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"Optimal" Algorithms for the All-Shortest-Path
Problem on a Network
By
Mario NAKAMORI and Masao IRI

Faculty'of Engineering, University of Tokyo

Abstract

A class of all-shortest-path algorithms expressed as
repeated applications of triple-operations is considered.
Triple-operations are regarded as operators which induce trans-
fofmations on distance matrices, and the algebraic structure of
the operator semigroup is investigated from the points of view of
equivalence relation, partial order, etc. On such investigation,
some of the existing algorithms for a complete network are shown
to be optimal, and useful formulae for the‘formal manipulation of
algorithms are listed, by means of which the validity of various
algorithms is proved. Also, some specially structured networks

are discussed and new optimal algorithms for them are proposed.
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1. Introduction

The all-shortest-path problems on a network are not‘only of
great significance by themselves but also play important rdles as
subproblems of many larger ones of network-flow type in operations
research. There have been proposed for this kind of problems
many methods of solution, '"new" proposals still continuing at
present. |

Expreience shows that many efficient methods belong to the
family of those algorithms which are expressed as repeated appli-
cations of the so-called triple-operations (or, operations of
min-addition pivoting) on distance matrices. In the present

. paper we aim at establishing a systematicbalgebraic theory by'
which to unify the algorithms in this family.

In §2, triple-operations, or repeated applications of
triple~operations, are regarded as operators which induce trans-
formations of distance matrices and the operator semigroup is
defined. 1In §3, an algorithm, as well as an operator, is
regarded as a systematic enumeration of paths in a network and
the correspondence between algorithms and path-sets is estab-
lished. Based on that correspondence the validity and optimality
of an algorithm are discussed. It is shown that any algorithm
valid for nonnegative distance matrices is wvalid for general
distance matrices, and that any valid algorithm for an #n~-node

'complete network should have at least n(n-1) (n-2) occurrences
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of triple-operations. This 1ast'proposition_leads to the proof
of the optimality of many existing algorithms such as the
Warshall-Floyd algorithm, the Dantzig algorithm, the Katayama-
Watanabe algorithm, etc. Also the algebraic structures of a
class of algorithms are investigated from the points of view of
equivalence relation, partial ofder, etc. Useful formulae for
the formal manipulation of algorithms are listéd, by means of
which the validity of various algorithms is proved. In §4, some
specially structured networks, such as cascade networks, star
networks, etc., are treated, where some of the existing algo-
rithms for such networks are shown to be nonoptimal and new
optimal algorithms are proposed.

Most of the results deséribed in fhe present paper are

based on our preliminary studies reported separately in [1], [2]

and [3].

2. The All-Shortest-Path Algorithms

Let us consider a network G with # nodes. We denote the
set of nodes by N =’{l, 2,000, 1} We assume that G has no
parallel branches.

We define a path from node %, to node ir of length r in G

0

as a sequence (@O, Tyseees Lpqo tr) of » + 1 nodes of G.
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If io = ir’ we say -that the path is closed.

For each branch connecting two nodes, say ¢ and J, we denote
by dij the span (or distance) of the branch measured from i to j.
[It may be dij #;dﬁi or dij < 0 for some pairs (Z, J).] If
two distinct nodes 7 énd J are connected by no branch, we set
dij = dﬁi = ©, TFor every node 7 we set dii = 0. We call the
sum of dij’s along a path the span (or distance) of the path
(we assume the span of a path of length O to be 0).

In the following the span of any closed path is assumed
to be nonnegative, since, otherwise, the problem would have no
solution. »We call a matrix D = (dij) of spans dij’s satisfy-
ing.this condition a distance matrix on G.

Let D = (dij) be a distance matrix on G. We define the
shortest distance dﬁj from node 1 to node § corresponding to D as
the minimum of the spans of all the paths (of any length) from %
to j, and call the path(s) giving d:j the shortest path(s) from
1 to J corresponding to D. We call the matrix D = (d:j) the
shortest-distance matrix aorresponding to D. The all-shortest-
path problem on a network G is the problem of obtaining the
shortest distance matrix D = (d:j) corresponding to an
arbitrary given distance matrix D = (dij) on G.

Numerous methods of solution have been proposed for the

all-shortest-path problem. Most of them are expressed as

fepeated applications of the so-called triple—pperations, where
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a triple-operation with pivot kO on pair (io, jO) (to be denoted

ko . o : <
by (iﬂj0> in abbreviation) of an # by 7 matrix A4 = (aij)

transforms A into B = (bij) defined as

. . =min (a. . a. +a, .) 3
Tod 0 Todo’ “ZToko  “Kodo” ’ } (2.1)
bij = aij where (Z, J) # (Z¢9, Jo) »
or, in ALGOL-like e i ( K0\ has the effect:
9 XpreSSJ.on, 7:0j0 as the e ect:

it

a. . in(a. . a. +a, .) 2.2
togo 1T MR 050> “toko koo’ (2.2

n

for the array 4 (a..). Using this kind of expression, some

d
of the well-known methods of solution for the all-shortest-path
problem may be described as follows.
Warshall-Floyd method [4]:
for k := 1 step 1 until n do

for 7 := 1 step 1 until n do

for j := 1 step 1 until n do

Dantzig method [5]:

for kK := 1 step 1 until »n do

begin for 7 := 1 step 1 until k do
for 7 := 1 step 1 until k do
Qs iS mln(aik, as; + alk);

for § := 1 step 1 until Xk do

for 7 := 1 step 1 until % do
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A = min (aij’ A, * aZj);

for 7 := 1 step 1 until %k do

for § := 1 step 1 until k do

aij := min (aij’ Qs * akj)

end

Katayama-Watanabe method [6]:

for 7 := 1 step 1 until 7 do

for j := 1 step 1 until »n do

for k := 1 step 1 until min(Z, J) do
a;; = min (aij’ a;, + akj);

for ¢ := n step -1 until 1 do

for § :=n step -1 until 1 do

for k := max(Z, J) step 1 until n do
a;; = min (aij’ a; t akj);

for 7 := 1 step 1 until » do

for § := 1 step 1 until n do

for kK := min(<, J) step 1 until max(Z, j) do

+

a;; 1= min (a;., a;

Cascade method (71, [8]:
for 7 := 1 step 1 until n do
for § := 1 step 1 until n do

for k := 1 step 1 until »n do

+

aij ¢ min (Clij, aik
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for 7 := n step -1 until 1 do
for j := n step -1 until 1 do

for kK := 1 step 1 until » do

aij := min (aij’ @t akj)

Doubling power method with successive replacement (see,

e.g., [9]):

for 7 := 1 step 1 until 3 do
for © := 1 step 1 until »n do
for § := 1 step 1 until »n do
for k := 1 step 1 until n do
aij := min (aij’ a t akj)

In the following we shall mean by an algorithm any sequence

of triple~operations. Thus, an algorithm is expressed as

<ztgt> <t1.7t1 <23> <1J ) ¢z, (2.3

where the triple-operations are performed successively from right
to left., For two algorithms T and t' we denote by TeT' the algo-
rithm in which the algorithm t' is performed first and then, T.
For an algorithm T and a distance matrix D, we denote by tD the
result of T operating on D.

We say that an algorithm 1 is valid for a network G if
1D =D for every distance matrix on G (which means that we

allow "invalid" algorithms also as algorithms).

-7 -
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We define the complexity of an algorithm as the number of
occurrences of triple-operations in the algorithm, i.e. the value
of "t" in (2.3). We denote the algorithm of complexity 0 by €,
which induces the identity transformation on distance matrices.

We say that a valid algorithm for G is optimal if its

complexity is the smallest of all the valid algorithms for G.

3. The Operator Semigroup and Path-Sets

3.1. Enumeration of paths by an algorithm. We begin with the
investigation into algorithms from the point of view of enumera-
tion of paths. We call a set of paths é path-set., We call the
subset of a path-set m, which consists of the paths from node 7
to node § in m, the (Z, j)-component of m and denote it by ..

tJ L
Sometimes we denote a path-set 7 in a matrix form as T = (ﬂij)'
We denote by P = (Pij) the path-set of all the paths in G and

(r) _ (p(®)
by P = (Pij ) the path-set of all the paths of length not
exceeding r in G.
For two paths p = (io, il,..., ir—l’ ir) and q = (jo, jl,
cees js—l’ jS), we define the concatenation pldg as the path
(10"11""’ a1 Py Jyseees Jgo10 Js) if » T Y0 (if Ty 7 J02

pq is undefined). For two path-sets m and n’, we define the

concatenation as nm[n’' = {p[]p'| p € m, p' € n'}. For a path
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p= (io, il,..., ir-l’ ir) and a path-set w = (ﬂij), we define

the path-set p[n] by pln] = m, ; Om, o OeeeDQm, . if

0 1%2 tp1tp

1
r 21, or by pln] = {p} if r = 0. For path-sets 7 and =’',

we define the limk-product wtn! by mtn?= L_]p[ﬂ]-

pET
To each algorithm T we assign a path-set p(t) as follows:

p(e) = p(V) ;
k _ (1) . .
({3 =P UL, &y DY (3.1)

p(tet') = p(1) + o(t") .

The intuitive interpretation of p is given by the following

theorem, which is easy to prove,

Theorem 1. For a distance matrixz D and an algorithm t, each
(2, g)-entry of the resultant matrix 1D is equal to the
minimum of the spans along all the paths from node i to node

J in the path-set o(1).

3.2. Validity of an algorithm. A path is said to be elementary
if the nodes on the path are distinct. We denote by pE(T) the
path-set of all elementary paths in the path-set p(t). We say
that a path is conductive if each pair of neighboring nodes in
the path is connected by a branch.

It is obvious that the shortest path from a node to another

corresponding to any distance matrix is elementary and conductive.
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It is also obvious that any elementary and conductive path from
a node to another may be the shortest path corresponding to some

distance matrix. Hence follows the

Theorem 2. An algorithm t is valid for a network G if

and only if all the elementary conductive paths in G are

contained in o°(1).

3.3. Optimality of an algorithm. A network is said to be com-
plete if every pair of differentvnodes is connected by a branch.
In a compléte network G, all the elementary paths (and,
therefore,vall the elementary paths of length 2) are conductive.
If a triple—opgration (ik3> (7, §, k being distinct) did not

occur in an algorithm 1, then the elementary conductive path

(2, k, J) would not be contained in 0°(1). Hence we have

Theorem 3. For every triple (£, j, k) of distinet nodes <,
Jd and k, the triple-operation <ikj> occurs at least once
in any valid algorithm for a complete network.

and
Theorem 4. Any valid algorithm for a complete n-node
network contains at least n(n-1) (n-2) occurrences of

triple-operations.
Theorem 4 shows that the methods by R. W. Floyd [4], G. B.

- 10 -~



Dantzig [5], and H. Katayama and H. Watanabe [6], are optimal
for a complete network in this sense.
It is important to note that the above-mentioned fact is

independent of whether the distance matrix under consideration

is nonnegative or not, i.e.

Theorem 5. If an algorithm transforms every nomnegative
distance matrixz on a network (not necessarily complete)
into the corresponding shortest distance matrix, then the
algorithm is valid for that network, i.e. it transforms
every distance matrix (not necessarily nonnegative) on the

network into the corresponding shortest distance matrix.

and

Theorem 6. On a complete n-node network no algorithm which
consist of less than n(n-1) (n-2) triple-operations (there-
fore, invalid for a complete n-node network) transforms
every nonnegative distance matrix into the corresponding

shortest distance matrix.

Recently, A, J. Hoffman and S. Winograd [10] devised a
method by which only 0(n5/2) additions and subtractions are
needed. However, as for the operations of comparison the method
is identical with that of Floyd, i.e. it requires about n3 com-
parisons. Moreover, the method is not an algorithm in our sense,
since it makes use of the combinations of addition/subtraction

and comparison in a form different from triple-operations.
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3.4, The operator semigroup. Let m and m' be path¥sets of
elementary paths in a network G. If all the conductive paths in
™ are contained also in 7', we write wg ' (C). Let T and T’
be algorithms. We write 7t < t' if pe(r) > pa(T') ). We
say that 1 and t' are equivalent and‘ write T =1’ if v < v’
and T’éT. We write 1 < 1! if 1t # t' and T=_<_‘T'.b We
say that T and t' are incomparable and wr‘ite.yi Ta1! if neithér

T £ T!¢ nor 1! < T.

]

The quotient of the set of algorithms by the equivalence =
defined above forms a semigroup, which we shall call the operator
semigroup. Each member of the operator semigroup (i.e. each
equivalence class of algorithms) is called an operator.

Let us examine some properties of the operator semigroup.

To begin with, we observe that

(iki> = (kkj> = <7lkk>5 e for every 7, g, kK of N, (3.2)

and

<7lkj>'<ikj) = <’Lk,j) for every 7, J, k of N. (3.3)

The commutativity relations between triple-operations are
ized in Table 1, wh k)"'r and (50N =0
summarized in Table 1, where <7, 3 n <7/ 'j'> .

The inequalities < in Table 1 hold strictly (i.e. as <) if

the underlying network G is complete.
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k=g | k" #4

(1]

7 =1 TeT tlet k=glltet'st!et|tet'<t’ et

kK # glltet!>t’et|tet’=t" et

k' =1 k' # 1

T #F 1Mk =2l tet!=t ettt <T 01 Tet! = 't

kK # 2'tet’>tlet|tet?=1"e1

Table 1. Commutativity relations between triple-

operations T = <%kg> and Tt' = <17§J' ,) .

3.5. Operators of practical use. From the fundamental proper-

ties of the operator semigroup shown in §3.4, we see that
@)Q i} (ﬁk) (ke N ; SCUN xN)
(2,4)es ¥ 7
has its unique meaning as an operator, where the right-hand side

"N

means the "."-product of the triple~operations of the form <@Z<J>

[(Z, §) € S], the order being unimportant. It is easy to prove

lil

that
<Z7;>.<,ZS<'> (;:Js) for every k ¢ N and
every R, SCN x N, (3.4)

The following symbols for subsets of N x N will be used.

- 13 -
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(k) = {(Z, §) eV x W | ©Z<k<gl, .
ITk) = {(, §) e N xN | <k, <k},
R L O
TIT(k) = {(£, ) e N x N | § <k <il,
V() = {(£, §) e N xN | k<4, k<jl, 4

By an elementary consideration we can prove the commutativ-
ity relations on a complete network in Table 2 between operators
of the form (R(k)> and (S(k,)> (R, S =I, II, IIT or IV),
where the commutativity relation between <I(k)> s or <III(7<)> S,

respectively, follows from the fact that

<7, ,7> <k J) <z > <’Lk,7’> °<ik7;>'<ikj> '(k]fj>

for every 7, j, X and k' ¢ N, (3.6)

which can be examined directly.

We define

R=1 ToT! 2 tle1 | Tet! L tlet | Tet! 2 tTe1t | Te1! = 1tet
R=IT | tet" = 1'et | Tet! < 1let | Tet! = 7let | Toet! = 1'f0et
R =IIT| tet! = 1'le1 TeT! A Tl Tet! = tleq Tet! = 1'lert
R=IV } et A tlet | tet’' A tlet | tet! L 1let | 1o’ > 1'le7

Table 2, Commutativity relations on a complete network between

!
operators T = <R727<)> and T'=<Szzkr)> , where k < k',

- 14 -
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R Ry
[N

RS R REIR A R CEH I

() ey Lamny )y ety »

where we set- r» =1, 2, 3 or 4, according as R =1, II, IIT or

(3.7)

o

T

IV,‘respectively. If <R§k)>’s are commutative for different

k’s, we write simply as PP (cf. Table 2). We sometimes use

v . F B F B
such notations as Frs’ Frs or Trst’ Trst to mean a product of
k

k 2 v 4
operators <R(k)US(k)> s or that of <R(k)US(k)UT(7<) 8, whose |

‘rigorous definition will be evident. Thus the following

notations have their unique meanings as operators.

Ty T3 Tygs
B F B F B F B F
Tos  Tos  Tygs Typs Togs Togs Tipgs Tipgs
B F B F B 7 B F
Tao o Tao Tage o Taue Trge Ty Tygge Tigye

The intuitive interpretation of these operators are given in

Fig. 1, where the shaded area indicates the set of the pairs of

lower indices of triple-operations with the pivot indicated by a

 smal1 circle and the arrow indicates the movement of the pivot.
Ffom the properties in Table 2 we can obtain various

relations among the above operators. For example, we have

P13 = Pl-P3 = F3.Fl,

(3. 8)
B _ B F _ _F
Ty 2 Tyl Tip = Tyelqs

- 15 -



110

v Y
% 7
7 \ 7
T T T T

Fig. 1
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and

Fg < Pg if the underlying network is complete. (3.9)

(For further details, see [2].)
Some of these operators are characterized in terms of the

corresponding path-sets as follows.

pe(Tl) consists of all the elementary paths of lengths 0
and 1 and of the paths (io, il,..., ir-l’ ir)’s such

that 1, <1, < 4ae < T

0 "Y1 < T

r-1
pe(Fg) consists of all the elementary paths of lengths 0

and 1 and of the paths (io, il,..., 7 ir)’s such

r-1?
that it > io and it > ir for t = 1,..., r-1,

pE(F3) consists of all the elementary paths of lengths 0
and 1 and of the paths (io, il,..., ir—l’ ir)’s such

that 9 >'zl > hee > Tp1 > T

pe(ri) consists of all the elementary paths of lengths 0

and 1 and of the paths (io, 7 ir)’s such

1,-00’ ir—l’

that 1, < 7

. and it<ir;ﬁrt=]q“.,ﬁd.

0

3.6. Variants of Warshall-Floyd algorithm.  The path-set
p€(<l\7§d\7>) consists of all the elementary paths of lengths 0 and

1 and of the paths of the form (¢, k, J) (2, d =1, 2,..., 7).

- 17 -
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k k
The path-set pE((ZVx]%) cescce <Nx]f7> ) includes all the elementary
paths (2, il,..., ir—l’ s (=1, 2,..., s + 1; il,..., ir—l

= kl,..., ks; i1, d=1, 2,..., n). Therefore,

r 4 kIEIN (Nfdv) | (3.10)

has its unique meaning as an operator valid for a complete
network. This operator I' represents the Warshall-Floyd algorithm
[4] which has been referred to in §2.

From §3.6 we have various equivalent expressions for T

such as follows.

T = P€23.FZ = F§23.F€ = F§34.P§ = F{34.T§
= riz‘rza = FZZI;_Z'Pglr = F§4'1€3 = Pizﬁ.rg&
= r§3.r§4 = @3'1"14_{4 = sz;‘riz = rga'rziz
RTINS
= TlBoI‘g.I‘}Z = 1"13.1"12:.1’2
z Tl'P§°P3'FZ = 1"3-1“2.1"1-?1:
= I‘l.I'ZZ.FB-I'g = 1"3»."1"5.1"1.1"1; . (3.11)

These expressions for I will be useful to devise less complex
algorithms in the case where the underlying network is of special
structure (cf. §4).

- 18 -
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3.7. Another proof of the validity of Katayama-Watanabe

algorithm. Table 1 shows that

Gt G
td kex ¢
has its unique meaning as an operator., It is sometimes con-

venient to adopt the following subsets of N as the X in the

above operator <iX3> .

I(Z, §) ={kelN | i1 sksdgl, 2
ITGE, ) =tken | sk, 4k, |
> (3.12)
III(Z, ) =1k el | § sk g2},
W, §) =tkel | ksi, ksgt.”

In the same way as we defined T-operators in §3.6, we define

Fd _F(n) F(1) F(3) d (R(i, n) R(Z,1)
'Yr—'YP 'ooocc'\{ ’ Yl" = < 0""<7: l>’
B d B(1) B(n) B(t) ¢ /R(Z,1) R(<, n)

Yp = Yp oYy o Yp B < 1 ) " <

(3.13)

where we set » =1, 2, 3 or 4, according as R =1, II, III or

_ B
IV, respectively. We sometimes use symbols such as Yis’ Y,g OF
F R(Z,JMS(Z,5)\,
Ypst? Ypot to mean the product operators pf ( p) 3 ) s

<F$$’J)US($’J“JT($’§)>’S, whose rigorous definition will be

evident. For example, we may make use of

B F B F
Yos  Yos  Ygso Y

B F B F B F
Yl’ Yl’ Y3’ Y3’ Y13, Yl3,

- 19 -
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B F B F B F B F
Yo» Yo Y120 Y120 Y23 Y232 Y1232 Y1232

B F B F B F B F
Yor o Yer Y3e0 Yape Vi Y Yiza o Y13se

By an elementary computation we can derive various formulae

connecting I'-operators and y-operators. For example, we have

(see [2])

B_ F.. B Fo_ .
Yy = Y13 % Ypo Y13 = Y13 = 133
F_ _F B _ B,
Yy E 1"2, Yo = F2, (3.14)
B _ B
Y12 E To°Tys
and
P oF P GF B B

Yi2 7 f1%2r Y2120 Y12 7 T2
1f the underlying network is complete. (3.15)
The validity of Katayama-Watanabe algorithm can be proved

on the basis of the preceding relations among operators as

follows. Their algorithm is described in terms of y-operators

as Y€3°Y§-Y§, and, by virtue of (3.14), this is equivalent to
F B _F

P13-F2oP4. However, we have already obtained in §3.6 this
last expression as a variant of Warshall-Floyd algorithmﬂF.

The validity of other methods mentioned in §2 may be proved
in a similar way (see [2]), and the process of proof is far

simpler than the direct proof given in the original papers.
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4, Optimal Algorithms for Specially Structured Networks

4,1, A general lower bound for the complexity of algorithms.
In order to discuss the optimality of algorithms for specially
structured networks, we establish the following preliminary

theorems.

Theorem 1. If a path p = (%, kl,..., kr-l’ J) (r 2 2)
belongs to the path-set 0f (1) for an algorithm t, then
there emsts at least one node k (Lt <r-1) such

that < > appears at least once in T.

Proof: Suppose none of ( yeees < > appear in T,

Then p would not belong to p (T), contrary to the assumption. [

We say that two elementary paths p = (2, kl,..., kr—l’ 3)

(r >2) and q = (¢, hl,..., hs—l’ J) (s 2 2) are disjoint if

nodes k k are not on ¢ and % h are not on p.

l’l..,v P—l 1’...’ S—l
For two distinct nodes ¢ and j we denote by u(Z, J) the maximum
number of disjoint elementary conductive paths of length greater

than 1 from 7 to J. From Theorem 7 we have

Theorem 8. Let i and § be arbitrary distinet nodes and Pys

Poseses P .o .« be disjoint elementary conductive paths from
2 u(Z, J)

1 to § in a network G. If 1 18 a valid algorithm for G,

then for each P, (v =1, 2,i0., u(Z, J)1 there is at least

- 21 =~
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one k  (distinct from  and j) on p,, such that <ié§>
appears at least once in T.
and
Theorem 9. Any valid algorithm for a network G contains at
least .Z. u(i, gj) ocecurrences of triple-operations, where
the sumzziion 18 taken over all the pairs of nodes.
Remark 1. Note that, by virtue of a well-known theorem of
the Menger type [12], the number u(Z, j) is equal to the minimum
number of nodes whose removal separates nodes 7 and J from each

other,

Remark 2, 1f G is complete, then u(Z, j) =n - 2 for
every pair (%, j), so that we have the lower bound n(n-1)(n-2),

in accordance with the arguments in the preceding section.

4,2, Tree-structured networks. For a partition of the set of

nodes N of a network G into m disjoint subsets N NZ""’ Nm’ we

1°
construct the graph 7 which has Nl’ NZ,..., Nm as the nodes and
which has a branch connecting Nv and Nw (v # w) if and only if
there is a branch in G connecting a node of Nv and a node of Nw.
If a'is a tree and if there is always a branch in & connecting

nodes 7 and J when 72, g € Nv or 7 € NU’ J € Nw with NU and Nw

adjacent, we say that the network G is tree-structured. An

- 22 -
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Fig. 2. T, of a tree-structured network G, .
tr tr

example of a tree-structured network is shown in Fig. 2.

Let G » be a tree-structured network. We say that two node

t
N hd c . 3 . ~

sets NU and , are adjacent in Gtr if nodes Nv and Nw in Gtr are

adjacent in Egr' We say that a node set Nx is intermediate from

Nv to Nw if every conductive path from a node in NU to a node in

N  passes a node in NV .,
w x

Theorem 8, when applied to tree-structured networks, gives

Theorem 10. Let t be a valid algorithm for a tree-
structured network.
(a) If two distinect nodes 1 and j belong to the same node
set Nv’ then for every node k in Nv and all the node sets
. . . k
adjacent to Nv the triple-operation <i j> appears at

least once in t.

- 23 -
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(b) If two node sets v, and N are adjacent and 7 € s
J € N s then for every node k in Nv and N? the triple-
operation <ikj> appears at least once in T.

(e) If two node sets N, and N, are not adjacent and 1 € N
J € Nw’ then there exists an intermediate node set v,
such that for every node k in Nx the triple-operation

k .
<i 3) appears at least once in T.

Quite recently, D. R. Shier presented a method of solution
for a tree-structured networks [13]. When we express this method
in terms of triple-operations, we obtain an algorithm containing
only those triple—opérations which are mentioned in Theorem 10,
each triple-operation occurring précisely once, Moreover, for
nodes < and J§ (7 ¢ Nv, J e Nw, Nv and Nw not being adjacent) we
can choose Nx in (¢) of Theorem 10 such that Ile is the minimum
émbng‘all the{‘Nx’s intermediatg from N, to N, (see §4.3). Thus,

when appropriately programmed, his algorithm is optimal.

4.3. Cascade networks. As a special case of tree-structured

networks, a network such as in Fig. 3 may be considered. However,

O——CO0-C0-0W

Fig. 3
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G006

Fig. 4. A cascade network.

in the following we shall consider "cascade networks' such as
illustrated in Fig., 4 by slightly generalizing it.
Let the set of nodes N be decomposed into disjoint subsets

A Xl, A2, XZ""’ X A For the sake of simplicity,

1’ m-1° “m’
we use notatioms such as 4 = X U4 VUx , A =X VU4 and
p 'p-1'pp’ p p-l'p
+
- U = 4 = -
Ap Ap Xb p=1, 2,00., m Xy = X @#). A cascade network

is a network such that two nodes are connected by a branch if and
only if they belong to one and the same ZE. Distance matrices

on a cascade network Gcs take the form in Fig. 5.

Let us apply theorems 8 and 9 to a cascade network Gés' For

nodes 7 and j in the same set Zb we have u(Z, j) = IZ?I - 2.

A1X1A2X2 Xﬁ-lAm
AR T
Xl" i " R ]
1 (O L I I I |
A ve [ I
2 |lll:°°:
X b-£ R
2--- / ) .|l'
........ % L
...... 4 Y’: !
____________ g !
___________ 2

RN e ——

A4 ¢

Fig. 5. A distance matrix corresponding to a cascade network.
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For p and q such that 1 <p < q <m we define F(p, q) by

IX?(p,q)' = min (|X?|,..., IXé—ll)' Then, for nodes 7 € Ap and

J € A; we have u(zZ, ) = u(j, 2) = §(p, q@). Therefore, the

complexity of any valid algorithm for a cascade network Gst is
at least
Tf__ — mil
a (a -1)(a -2) - x (x -1)(x -2)
p=1 p p p p=1 p p p
+ 2 ) aa . (4.1)

peg P4 5(psq)

where a_= |4 x = |X a = |4 a = |A_| and
A A o I
+ +
a = |4a_].
p p
The following algorithm, proposed initially by us in [2],
consists of only the above mentioned triple-operations, each

occurring precisely once and, therefore, is optimal. This

algorithm is a modified form of F13.P§.PZ in §3.6.

Let us denote the intersection of diagonal blocks with R(k)

by R(k; D), where R = I, II, IIT or IV (see Fig. 6). We define

B F
Pociny® Tacin) 13(in)

<E$k)>’s in Fg, Ti and FlB’ respectively, with the corresponding

and T as operators obtained by replacing

kK o\, . . .
<R(k;D)> s. Sor far as Gcs is concerned, it is readily seen that

<IIZEZ<)> = <II(§;D)> J <I/Ez<>> = <IV(772;D)> ’

because the values outside the diagonal blocks remains unchanged

(i.e. remains to be «) under these operators. Therefore, the
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N\ } AN b

IT(k3D)

n \ . A\ //\//<

ZitsD ; N\
Fig; 6. Illustration of R(k; D)’s (R = I, II, IIT or IV).

B F o, B _F B
effect of PZ and r4 in r13 FZ F4 is equal to that of rZ(in)

and FZ(in)’ respectively. Note, also, that the values outside
the diagonal blocks have no influence upon the diagonal blocks

when we apply the algorithm F13. Thus, the algorithm FlB(in).

B F
Po¢in)* T4(in)

diagonal blocks.

o 0]
computes the correct value of dij’s in the

Next, let 7 € A;, J e A; and p < gq. Then for any y(p, q)

such that p < y(p, q) < q, we have

(o]

iy = ) min (dik + dkj) . (4.2)
eX
y(p,q)

because every elementary conductive paths from 7 to J passes

X . This fact implies that the values d..’s outside the
y(p,q) 1J

diagonal blocks may be computed in an increasing order of ¢ - p
. - + - +
(7 € 4 e d or Jed,1ed < g). Thus, we have
p? J q J p? q ? p <gqg s
the following algorithm, where we set y(p, q) = J(p, q) in
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order to make the algorithm optimal.

d m-1,6.m=2 2 .1

T13(out) = T13 "T13 **"" " T137T13 s )
r d Psq -
rig &m0 i3 (r=1, 2,..., m2, m1), p (4.3)
q-p=r
Psq a . 4+ K -
SERE R <ApXA;UA;XAp> AR
7(p,q)

As we have already mentioned, this algorithm Fl3(out).P13(in).
B F

PZ(in).PA(in) contains triple-operations of the number equal to

(4.1) so that it is optimal.
If A = a4y T .00 =a =a and Ty =Ly = eee =2 4

then the leading term (i.e. the terms of the order highest in «

=x’

and ) of (4.1) is equal to
mad + (m2+5m=6)a’x + (2m2+6m-14)ax? + (m2+2m=7)x3 . (4.4)

The leading term of the complexity of the algorithm in [14] or

that in [15] for cascade networks is equal, respectively, to

(2m-1)a3 + MmP+11m-15)a’x + (2m2+18m-35)ax? + (m2+11m-23)x3

(4.5)

and

mas + (m2+6m-7)a2x + (2m2+10m=-20)ax? + (m2+6m-14)ac3 . (4.6)

4.4, Star networks. A star network is another special case

of tree-structured networks.
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A NG 1
@ a l /.v i ‘
/S - [
A - e
.'I. /.-
ad
/---
% “

Am // .

- e - -

- o > - -

N\

Fig., 7. A star network and its distance matrix.

If the set of nodes N of a network Gst is decomposed

into disjoint subsets AO, Al, Az,..., Am’ and if there is no

branch connecting nodes 7 and j not belonging to the same subset

Z? = AOLJ Ap, we call the network a star network. An example of

Gst with its distance matrix is shown in Fig. 7.

Theorem 10 shows that a triple-operation <ikj> with pivot

k ¢ A must appear at least once for every node-pair (¢, J) in

Z% X Zé p=1, 2,..., m), and a triple-operation <ikj> with

pivot k € A, must appear at least once for every node-pair

0
(¢, §) in N x N. Thus the complexity of any valid algorithm for

Gst is bounded from below by

m — —
ao(n—l)(n—Z) + le ap(ap-l)(ap—Z) . (4.7)
where ap = 'Apl and 5? = IZEI (p=0,1, 2,.0., m.

Let us apply the Warshall-Floyd algorithm for Gst’ omitting

all those operations ineffective by virture of the structure of
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G Since only the submatrix Ap X Ap' is transformed by

st’
<ikj> when k ¢ Ap =1, 2,..., m), we have

k
Coan?
Therefore, the algorithm

RN LCARE AR SR

<ch:4‘> ithked (=1, 2,...,m.
pp

is valid for Gst' Moreover, the complex1ty of rst is equal to

st 1
the leading term of (4.7) is equal to

2 2
agn + ma(ao +a)c . (4.8)
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