR )]
and the value P is the unique positive solution of the equation
L sy ekl I
1= M s ’ M = oMk

The entropy h(/AS = log$ = ent GNL(M),0)

Théﬁ, the image 50(/4,.4/3) must coincide with A M since h(Y (/Ll/s)) = log/g
and § = ﬂ in our case (2).

Iﬁ the casj of éftransformation we use‘the notion of free energy
instead of topclogical entropy, i. e, we seek a measure A Ffor which
the  function ‘

fv(7L) = h(A) —jUd?\
attains the maximam for a suitable function U on ML M). (See Section 6

1
for the general definition.)

Let [;é(w) = U,é(w (0),« (1)) be giiy.e#x by
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log)B_i i¢0 jg0, or 4>0 and a_.|>|i|
log FI\‘L ’ i=2, 440
U“g(i,‘j) - log/3aj—l o i=g-121
T+ 0O , other*v;rise
Lemma 2. The invariant measure VU with maximal free energvy for

U is unique and Markow ;

-1 -1 -1
1 igo ‘ }S—J,ﬁN izl i Fao”"Ba'i-l ign
5 = ’ X, = 1 A 1 =1
'I;é‘l izl , ;.l F;‘l o ipo2
Poo-Pryy |

In [3]1, there is given a general condition'fc;r the uniqueness oh U,
calied Perron-Frobenius typé. |

Lemma 3 ([ 31) Let U be of Perroanfobenius type on 12,
An automerphism (X, T,/).) is iéomorphic to '(IZ,O‘, )/U) if there is bi-Borel
injectioﬁ Sa of X into IZ, such that for{some/l,( —ih‘c—egrable functions V(x)
and F(x) ‘ ;
(1) o @ =P | A,
(2). 'U(,S"(X)) = V(x) + F(x) | ‘/u.—a’.e. “andl f}’ 94/\ :
(3 RV = hG0 -fv . |

]
o
~

Now Theorem 4,2, follows easily from these lemmas setting 50 ?g
»aﬁd U= U# ILLSL}}QW obvious that ("f,o 5 J,@P)*is Bernoullian.
But we can also s}ra# the following. |

‘i’georem ‘+;3. The '/B;automorphism X ,o ,/(—}F) satisfies the Orn-

‘stein's weak Bernoulli condition :

in s 7| @030 67PN - UMD |- o

ksw p u,veAP ‘
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For the proof, let us introduce an operator S = SP s
s¥(w) = BT P w)
where the sum is taken over. aeA ’ such that
a: wbz a'u)(O)*u)(’l)... & ‘Xﬂ
Lemma 4. SF is -a nonnegative operator on the space of Borel func-

tions on XS and satisfies the following properties :

a) S sPc})(m.}L(w) d}?,(m . f q;(wn,b(w) afa(w)

X

wherever Ci) &L (Xﬂ’ d_f;e and ’y,e 1 ()36 df(g)

In particular, SIG is a nonnegative contfactlon operator on L ()35 dfg)

such that

é s (w) afa(ew) = i#ﬂw)d%(w)

£
b) 8s is a bounded operator on L (X d;a) and
lim sup S(SCF(“)) = - 3
nsoofi b, < 1 S{B(I— )
¢) - Let é\) be @ continuous function on X;g

"llm “ Sﬁc‘) C(‘P)f’s “- 0 " “where C(‘f’) 543 dS;g

“and the convergence is uniform on the set é }1—7)1 5 @

where ' _
={§I"¢ L< 1, Ct)(_w) depends only on wJ(k), O0g&ksn }

Sketch of the proof.

a) is trivial. " b) and c) follow from Theorem 2.8. on the classis”
fication of words in X/sj‘and’ the convergence of /3—11 Gard (Wn(u)). We
only note that the proof is completed by ’aDDroximatin‘g g bv ‘th'e operators

s%(m) .

n d _ —kz, (v- [0,5) W) .
s"(m) P (w) = ?:0 Vewk i5a A
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Proof of Theorem, The Ornstein's 1s equivalent to the following
condition.
(®) $a (to7) |
K3to T $e -k n # /LL S /u./U.
Now we prove that the measure)%a satisfies this condition.
It sufficés to show (%) fom/bg. It follows from Lemma 4.a).
o _ A K+ 0
Jo v .
' - - ok#n
—j[v] s g‘)%) d‘%’
ﬁh@ﬁqﬁere

sl g;gnl o Soomco |
= veA !gvj k+n(4>f ) - (HD 4 £a dj;e I
\S[ k*n«bffg) - (J¢ aup) ‘f“ldff -
Applying ¢) of Le.mma 4, we can show
Ak — o

as k-» 0o unifbrmly in npl

i1

f‘imligf we s‘how‘ the cen’tralv 1limit theorem for ﬁ—transfoma‘tions
'Tflé proof depends only on the following estimate of the operator
Sesper g : |

' me ’f'here exists'a sequence q/’(k), k20 such that

-+

#(k)2+ , for some & > 0

;2) ” G - ey f/, ” <ol 1€l

for any nz 0 and any tame function SP on X/B of length n, where

(P = S?,df’ﬁ

From Lemma U4' we can easily show the followings :
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Lemma 5. For any Borel subset B of [0,1)
| mp(®) —A(T;;ks) [ERZCORNGD (x 0)
where A 1s Lebesgue measure. » ‘
Lemma 6.  The canonical generator R on [O,l) satisfies the strong
mixing condition of Rosenblatt ;  there exists a sequence ?(k), k21

. h- l
such that for any h, k21, AC 7'( R) any measurable B,
i= 0

[)U.?(A,\ 7~ (cthgy - My (), @[ = Puo
and | M?

g

Z Cj)(k g for some § > 0
k=1

Then we can apply the following theorem ( Ibragimov Linnik (151
and prove the following.

Theorem .U, Let §>0 be as in Lemma 6.

&
¥ rer?t ([O,l),ﬂf) ,  and

Fle-g e 1) . <+

k=1 ] 0 e
(fo,1), //Ljs)

then
02 = E (F - B (£)% + 2% 5, 16 -2 £)(£-Th -E, £)I<+ a0
H¢ e A
and
Z. (fﬂ‘] - Epfl<z{ = % (z)
n->0 fifﬁ =0 M }? ? SR
lim W) - )<z 1= P (2)
Lo B e mOss g
. . 2
2 Lt
’ 2
20~
where z) = 2 e dt , (z) =1 (z>0)
ol = =" 3,6
Using the property of 3&1 TéiR . _‘wé can show that Holder cintinuous
' i=0

functions and functions of bounded total variation satlsfy the condition



of Theorem 4,4,
If the &xfamsion . of one is periodic, then the natural generator
R satisfies the uniform mixing condition and the central limit theorem holds

for wider class of functions.
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SECTION 5 Construction of a Transversal Flow
For automorphisms (X,T,V) with intensive mixing property it

is often the case that there exists a flow {Ztk on (X,T,y)

—e< T
such that
‘ZtT = szt _x <t 400

Y.G.Sinai’[ﬂpj proved that an automorphism is K-system if there
exists such a flow, which is called transversal flow of T.
The typlcal examples are the quasi-periocdic motions for toral
automorphisms ,the holocycle flow for the geodesic flow on
1. compact Riemannian manifold with constant cufvature,
stationary Marko? chains with maximal entropy, (over Mérkov
subshifts) etc. All these examples are automorphisms of finite
type. But for non-Markovian automorphisms‘can a Eransversal'
flow be constructed ?

We shall show the‘existence of natural transversal flow
~ for P-automorphisms which are not of finite type in general.
In order to construct a fg—transversallflow for ﬁ—autpmorphism
we use S-representation.

Let us definé the basic automorphism B on XE

1

Bu_=w_ if wec,

and W =(...,u (=k=2),w (=k-1)1,0,...,0)
(See section 4 for the definition of Ck)
The transformation B ié a generalization of the adding machine.
Then é probability measure L? on (Xg ,B) is defined, but the
details are omitted here. The ceiling function g, on (XF ,B, )
i :

‘is given by

[ ( ;k

g, (w)= .. ) 1f e

i

k
The S-flow constructed by (X; »B,1.) and g, gives aitransversal

flow since the <“-automorphism is represented as the transformation

(5“3—,3’») ( :"—,a,Ti;j y)



a= %(y)(O) on the space { (w™,y) Jw— eXE » 0y <)
MWNote that thé ceiling functionvg/S is generally Aot bounded
‘away from‘zero;)
Thus we obtain the following
Theorem 5‘1' For lﬁ-autqurphisms (Xf ,G‘,ﬁé )
(1) We can construct a transversslaflow {%2 jmve <t o}
(2) The transversal flow § %f ;-o§< t< +tﬂ} is ergodic and of
vsﬁtropy o[
t(3) If ;Sn—fsﬁ»',then ziﬁnu)va z;ui in the natural topologg !
of A% for all t and a.e. weX o
Remark The spectrum type of the flows {Zg 3 —te< t< + o8
or of the basic autqmorphisms B is unknown except for the case

where
(L7 D A
SECTION 6 Equilﬁﬁ&rim& measure and Transfer Matrix Method

In this case it has discrete spectrum.

. In the preceeding sections we have studied linear mod. 1
fransformations éndowed with natural invariant measures in the
sense of absolute'continuity with respect to Lebesgue measure.
These transformations have been considered as pairs of subshift
and function called potential,and the natural invariant measures
are characterizes by the maximality of free energy. This
approach to the measure-theoreticalstudyy of dynamical systems
is not original and can be found in the theory of statistical
mEChanics, where the natural invariant measures are limiting
Gibbsian distfibutions so that it is meaning}ess to speak of
absolute continuity.

Let us introduce several terminology borrowed from statistical

mechanics and give g prief sketch of the relation to our results,

sha finally the f-expansions are discussed.
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6.1. Equilibrium measures
Let U be a continuous function on a sequence space X which
will be assumed aigubshift of finite type, i.e., a Markov sub-
shift over finite symbols. »
DEFINITION The free energy of shift invariant probability'
measure ¥ on X for pétential U is
fU(f’)=h(f),W‘)— quﬁ i (¥ being shift)
If>fU([’)=p(U)=sup fU(l)), thenv/J is calledyeqﬁilibrium measure.
DEFINITION [Sinai's form] An invariant measure » is called
(1limiting)Gibbsian measure.with boundary condition Yoif if
is a vague 1imit:‘point,ofvmeasures f’n’m,n,m:zo
Sgd Pn’m= Sg expé —I_g%UoU’k}fd/U/feng -I_nZnUaG‘ki ap
DEFINITION An invariant measure M is called (limiting)

Gibbsian measure with periodic boundary condition if it is

a vague limit point of the measures JP(n),rle.

di/’-"(n)= =

n-1 7 n-1
exp% - s ek, }/; ~ ( > .ok
per =0V e By & expy — 12U C J

n(x) : 7 perﬁ(x) T
It is easy to see that p(U) is convex,monotone increasing
continuous functon of U with respect to the sup-norm and is

invariant under the additon of functions of the form F-F.o .

Let us introcuce aclass of pctentials D: U<D iff 2L [§g<:oo
neo n- ?

[U]n=sup§[U(co )=U(w )| : (k)= mrc_i%) x| < n}
Then we can find , for any V€ D,a potential U& D such that
U(w) deﬁends only on the semi-infinite sequence w(n), n=0,1,...

We obtain the following theorem : Let U(«)=U( w(n), n>0).
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There is an equilibrium » measure for U if and only if
the “Jacobian |
Ip ()= P((0)/ Tw)
is L(NM )-1limit of the functions Fﬁ exp[—Uy-p(U)]/Fnﬁr ,n=0,1,...
In particular if there exists a function h such that
Xh(ae)exp[-U(acw )-p(U)1/h(w)=1
then j=h exp[—U—p(U)]/hm' for any equilib®ium measure.

6.2 Transfer Matrix Method ‘

The existence of equilibrium measure follows from the compacf—
ness of the seQuence space X and the lower semicontinuity of
potential U.It is difficult to obtain the uniqueness,which
may actually be broken as 1s weil known in statistical mechanics.
(See also Appendix)Theffollowing theorem,which can be proved
by so-called transfer matrix method,seems the most general
except the Lee-Young theorem:

Theorem 6.1. t ] Let X be a Markov subshift over finite
symbdls which is ﬁuniformly transitive", i.e., for any cylinder
sets[U] and [V?idf length n,fgjﬂqrn_t[vjiﬁkif X n [Q]¥¢ and
X}\[V]¥ ¢~,whefé the number f depends only on X and does not
on particular cylinder sefs. If a potential U belongs to the
class D,then there exists a unique équilibrium measure ’MU
and the system‘(X,d',/uU) is Bernoullian.

'Furthermore the Gibbsian measure is unique and coincides

with /UU for any boundary condition % and also for periodic

~boundary condition.

Remark (i) The Theorem generalizes the result of Sinail/! J.

(ii) In case of X=AZ

the uniqueness and K-property is already
shown in Ruelle[io ] and the Bernoulli property is proved‘by

G.Gallavotti,Ising Model in one dimension, Comm. math,Phys.32
183-190(1973).
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The poof is given by sharpening the estimate in Ruelle's

method called transfer matrix method. ket us introduce an operator

S.. on the space of functions defined on the semi-infinite

U
+

sequence space X :

/\:Z - N IJ-£+

sUf(JJ) 5e xt flaw)exp[-Ulaw )], ce X,

U

is nothing but the operator S; introduced in the previous

If the potential U is zero and X+=XF ,then the operator S

section.

The eilgenvalue problem for the "transfer mafrix" SU brings
almost full information on the structure of equilibrium
measures.For exampte,if there exists an eigenfunction hy 0,
then,as is seenabove ,the JacobPian of equilibrium measure is
uniquely determined,and so 1is the‘equilibrium measure itself.
Furthermore the iteration SE converges ,under sui;able normalization
,storongly and uniformly on a certain subset,and the Ornstein's
weak Bernoulli condition is verified. Theorem 6.1;‘is easily
deduced if we can show

Proposition, Under the assuﬁption of Theorem 6.1.,there

uniquely existra positve number £%U,a'probability measure

fDU,and a positive continuous function h, on X such that

U
= e = Y - ' ! & =
Syhy= Myhys  SuSym Yy Ty L Dpd Tyl
Furthermore
. , =Nan, _ o
s-1im Q,U SUf =  fd UhU
where the convergence is uniform and exponential on the set
‘ +
o N . et - <«
[“U,SUf : UPLC M, [log f ]q S ]

for any q=»1, &0 and M- . .
In order to prove Proposition the following are essential:
Lemma 1. If f is a non-trivial nonnegative function,

then



90

[1og Syl < E%;lw]kmog £1q4n.
for t> h and 9z p (p being the order of Markov subshift X).
- Lemmé 2. There exigtse%%onstant C=C(X,U) such that for
any nontrivial nonnégative function f and for any n> p+t,
Shr(w), SBr(ewn<e,  w,w'e X
6.3. The measure /@ as equilibrium measure
"Although the F—shift is beyond the situation of Theorem
'6.1;,Qe alreédy showed the&% Proposition of tHe:previous
vsubseétioniholds,where the potential U=0.Thus we can'shOW
thét /;’ié'equilibrium measure as well as Gibbsian measure
Wifhlan&‘boundary condition ¥ .We can also prove
| Theorem 6.2. The measure /%»is the‘unique Gibbsian
‘measure.with pefiodic boundary cbndition: ,
| Srap = pip Ccanateer, (3 Ty 2(0).
ThiS]ThéCrem 6;2.’together with the résuits in § 3 shows
'£h§£ fhe beriodic points are dence,ihcreases exponentially
’ahd are aistributed in a uniform manner,just-és the periodie
péiﬁté'of uniformly ﬁransitive Markov subshift behave themselves.
Tﬁe’resuit$ Stated in Theorem 6.1. also holds for
;é”etran§formations corféspohding to the potentials of finite
fange(i.é.,the functions depending only onbfinité number
of QQordinates)..b | |
In the nekt subéection we shall see that similar resulté
remaiﬁ valid for f—transformations which correspond to the
potentials of class D. |
6.4. 'fotransfofmations
Let F be the family of increasing,cdntinuous functions

£ on the unit interval [0,1] with £(0)= 0 such that the
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right-derivative f' exists and is greater than a constant » 1.
Theorem 6.3. Let f¢ F. Then the f-transformation
=f(t) (mod 1) |
is realized by some jIS—Shift (Xﬁ),e-);there exist a continuous
function 'f}(uu) on X,a Borel mep T p(t) of [0,1) into X

such that

= Qe ] €T . ) =F (vw
T[fo ) G" “f’ )f” d[O,l]’ ‘ Tf ff(&-) Af( ¢ )-
Furthermore ¥ = ‘vT'f is a homomorphism of [0,1] such that.
TFV¢ ='%0Tf (topological conjugacy)

Now let us find an invariant measure of‘.Tf which %s abeolutely
~continuous with respecf to Lebesgue measure.lLet g(t)dt be a
probabllity measure on [0,1,).8ince Tf is a non-s1ngular
transformatlon, thus its inverse image under Tf’ean?xeexPrmﬁéd
in the form (Lg)dt: |

(Le) (0= S g(s)/f(s)
GTf t

The "Jacobian operator" L corresponds,by.the realization ?f,
to the transfer matrix’

(Syg) ()=, 22 . exp[-U(aw)lglaw)
where

0(w)=log £1( P(w0)).
Thus the situation is close to the situation of Theorem 6.1.,
althoughbthe'{$—shifts are not Markov in general;

W:é note that UGID if the right-derivative f' is L1psch1t21an

on each connected component of T [O 1].In fact ff is the

solution of the functional equation

Saw)=r"t(a+ £ (w)), wéx{g,



h1§ 2

and the class D verifies the following property:

The pointwise limit of [ J-norm bounded sequence of
functions in D also belongs to the class D.

We obtain the following

Theorem 6.4. Let f¢ F. #&ssume that the right-derivative
f' is Lipschitzian on each connected component of f’l[o,l).
Then there exists én invariant measure /Jf for Tf which is
absolutely continuous with respect to Lebesgue measure;the
system([O,i],Tf,}Jf) is Bernouliian.

For the proof of Theorem 6.4.'the‘only crusial step is the
proof of therstatement in Lemma 2 From the classification, of woRds

it follows that -1
k \ :
i ) Iy
n-1 v .
+ 3 p*k—l
k=0%n,x, ( ©)Sy

where C (w) is such that
n,K - ®

1(ew)

5=

élﬁx

U((wfo,k) a ))
ef[U]C sﬁi “r

¢ =
n,k(P) S 4 CTwowe
< (Ul ¢ N
S e (Cn,k(u ))
The rest pf~tHe proof follows inas similar way to the proof

given for 3-transformations.
H

APPENDIX
A Caricature of Ergodicity under Phase Transition
The existence of phase transition for the classical
mechanics of lattice system is well known but we have no

further information on the phase transition in general, e.g.,
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the critical temperature,cr the ergodic property under the
existence of phase transition.We shall give a simple example
of statistical mechanics of one-dimensional lattice system
for which the critical temperature and the ergodic properﬁy
at all temperature and all activity is known,although the
potential is not pair potential and bears an artificial
character.

v Let us considér the configurations on Z=[...,-1,0,1,...]
and assume that each consequent n particles has internal
energy cn.If cn¥0 for all n, then the poténtial is of long
range  -and there may actually existelphasé transition;one
phase is Bernoullian with respect to the translation and the
- other is apoint mass.Using this example and the fact that the
equilibrium measure for potentials which can be expressed in
the direct prodqct spase X=X* X, (x=(xl,x2), x,€ Xl,xeélxg)
is the direct product ﬁeasures M= F §>O2of the equilibrium

1

measures ,Vl for U1 on Xl and })2 for U2 on‘X2 s,We can obtain
an example with phase transition for which every phéée
is Bernoullian(but there 1s a discontinulity for the mean -
entropy)
an example whiCh has m phases,where m is an arbitrary
integer r» 1.

an example which has more than two critical temperature.

1. Thermodynamical Limit
Let X=0.1. B(0)=[0]=[x:x(0)=0], B(n)=[11....10]

=[x:x(k)=1 for k=0,1,...,n-1, x(n)=0],and

B((o)=[1111..... 1=[x:x(k)=1 for any k].
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Consider potentials of the form

(1) U(x)=a(n) if x belongs to B(n), 0<n<oe , l%gma(n)=a(y:)

Then
— n-k n-k : :
‘gg(x(o),...x(n—l))= Znalk) jZx(1)x(1+1). . . x(1+k-1)

and

=

7 = :
“n x(0),...x(n-1)=0 or 1

exp[-& (x(0),...x(n=-1) );]

Fos /Qi ~ Ve k"»\ - iy;'I“ N

, e Ry
T3 0,k*. .tk g+ o+ =n exp[-&(00..01..10..0...1..10..0)]
vkiz,l,.f.krz 1
,f_‘,),g }"kl?','-‘ﬂy;i *i/ﬁrzo
RV - ’_
- 2 E {n kl o s e kI‘»
. , -b, -...b
r%0 ,k1+..krs n*r+1\ i / e‘ kl kr
klzlq..krz 1
where
k
bk= ;Z al
i=1
Since
Z“ n P:\ = — ) ' - -
ns0 2 *’n».lzz (1- > Zk+l e bk) 1’

k7»0 .
we .obtain

1

. PPN < S SN ,Z-—b—(k+l)f<}
(2) %_:E’r& sup/n_, logL_,n f’t 1nf{f. e "k 1

k»0

2 Free energy and equilibrium measures
It is obvious that the shift (X,Uj) is isomorphic to the
Markov subshift (Y,9") over the symbols 0,1,...,% where
Y=[y: y(n+l)=y(n)-1 1if y(n) 3 1]
The corresponding potential on the space Y is
V(y) =a(n) if y(0) =n.
It is not difficult to show the following
Lemma (1) If %:exp[—b(n)-(n+l)f*]=l
ahd if %;e(n+l)exp [—b(n)—(n+l)f*] <o,

then the Markov measure defined by the following transition



function and stationary distribution is an equilibrium

measure:
p(0,3)=r(j), p(i,jl)=1 if j§ i-1
| 0 if g=i-1
q(0) =( il;ok(i+l)r(i))_l, q(i)=q(0) j%?i r(j) tj=1),
where

r(n) =exp[-b(n)-(n+1)f 7.
(ii) If f*=—a(vo);then the point mass Ell...at the sequence
(111...) 1is an equilibrium measure.
(iii1) There exist ﬁo other equilibrium measures.
‘3. Existence éondition for Phase transition
2

Let us introduce the inverse temparature(v and activityzu,

and consider a potentiai

U= %(f"?{‘w(n))@(

(f%B being the indicator of B)
" n

B(n)’
Y ("\‘ - Z .
15103

i.e., aln)=, +;3c(n) and b(n)=n}ﬁ+l§2*n where -

By Lemma of proceeding section, if the Dirichret series(in;g‘)
: {
§:\ - 2 - 4 E (
(1) S €XP~| ['6n (n+l)c(ee )] + 0o
thei. the phase trahsitidn never occurs. On the other hand if (I)

does not hold,then there is a FO( fb

exp- [T ~(n+tl)c(ue)]= +w» if 2cfo
{ n f 0

< b ifg">fr"g0

2 0) such that
D 1%

Moreover there is another ﬁl e ﬁb such that

50 " : : I
< -5 - ¢ = 1 e
(II1) nolo (n¥l)exp- AL T ~(n+l)c(oe)]= +0 if <,

<+ 3 N
» if >0
Since ﬁo and {31 are the convergence range of Dirichret series
they can be expressad in term of @‘n—(n+1)c(¢:) but we omit the
expression here.If . >;30, we can define the value
. : i
¢ Ve N - - N
_(; )= -log o exp=-L7 (n+1)0(.‘)].

Let



- G=[( ﬁ, v ): (I) holds or (II) holds and > UO(>{)’

? >{50 or‘(IV)]

(8=[(f,v): (II) holds, "> ) and . < (#),
. 2 irz 2 U( U 3) .
or Poefc fyoand i A0 2 )]
M =[({g,f3): (II) holds, *~ =!VO(;% ) and 3»{ 1]

where
(IV) 22 exp [=np = BT ~(n+1)P(2, 2)]= 1

‘rfgo (n+1) exp[-n* -{%@*n-(n+1)P(f»,}')]< + e
» and'P(f',f?) > =P =fe(e).

Here P(F ’f)) is the value £ 1in (2) for this case.

Theorem

(I) It ( Fﬁ,f’)e G, then the equilibrium measure is unique

and isomorphic to strong mixing Markov automorphism. (Hence -

it is Bernouillian) e

(II) If ( F‘,f>)6 S, then the equilibrium measure ié unique

and is point mass.

(RID) If (fg,}?)@ M, then there exist two and §n1y two equilibrium

measures ,one of which is a point mass and the other is iso-

morphic to mixing Markov measure. (In particular the former has

0 entropy and the latter has positive entropy)
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