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Abstract

The mathematical structure of the quantum field
theory is investigated with the help of the -so-called
non-standard mathematics. It is seen that there exists
a renormalized Hamiltonian defined as a self-adjoint
operator, and that it determines the S-matrix almost
uniquely. The perturbation expansion of the S-matrix
converges absolutely at least in the non-standard

sense.
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1. Introduction

As it is well known the quantum field theory, from the
beginning of its birth, has fatalistic difficulties called the
difficulties of divergence. Those difficulties are partially
removed by the renormalization theory. Especially, in quantum
electrodyﬂémics the agreement between -experimental and theore-
tical values 1is almost sﬁrprising. Such agreement alibws us to
presuppose that the renormalization theory provides a true
explahation of the nature, at least in quantum électrodynamics.

The main purpose of this article is to make a first step to
the proof of this presumption based on a mathematically rigorous
foundation witH respect to the formal and/or willful operations
arising in‘the renormalization theory.

We shall begin, at first, to construct a field theoretical
model described in terms of non-standard mathematicsl). This
model enablés us to give a rigorous meaning to the divergences
in the perturbation expansion. The renormalized Hamiltonian of
such a model, defined as§ a self-adjoint operator, determines the
S—métrix‘almost uniquely, and the perturbation series converges
absolutely, at least in the sense of non-standard mathematics.
However, we are left with the problem whether the resultant series
converges rapidly sobthat the first few terms may give a good
approximation. The absolute convergence of the series is proved
in terms of the non-standard language, and hence the proof of it
in the standard sence is still an open question.

In the following discussions we make use of @% scalar the-
ory for'simplicity. Essentially éame results can be obtained in

other renormalizable theories, especially in quantum electrodynamics.
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2. Nﬁn—standard Hamilton models
Let ¢ Dbe a non-standard natural numberl) greater than any
other standard numbers, and let P(x) and 70(x) be the canonical
field variables such that i
P(Z) =°§-'| G @), TUR) =d§_:,’/%e e (Z)
| (2. 1)
[Py B = -t8p o [Pe,P) =0, [Ba,8)=0
where {EQCZ)}iS a complete set of orthonormal functions over
(.*R)3 . The canonical variables PZ) and TU(Z) satisfy the -
canonical commutation relations as operator—?alued (é>/LQ; func-

tions:

Lr@), P ] = - 8R-7)

(2.°2)

[T, WHI=0, LP@D,PHI=0.

The total Hamiltonian H 1is then defined as

| L2 - x ’2, ’ -
H= 4 [a mef+(Fe@p mie@)y + Hyp 29
where HI is a certain function of g’ and is bounded below.

In~§4 we shall deal with the specified renormalized interaction

Hamiltonian

Hr = g [d (pe)’ + 8o™ o (9)* 4 89 [aw(Pm)*

- which really satisfies the condition stated above. Because of the

orthonormality of i Eaéi)} , We can rewrite the terms in (2. 3) as

0 Ada Quof. ¢ of Math. Ww
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jw“oc ()* = S b’

=1

(23]

jo&x (Vo) = 2, Cop B 3

il - (2. W)

Let *L2(G‘) be the non-standard Hilbert space of the square-in-
tegrable functions on ' G, and make a realization of f Pot, Zdl(' o

in 1t by fy :;L‘gaixand Z,l:%"( The Hamiltonian H then becomes

H = -+A + U)o (2. 5)
where A is a Léplacian in (i) -dimensional Euclidién space (*R )w.
If we restrict G to a certain (standard) compaét regibn" in
(‘*[R)w , then U(g) is a continuous function of % =‘~ (ZI ~ Ew)
and is bounded below.
The ;)roof of the existence of nontrivial examples of Hamilton
model comes from the fact that there exist a non-trivial solution

‘of the Schrddinger equation

- -

LEPEH) = (-8 +TE) ) Pty s

In fact, under certain conditions, the boundedness of U enables
us to shvow‘ that the solution of this equation does exist uniqueiy;
For example, we can treat it as a mixed problem. Let us put the

initial and boundary condition as
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?c%m =fz), s¢6 ﬂ%)’e *L*(G)
(o« + Pa’%?)[aq =0

Then the solution of'(2.'6) and (2. 7) can be written as

(2. 7)

P(zt) :/:é Qp ‘ef‘\/\kt Y%el2) @ ®

where ,Ak's and H%z's are the eigenvalues and eigenfauncions,

respectively, of the equation

(45 +UZ) -2e) e =0 @

Since the He? 's éatisfy the boundary condition (2. 7) and since
the totality of the eigensolutions of (2. 9) is known on *L2(g)2
the expansion (2. 8) with Qkr :':(f’ L,lé)is the unique solution of
(2. 6) and (2. 7). '

The Hamiltonian H diagonalized in *L2(G) is a self-adjoint

operator. Therefore the operator Uy Ez(éxp(—th) is unitary. It

connects the Scrédinger picture to the Helsenberg picture:
PiEt) — TS PED) = PiE)
PE) — (V7 ?(97)?775 = P, t) (2. 10)
TR — T i) Uy = TR L)

in which the Heisenberg variables 9{(x, t) and SP(X, t) satisfy
* A
the equal-time commutation relation as operator-valued C:/”)Ef

functions

3
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[ mEt), pe)] = -7 8R-§)

(2. 11)

LTht), TGO I1=0 , [FRH, Ft))=0.

It is worth noticing that there also exists an interaction
picture in our model, which we shall powerfully utilize in the

discussions in 8§83 and N Let HO be a free Hamiltonian

Ho = & [a% § iy + @e) + (7]}
(2. 12)

= LA +TE)

It is easily seen that the second term is bounded helow (positive

definite) and the solution of the eigenvalue equation

(Hlo — &) My = O (2. 13)
is dense in *L2(G) Hence . we caﬁ expand the solution of (2. 6)

ans‘(zv 7) by 7k ? as
‘W,t) = Z Calt) Mr (3) o1

Let us observe the time dependence of 'bk(t) E?ck(t)eiskt:%
‘. OO . .-
. . _ L (Ep-28 ‘
Lbett) = 2 balt) € © 2Ot iy ) s

, We

VthI e’CHot

Now, if we define a new operator HI(t) = e’

finally arrive at the wave equation in the interaction pictiure: .

; &Pt = Hrlt) Pu) . 16)
¥ |
pt) = kz_l Brlt) e .



139
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The operator ‘6' is unitary since Ho is‘ self-adjoint.

" For a given stan‘dard theory, different choices of (W , EQ,‘(i’)f
or‘*L2(G) lead to various models which are, however, phys1cally
equivalent with each other, and which give almost same S-matrix

if renormalization is accomplished.

3. Realization of standard theory

Let ?(x) and J{(x) be the canonical field variables (in
a certaln model) deflned in the preceding section, and let us
take off the so-called zero point energy w in order that the

1owest eigenvalue of HO ‘:- 1-s‘.exac‘cly, Zero.

Ho = —)_L jd?’x f(/'[{?)}z-f- (-v">§qij')i_+wl[%zj)z'k -We G-

The time dependence of the operators in the 1nteract10n plcture

is the f‘ollow1ng

The express:mn of EP(X) is not so éimplé'because of the 3 's
in the integrand of Ho' However, we can show the folloWing
theorem: |

[Theorem 1] The operator g';(x) is almost equal to m )So(x)
as an operator-valued (y}R.qf‘unctlon, with a suitable ch01ce of
the bases f eo((f)}

Proof: Since y”RX(‘f)RS is total in (ff)kil we may restrict
ourselves to f£(x) = u(t)v(?)

Pf) = v L Ho, TP ]
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/ B Y (;‘ y,
= - Jdw [, d%{ (Vo)) V'3, et &) fe)

| W | (3. 3)
t ot ) 2 ) exd) feo |
a=l

Now Ptx) = Z;; 2alt) &(®&)  and jt(*x) ) Zd:' U ed(;z;)
where fo 's are rapidly decreasing with respect to o in the

standard sense. Hence we have

JNdQ:J;J:xfi%xf 9Pﬁ136§; f2¥@?jﬁixcgb‘fﬁx) s ‘[C*x goﬂ();fﬁ%)
Jou [ (F900) V8 ety ey frg 0

jdoc Poe) Tfx) /dgc utt)z Vet &(X) T %c)

Let us try to estlmate the last term:

e wety z W @) TP ||
3. 5)
=12 (g t&f ot ZF(t)u(t)jot & @) T efa(m)il

Choosing G of *1,° (G) satisfying mpax i 8{5“— Q ¢ R » and obser-

ving the equality

| el =1 etHot B et = 1l &gl

we get

.h.s. of . = : ’
the r.h.s. of (3. 5) = ad_ch' (52:1 [ Ux |

09 | . (T- 6)
X [oatlutr] -] [P ex@r € @)
Sqrﬁé suitable choice of the basis {eyi) | (for example Hermite

" functions) makes it possible that only a few terms survive 1in the

right hand side of (3. 6) with ¢( 's and (3 's in a finite neigh-
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borhood of (Y . Since the Uy 's are rapidly decreasing, it becomes
smaller than any power of 1/4). VWe conclude, therefore,
Pleo+m*) f) = 0 (3. 7)

on a dense subset of ¥ .§
The result obtained above enables us to write Ef(x) as an

operator-valued é/)k¢functlon such that

~

| ; | N
Pe) = ()7 [ ddmtp) (acpr e P % + afipy e'F *) . )

where dj)muvis an invariant measure defined on the hypefboloid
Vor = P p*=m, p*o0 }
We next prove 7
[Theorem 2] The function 6(1,%’) S [P, Pex)] is seen to be
an "embodiment" ) of the standard Paﬁli—Jordan function D(x-x).
Proof: It is almost obvious since B(x, x') satisfies the fol-

lowing relations

27 N ‘v = Arey o —
(O+m*) Dx,x)=0 | DC%,X)!zo’-‘:xo“ 0,

(3. 9)
o0 D2, X)) IXo"—‘xo' :::. -0 3(9?'5?/).@
If we define the functions
— Fr )
Freo =(an)* ]%QCFO)G g ]?)C,b)/ (3. 10)

Ji) € (P)pe

it is easy to observe that

#) See Definition 2 of the Mathematical Appendix.
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Of-) = [damp) Fpr atep),
(3. 11)
PUfr) = Jaamp) Fipr acp)
We have on the one hand’
CPi), P = fdﬂm(P)fdﬂmlg) |
(3. 12)

xfth Jig) L), alegy 7
and’ on the otheI:’ hand the relation D(x, x') =, D(x-x') assures
C9th), P00 = Joofdo fre D) 9- (9% 13
- jom%cp) Fger) .

Henqe'we conclude
. - . o
Cap, atp]l = zwp SF-%). .o
Similérly,ﬂe get

Capr, atl =0, ctafp,alipd =0,
o : (3. 15)

[dlep), acgd = -2wp SB-F) .

With the help of the definition of 9’(x) and the expression of
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33(x) the following relations hold as relations between operator-
A, i »
valued (5/’)$Q: functions
[Ho, 2] = ewp atep)
| (3. 16)
[Ho, atp ] = - wp acp)
Hence we can interpret the, af(p)'s and. a(p)'s as creation and
annihilation operators, as is usually done in the standard theory.
If we write {jc for the (non-degenerate) eigenvector belon-
ging to the lowest eigenvalue EO = 0 .of Ho’ we may, with the
heélp of (3. 16), interpret the states 90(1-_)_@50 as one particle
states. In general the vectors @P( iy ... So(f_c’m) @o repre-
sent the embodiments of n-particle states. On the other hand,
because of the positive-definiteness of HO the vectors
(f)(ﬁ‘") o P ) @o must be null. It can be easily seen that
the space é% 3), which is generated in the standard way from @%
by the §Kf_)'s, is the embodiment of the standard Fock spacethr

We give here, without proof, the relations which hold for -

(Ql)kv X (.9/)R4X - functions:
(P, T Poo Pad ¢) = Dr (z- x’)
(@0,7@(11)-" Cp{m)@o) | (3. 17)

t " )
= a‘*();k DF -2e) (B, Ty~ -8B Ptam) By)
where the symbol \J/ indicates the omission of the factor So(xj).
In such a way one can construct all the relations which appear
in the standard theory described in the interaction picture. If

we take, at this stage, the quotient of our model by the relation
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=, we would go over infto the standard 9# theory which is mathe-
matically vague. At the same time there reappear the difficulties
usually observed. The reason why those difficulties reappear 1is
now obvious: the interaction does not keep j%,\invariant and we
must carry it on inrthe total'spaCQ}t, but ‘on the other hand the
relation ‘= is not a congruence relation inj%, so that we can not

cateh it up with the standard mathematics. That is the reason why we

must consider the non-standard models. .We believe that without
the help of these modelslwe can not clear up the mathematical
structure of the quantum field theory and grasp the meaning?of the

renormalization procedure.'

4. Renormalization

Let us begin to solve the wave equation
. a - - ) .
v 3¢ Pt) = Hzd) ¥) (4. 1)
which is established in §2.

The wave operator u(t, to) defined by g?(t) = U(t, tb)Q?(to)

satisfies the equétion
Lﬁ Uit to) = l"“I (t) .D‘C't,ta‘) (4..2)
The formal solution of Eq. (4. 2) is given by

Ultt)
_ ‘ 00 - + to-s _ (4. 3) .
- ‘I T jt,, d’t""/t(, dtn Fr(t) - Hr(tn)

where we have put the initial condition U(to, to) = 1.
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[Theorem 3] The formal soiution (4. 3) is really‘the solution of

" Eq. (4. 2).
Proof: Since HI,'is,a polynomial of E = ( %' oo %LU) and
since

|V Hiw = ettt pp e Rt 1 = 1 HT

the compactness of G of *LZ(G) guarantees ﬁhe existence of

D & *k’such that |} HI” < D. Hence there holds the estimation

Hf a1, f s Hrt "Hﬂtm) I & (,‘;j(ffto)'”/)'”

The right hand side of this inequality vanishes as n-—200 .I
In the standard EP4 theoryu? each term of the perturbation
expansion of S-matrix'is finite if we adopt thé‘so—called re-

normalized interaction Hamiltonian

I(t) 9 [av (Pr)? + S [ax (P0)

(4. 1)

+ 89 [a (pro)?

which is mathematically vague, and if we invoke the compietion of
the renormalization procedure. ‘Ranormalization essentially consists
in the rearrangement of the terms under~the summation, but since

the quantities turning up are always divergent, the procedure has
only a formai meaning. We emphasize that the rearrangement is
necessary because the last two terms of (4. 4), which serve for

-

the cancellation of the divergences, are regarded as higher order
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i : oo 5
o cxanple Sm's 5§V, 7202 5o

perturbetions in g. Each term is then uniquely determined accor-

ding to the physical postulate, the so-called renormalization
condition.

The renormalization in the standard theory induces the renor-

mi%%%%iigﬁs of tﬁe gmbodlm?nts.
ones, but the mathematical structure of those are far clear and
simple énough to grasp;

| In general, rearrangement of the terms in infinite series
critically'leads»to'different results so that they are unreiiable
ﬁo bear physical meanings. We must show, theréfofe, that thé
renoémaliéed interaction giveé a unique S-matrix, but it dis almost
imp0831b1§§o prove this in terms of the standard language.

’In the non-standard theory, however, it is easy to show
[Theorem 4] For a given renormalized Hamiltqnian there exists a
wave oﬁératqr[ U(T,,—T) which gives the S-matrix almost uniquely.

Proof: The coefficients &ag and 72% in

- o0
2 2m , (%3]
Sm =2 ¥, . g _ ~ 2m
2, Y3, 8§ =9 2 N 327,
.are determined by the renormalization condition step by step. Be-
cause of the absolute convergence of the unrenormalized pertu}—

~bation series, those series of &mz and‘gé must be absolutely

.convergent. It suffices then to consider the terms of the form

(—i)Pf_: as, -- -/erﬂ' dtp /4&, .. .k/da(xf

X 34 (Em*)™ (8)" (Pew)’t - (Pep))é
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where p = 4+ m+ n and q; takes the values 2 and 4. Since

o
g(m?', 83 e ¥R and G of ¥°(G) 1is compact, we can estimate

? jdsx (CP(I))q. ” é ,?i 'dé’)’,a’rl Cdﬁa' %O‘é(iég l EA EX/R
| o [ (@)l £ jsm*|- |2 £5 ) = 3 ¢ *R

| 59 fobx (@Il £ 1831

Span Py BRI = CETR

We conclude, therefore, that

“ ('i)Pj_-—],——dtn " I;P—l dfp deStl .o ’deffP

x g4 (m) (83) (?cx,))g‘ Spffpl)gf ”

The right hand side of this inequality vanishes as 'p-—7 [0 ¢ I

After the renormalization the matrix elements :
(?A,U(T,-T)%)I((g <TE™R, %}fbeg"‘@) present the embodiments of
the S-matrix elements. Therefore we can conclude that we have
proved the absolute convergence of the S-marrix and, at the
same time, its uniqueness,

We make a few remarks at this point.

First we note that we have proved the absolute convergence
of the perturbation expansion only in the non-standard model, and

it does not necessarily mean the convergence of the original
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series in the standard sense. It 1s true that for Vm.é N the
n-th terms of the original and the embodiment series are in the
relation ‘= , but it is not sure by the argument given’above,
whther the infinite accumulation of infinitesimal errors remain
infinitesimal. )

The seéond remark, which may be -easily overlooked, is the
following. Most of the redations established in*§3 are relations
in the sense "= , but this is not the congruence relation in the
non-standard calculations. Hence we must, first of all, restrict
the integration region of (4. U) to a certain standard compact
region; and also the time interval as 2T &R . If we use the
relation = instead of the true equality, what we c¢an conclude

is the following: 1let [fL Dbe a four-~dimensional square
D= fo| 1 sTER, IMISLER, C=1,2,3}

and let f]l& %Lepq‘be a truely increasing sequence of ‘such
squares. Then for a given'arbitfary positive number £ & |R there .

exists 'J € N such that
100, -0 @) | < Cror VO,V ST

' - n) , ‘ - A |
where ::;(ﬂ)%: (g)a,, U(-V-('T,*T) ‘fEb) with @a, Lfb 4 % ,V = L3,
is the n-th term of the perturbation expansion of‘(ga)t}&{ﬂJr”E».
In that case there exists at least one ()} , and therefore innume-

rably many N's (R¥< O ¢ (*[Rf"), fér which U;lg)(,ﬁ) is the

(n)
ab’

sure whether the statement above is true or not for arbitrary

< Qe (m)f

embodiment of S It is worthwhile to notice that it is not
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With these remafks in mind we can write down the embodiment

of the perturbation expansion of the S-matrix
L 2 ()
Uael) = 8@8) + 2 " T 54(02)

g\ 00 - (b5
— A N " )
- @, &) +‘n§ 3 ( Sa.b T & ab)

*
where Ség) is the copy ) of the corresponding renormalized term

in the standard theory for n € N , and E“ﬁl.is infinitesimal

for n ¢ N

5. Discussion

With the help of the non-standard Hamilton model we success-
fully gave the mathematically rigorous foundétion for the renor-
malization procedﬁre

The series (4. 5) for the S-matrix converges absolutely‘at
least in the non-standard sense, and it is almést uniquely deter—
mined by the given Hamiitonian which is rigorously defined &s a
self—adjointioperator. The S-matrix, on the other hand, does not
uniquely determine the Hamilténian.* The collection of those non-
standard models which realige the given S-matrix forms an equi- -
valentclass. Any‘elements of the equivalent class are physically
equivalent with eéch other, that is, those non-standard models
reproduce the almost same S-matrix.

It is desirable from the practical point of view that the

convergence of the series is rapid enough. The series of the

¥) See Definition 1 in the Mathematical Appendix.
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standard q# theory, on the other hand, was pointed out not to
vbe convergentS) if it is true,rthe series corresponding tob

(4. 5) should not converge in the standard sense in the 9ﬂ theory.
This means that theraccumulation of the infinitesimal errors '
becomes infinitely large, making the definition (4. 5) of the
S—matrix meaningless..

There seems to be no definite conclusions up to now on the
convergence of the series in other renormallzable theories such
as the gﬂipheery orhguantumvelectrodynamics. As fo? quantum’
electrodynemics the exﬁeriments strongly suggest that the con-
vergence of the seriesAis good. If the theory would pfedict that
it does not coﬁverge in the standard sense, we should be confronted
with the puzzllng problem why the first few terms agree with

experlments so miraculously
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Mathematical Appendix

[Definition 1] When a object f of standard mathematics is

given, we define the copy of f 1in non-standard mathematics as

(5 (—fo’f" 7&1’.,.)7' CJCO) f') j—i) ) = (f,f;]t,"’ ) (f/':_:.".

Example: the copy of 1 € R 1is *1 ¢ *R which is generated
by (1, 1, ...) €& RN . We use a same symbol f‘or the copy and)
the original. '

[Definition 2] The non-standard object, which is in the relation
‘=, to the copy of f, is called the embodiment of f. The wording
i1s sometimes used in an ‘extended meaning. Example: (1, 2, 3, ...)
is the embodiment of the infinity in standard mathematics.
[Definition 3] The space (F)pn , N &N 1is defined as the em-
bodiment of standard Schwartz's space (y)ﬂ”. (9’)2"1 is the
vector space of complex—valu_ed f'unctibns which map (*IR)’” into

€ : we can differentiate f(x) any times, and when x| =
1% + +- - +[%,] increases greater than any other standard numbers, |

£(x) /and its derivatives decreases faster than any power of

1/1x1 . In other words:

For any o= (&, -+ olm) and any B = ((5‘ "'(Sm),(“[)ﬁi'E/N)
we have lx"*DP j'(‘Dc) l :-:, O Tfor all x, R <|x| ¢*R .,

A
The topology of (y’)km is defined by the semi-norms

Polf) = max max aup | T4DP fo0| € R
L0 plco xe(FR)T *
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where 6 = 0, 1,2, ... € N . Thus the space (S>)R“ is

invariant under standard operations defined in (S>)R" R so that

the equivalencé relation ‘=, becomes a congruence relation in
(9)3'\ .

[Definition 4] We define (bfénn as the embodiment of the tem-

pered distripution spéce (J>’O£ﬁ. It is the dual space of (S;an,,

‘Example: the function Cw/zn)mﬁ %P(—%)(‘I,Z‘f R o 1;; )) is

an element of (é}?npand is an embodiment of S € (F”)pn.

[Remark] It is necessary not to confuseﬁ??ié}ﬁ and(*&f}l(*§PO.

The latter are the non-standard extensions of (%), (Y7) .

Example: (w/iﬁ)vz@ﬁp('%”f) is an element of (¥ %)g but not of (Q)R .
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