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Generalized Uniqﬁe Continuation Property for Hyperfunctions

with Real Analytic Parameters

by Akira KANEKO

University of Tokyo, College of General Education

. In these notes we give some elementary lemmas on hyper-
functions, especially on those with real analytic parameters.
These are expressed in terms of local operators with constant
coefficients. As for the local operators we refer the reader
to [ 1], of which some results are cited here.

Lemma 1 Let IlEB*(Rn) be a hyperfunction with compact
support. Then supp u $ O if and only if for every local ope-

rator J(D) with constant coefficients we have
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Here Gkg) = Flul = SeIX1;u(x)dx denotes the Fourier trans-

form, and Igl = (§§+...+§§)l/2, X-g= xl§l+...+xn§n.

Proof Necessity If supp u$0, then supp J(D)u$0 for
every J(D). Recall that E(x,8) = F - le"t'5'3 is the Poisson

kernel for the boundary value problem:



(A + D%/ DE2)E(x,€) = O,

1\ E(x,0) =»8(x).

When 40, E(x,t) converges to zero uniformly for X on some
complex neighborhood of any real compact set K which does not
contain the origin. Taking supp J(D)u as the set K, we

have

lim <B(x,£), J(D)u(x)> = 0,
€40 ,

where < , > denotes the pairing between A(K) and B[X), and

also the one between A(Rn)(\Q and B*(Rn) for g£>0, Q deno-

ting the space of Fourier"hyperfunctions. Hence by the Parseval

formula we conclude that

. -¢1&l ~
gig SRn €18 I(§Hu(g)ag = 0.

Sufficiency By the Parseval formula we have

\n J@E@ M ag - B DTS (0)

= 3(D)(u(x) ¥ E(x, )|, o
Put uk(x) = u(x)%E(x,1/k). Our assumétion implies that {uk(x)}

is a converging sequence in AJ({O}). Here A;(K) denotes the
space of real analytic functions f on K endowed with the
seminorms W f lb: sup 1J(D)f(x)1, J running over all the

, x€K
local operators with constant coefficients (see [ 1 1), Defini-
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tion 2.1). Thus it converges uniformly on some complex neigh-
borhood of the origin ([ 1 1, Proposition 2.4). Thus the 1li-
’mit function is resal analjtic in a neighborhood of the origin.
On the other hand, u(x) is the boundary value of u(x,£) =
u(x) ¥E(x,£) with respect to the operator £>X+'32/'B€2.
Since the operation of taking the boundary value to a non-cha-
racteristic surface is of local character (see [ 371), we
conclude that u(x) agrees with the above limit in that nei-
ghborhood of the origin. Thus u(x) itself is analytic there.
Finally letting J(D) run all the finite order derivatives we
conclude that (’b//bxfxu(o) = 0 for any &, hence supp u
$ 0. q.e;d.

We.can slightly rewrite the result:

Lemma 2 Let ué€&B,(R™). Then supp ur\{xn= O} =g if
and only if for every local operator J(D) with constant coef-

ficients and for any fixed x'€R 'l, the finite limit

40 § o st EIx g

exists.

Proof TFrom the proof of Lemma 1, we see that u(x) is

1

real analytic in some neighborhood of every point (x',0) € R™.
Since u(x) has compact support, we conclude that supp u
r\{xn= 0} = # due to the uniqueness of analytic continuation.

g.e.d.
3
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A more refined form of this lemma will be effectively em-
pioyed in the forthcoming paper for the sfudy of linear excep-
tional sets of real analytic solutions of partial differential
equations with constant coefficients.

The last one.concerns the unique'continuation property for
the real‘analytic parameters. We say that u(x) contains X
as a real analytic parameter if S8.S.u (the singular spectrum
of u(x)) does not contain +idx ' on each fibre of iséﬁn.

In this case we can restrict the hyperfunction u(x) to the
hyperplane {xnn O}‘ For the details see [ &4 ] or . (5].

Lemmé %5 Let u be a hyperfunction defined §n a c¢ylindri-

cal doméin U,X>I, where UC R?(Tl is open and I[CR}lc is an

n
open interval containing zero. Assume that u contains x as

n
a real analytic parameter and for every local operator J(D)
with constant coefficients it satisfies

J(D)u(x)’xn=0'= 0.
Then u = O on a neighborhood of UX{0l.

Sketch of Proof Without loss of generality we can assume

that U contains the origin of Rﬁ?l. Let KCU be a compact
o ,
set whose interior K contains the origin of Ri?l. By the

flabbiness of the sheaves C and Q, and by the vanishing of

cohomology groups of the sheaf P, of rapidly decreasing real
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analytic functions, we can find a Fourier hyperfunction v(x)
on Dn'l'xI, which contains x, as a real analytic parameter,
is real analytic and rapidly decreasing outside KxI, and on
§><I differs from u(x) by a real analytic function f(x). (
rFor such argument see [ 2]).) We are going to prove that v
is, hence u is real analytic in a neighborhood of the origin.
Since v contains X, @&s a real analytic parameter, the func-
tions

ve(x) = v(x) # Fleemt e
are real analytic in R§71X'I in the whole variables, where
%' denotes the convolution with respect to x'. Now for any
locai operator J(D) with constant coefficients we have

10w (0) = {TOVD |, o) ¥ FHETHENY |1,

Here by the assumption on‘ u(x), J(D)v(x)lxn=o is real analy-
tic outside K, and rapidly decreasing at infinity. Recalling
that F-l[e_2|§"] converges uniformly to zero on a complex
neighborhood of K and converges to S(X') in p', we con-
clude, as in the proof of Lemma 1 .but with more delicacy, that
J(D)VS(O) converges to a finite value when & —> O. We pro-
ceed in the same way as in Lemma 1. 'Again employing £11,

Proposition 2.4 (after replacing § by 1l/k), and considering>ﬁ
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that the ,}in}it takes place in the .,J.ocal__sensye, we .conclude
' that v(x) is, hence u(x) is analytic in some neighborhood
of the origin, hence wu(x) is identically equal tq._zéro_,‘there.
Since the origin can be replaced by any other po_ip,ts; of

Ux{0}, we have proved u £ 0 in a neighborhood of Ux{0}.

~g.e.d.
Remark If supp uCKXI, | where KCU isk comiaact, then
we can easily prove thet uw =0 in UXI if and only if
(fa/’axn)kulxnzo =0 for k =0,1,2,.... On the other hand,
for a general hyperfunction the létter condition does not imply
u = 0, The'following ié a famous counter-example by ‘M. Sato
(unpublished): Let Pn(z) be the polynomials in one variable
which approximate 1/z ylocally uﬁiformly outside the nsgative
real axis; namely there ‘exists a sequence of compact subsets
k KlCKEC ey \JKn = C~J]-wm, 0J, and a decfeasing sequencé of

positive numbers Sn such that

1
I 2 =P (2z) I <€

z if =z eKn.,

n’
Further writing Sn = dist(0, K,) we can assume that BA/ Sn

‘ ® :
—> 0 if n—>wm. Then F(z,t) = . Pn(z)tn defines a
B n=0 '

t

holomorphic function in (C~1-w, 0)) x{t € C; H:l<lv}. The
associated hyperfunction f(x,t) = F(x+i0, t+i0) - F(x+iO, t+i0)

contains +t as a holomorphic parameter; every finite derivative

)
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vanishes when t = O; but supp f(x,t) contains the origin.
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