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An ergodic theorem related to spectra of a
discrete random system

Masatoshi Fukushima

'§ 1. Introduction

Let 2’ be the v-dimensional lattice space. Each pointkof

is denoted by a = (al,a2,~~-, av). Consider the operator

(2%,) (a)

N .

ZE:K.{u(a s**,a.,~1l,**-,a ) - 2u(a)

=1 1 1 71 v

+ ula,,***,a,+l,"*-,a )} aezv u‘ECtZV)
ll ' i 4 7 v 14 4 0 ’

where Ky i=1,2,++, v, are positive constants fixed through-

out this paper and CO(Zv) ‘is the space of functions on zv

with finite supports.

We then define a transformed operator

(D () (@) =z 100 (a) - gl@u(a)}

with a positive function m = m(a) and a real valued function
g = g{a) on zV. As a model of crystals, the vector X(a) =
(m{a), g(a)) appeared in (1) is assumed to be translationally

periodic, in which case we say that the operator H represents

a (discrete) regqular systém. However there are many physical
phenomena where the translational symmetry is violated such as
the cases of glasses, alloys and tight binding electrons. These

systems have been called (discrete) disordered sys:tems or

(discrete) random systems. We refer the reader to [1],[2] and

[3] for more detailed information on random systems.
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Mathematically the transfer from a regular system to a
disordered one amounts to a randomization of X(a) by takin§
up a stationary stochastic process X(a, w) = (m(a, w), gla, w))
with multidimensional parameter a < Z'. We thus start with
an ensemble of operators {Hw}. One of the most important
notions in the theory of the disordered system is the spectral

distribution function (or the distribution of eigenstates),

which is defined as the almostvsure limit of the normalized
distribution of eigenvalues of tﬁe operator H, restricted to
each of expanding bpunded domaihs under some admissible boundary
conditions. - |

In this paper, we first show that the above limit actually

exists and second we give an identification of the-limit function,

namely, a description of the limit in terms of the spectral

. w
family {Ex

3 =0 < X < «} assbciated with the self—adjoint
operator —ﬁw on Lz(Zv ; m). We essentially follow the lines
laid by L.Paétur [3], who has. treated the sChrbdihger operator
A - g, the potential g being a stationary - stochastic process |
with multidimensional parameter space R’. In our discrete case
however, no restriction onrthe sémple function of the stationary

process X = (m, gq) will be imposed except that, in Theorem 2,

inf v m(a, w) 1is assumed to be strictly positive.
aei

The identification mentioned above is important partly
because it has provided us with a basis to derive exponential
characters of the tails of the spectral distribution functions

(L. Pastur [3] and the auther [4]).
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I would like to\express my hearty thanks to Professor
H. Matsuda who has called my attention to the present identifi-

cation problem of spectra.

§J2. Statement of Theorems

Let x(a,'w) =v(m(a, w), gla, w)), a € Zv, be a stationaiy
process taking values in (0, «)} X (=, «). The basic probability
space (Q,d3, P) can always be realized as follows [5] : X(a)
= X(a, w)‘ ié the a-th coodinate map on the sbace Q = {(0, «)

X (=, w)}zv,03 is‘the-smallestVOHfield making all X(a)'s
measurable and the prxobability measure P is preserved under

the shifts T,/ i=1,2,""", v, on Q defined by X(a, T, w)=
X((al("',ai+l,"°av), w) . Denote by @9' the o-field of invariant
sets: ,\9"= {B & &3; P(TiBeB) =0,1i=1,2,*+, v}. 1If ,‘9 is
trivial, the stationary proéess X(a) 1is cailed metrically
transitive. This is the case when  X{(a), a € Zv,-aré mutually

- independent and identically distributed.

Fixing w € © and a bounded set A CZZV, we formulate the
eigenvalue problem of the operétor -H, on A by making use
of symmetric forms E;i’“ with "boundary elements" & and .
The‘baundary 3N of A is defined by 9A = {a € A ; there
exists a'e 2z°- A such as la - a'l = 1}, la - a‘'| being the
vEuclidean distance. The space of real valued functions on A

endowed with the inner product (u, v)A - 2{: u(a)v(a)m(a, w)
‘ ’ -a€l

is denoted by L2(A ; m). Let d&(resp. m) be a function on

dA(resp. 3A X3A) satisfying



0 £ 8(a) £, a&dh
(2)

0 £ m(a,a') < », mw(a,a') = m(a',a), a,a € A,

In the following paragréph, we introduce a symmetric form é;i'ﬂ
which depends on & and 7 but satisfies

(3) £/ Mu, v = (-Hgu, V), o

whenever u and v vanishes on the boundary JdA.

We put

(4) gi T(u, v) = !2'- Z (u(a)-u(a')) (v(a)=-v(a'))k(a,a’)

jla=a'l =1
a,a‘'e A
+ 2 u(a)via)gla, w) + 2_ ula)via)s(a)
,ael - ae€dh
+ Z (u(a)-u(a')) (v(a) - v(a"))n(a,a'), -
a,a'e 3A . .
. 1
where «(a, a') =k; if a-a's= (O,"7% T,---, 0), i =1,
§,m '

2,000, V. The’domain‘ae?(éiﬁ’") of is defined to be

the set of those functions on A vanishing on the boundary point
where & is infinity. If we set 0*® = 0 by convention,
i'ﬂ determines uniquely a symmetric operator Ai’ﬂ acting

on the subspace 0&%[£;i T of L2(A ; m) - by

(5) 3w, v o= (23w, v, Lowv e HIEL T

S,
A

Hw to A under the assignment of the "boundary condition"

In view of (3) and (5), A represents a restriction of

expressible by § and 7m. We call & = §(34, w) and T =

m(9h, w) the admissible boundary elements if they satisfy (2)

for fixed w and A and if they areAELmeasurable in w e @

for a fixed A. In terms of the lattice vibration, §(a), a € 94,
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indicates the rate according to which a-th atom is fixed at
its equilibrium position and w(a, a'), a,a'e 3A, indicates
an interaction between two atoms numbered a and a'.

We are ready to state our first theorem. vy is an eigenvalue .

of Ai’" iff —Ai'"u =Yy admits a non~trivial solution u
y §,m S
7 , < < eee < ]
ffyg:A ]. Let Yl,_ Y, £ £ yy Dbe the repeated eigenvalues
of Ai’ﬂ‘ arranged in the ascending order. Obviously [A - 3A/|

<N £ IAl, Al being the number of points of A. We put,

for each v, ]
6 3¢ o= 2 1
Y SY

The leftlhand side of k6) depends not only on y and A but
also an w €, §(3A, w) and w(3A, w). It is in fact a random
variable for admissible boundary elements ¢§ and 7.

‘Let GE} be the family of all rectangles contaiﬁihg the
origin with sides parallel to the axes. The length of edges of

A elJ}- is denoted by L(i)(A), i= 1,2."°; Y.

Theérem 1. There exist a set Qb € aa with P(Qo)'= 1
and a function af(y, w), -0 <y < ®, € QO, satisfying the
following: |
(i) Foi each w € 90’ vf(y, w) is a probability distribution
function on (-», )., For each Y’e (=0, =), Zf(y, w) is a
random variable.
(ii) For each w € QO and for each choice of admissible

boundary elements &(3A, w) and w(3A, w), A GCX},
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he e, 1) (e
i=1,2,000, v

J'(_(“fl w)

at any continuous point vy of ?{(y, w). In particular when
the process X(a) = (m(a), g(a)) is metrically transitive,

ﬁ((y, w) does not depend on w ; Zf(y, w) = ]T(y), Y € (~», »),

W e Qa.

0
Let us denote by S, the operator H with domain Co(Zv);

It is clear that, for each w € Q, Sw is a symmetric operator

on LZ(ZV ;m) = {u; (u, LUPAUR w}, where (u, gy o =
. I 4

2_ u(a)v(am(a, w

aezV

Lemma 1. Assume that
(8) inf m(a, w) > 0.
aiEZV
Then S, is essentially self-adjoint and its self-adjoint
extension coincides with the following operator Aw :
Ty =tuer?z’ i m ; ma<er?@; w)
(9) ,
_ : v
Awu(a) = ku(a), ug‘?&’(ﬂ.w), aez’.
Under the assumption (8), -A  can be expressed as -A, =

o0 f
u[ Y dE$ by a unigue spectral family_ {E$, -® <y < ®},
We then put

(10) ply, w = (BT5 To)py oo

. e aa . . N
Ia being the indicator function : Ia(a )_ saa"
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Theorem 2. If (8) is true for almost every w € 2,
‘af(y, w) = E(p(y, -)4JQ), a.e., where the right hand side denotes
the conditional expectation with réspect to the probability P.

In particular when X(a) = (m(a), g(a)) is metrically transitive, .

(11 o) = By, ).

In order to prove Theorem 1 and 2, we have to use a version
of the Birkhoff ergodic theorem for the case of several auto-
morphisms. One of the most general theorems of this kind is

the following one which isvessentially due to A. Zygmund [6].

Lemma 2. Let §,,5,,°"", S, be a family of mutually
commuting, measure preserving one to one transformations on a
probability space (9,03 , P). If'a random variable f(w)

satisfies

(12) Et|£|{log’|E[1V™h) < =,

then
‘ ‘ n n n
(13) lim . 1 > Lt (8,78,%++s Vw)
-0 L
Iijdmg=> e T (L;+m, +1) Lisn,am,
2. ,m.20 i=1 L
i1 i=l,2,¢++,v
i=1,2,%+°,v |
= E(f | 3w, a.e.,

vhere Q={8e B ; P(5,B®B) =0, i=1,2, -, v}

Incidentally, R.T. Smythe [7] recently found that the
condition (12) is also neceséary for (13) providedythat_‘si‘s
are generated by independent, identically distributed random

variables with index set 2z".
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