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The fixed point set of an involution and theorems

of the Borsuk-Ulam type

Akio HATTORI

1. Statement of results. 1In this note h* will denote either

the unoriented cobordism theory ¥ or the usual cohomology theory

with Zz—coefficients H¥( 22‘). The cbr,responding equivariant
cohomology theory for Zz-spaces will be denoted by h”z‘ .
, 2
Let M be a manifold and ¢ an involution on M:.L) We define
2

an embedding A: M —*M =Mx M by A®) = (x, ©x). Then
A 1is equivariant with respect to the involution ¢ on M and
the im)olution T on ~M2 which is defined by T(xl,' x2) = (XZ’ xl).
Let A: : h;Z(M) —> h%;m(lviz) denote the Gysin homomorphism for

A, where m=dimM. We put 6(&) = A, (1) ehgzmz).

In the present note we shall gi§e an explicit formula for
‘ 6 () and apply it to get theorems of the Borsuk-Ulam type. . Our
“results géneralize those of Nakaoka [3], [4]. From the formula
for @ (6 ) we shall also derive a sort of integrality theorem
concerning the fixed point set of ¢ ; see Theorem 4. Detailed
accounts will appear.elsewheré.

Let S%® be the infinite dimensional sphere with the antipodal

1) 1In this note we work in the smooth category. All manifolds
will be connected, compact and without boundary unless other-

wise stated.
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involution. The projection T : S%x M —s s® x M2 induces
Zy
the Gysin homomorphism TC, = h*(MZ) —_>h§ (MZ) and the usual
) | . 2 | ~
homomorphism 7c¥* : h; (MZ) -—*h*(Mz). Let d : M —-—7M2 be the
2
diagonal map. Since d(M) is the fixed point set of T, h’; d))
. 2
is isomorphic to h;(pt) ® h*M) and d induces d*: h"; (MZ)
2 h¥*(pt) 2
—>hy (pt) Q@ h*(M).
2 h* (pt)

Lemma 1. The homomorphism

vu*@d* I %) —> n* o) eB (h (pt) @ h* (M)
2, ' Z) h* (pt)

is injective.

We denote by S the multiplicative set {wlk | k2 1}
14

h* (pt) = h*(P“) where w., 1is the universal first Stiefel-Whitney

z, 1
class. If X 1is a Zz-space then h; (X) 1is an h (pt) -module
2 2,
and we can consider the 1ocalized ring S~ h (X) of h; (X) with
2 .
respect to S. Note that hg (pt) is i.somorphic,to a formal power
2 ‘ _
series ring h*(pt)[[wl]] and h; (pt) ® h*(M) is canonically
‘ , 2 h*(pt) :
embedded in (S-lh; (pt)) @ h*W).
2 h* (pt)

To state our main theorem we need some notations. Let P :
hd ™ —> hgq (MZ) be the Stéenrod-tom Dieck operation; seé [4],
[6]. For uz,e hq(M) we define Po(u) to be d*P(u)/w]Z.q. Then
P, 1is extended to a ring homomorphism Pg * h*M) —

0

(s~ h* (pt)) ? )h*(M). For a real vector bundle § over a
2 h*(pt

CW-complex X its h*-theory Wu classes Vg ( g) € h*(X) are defined
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in a similar way as in [5]. The Wu classes of the tangent bundle
of a manifold X will be denoted by v4(X). Finally we define
a; () € W*(E)[[x]]. by

F(x, y) = Za <x)y
. O‘J
where F 1is the formal group law of the theory h* For a multl-
index ® = (&;,®,, -:+) we put a“<x> -Tl‘a S, A(«) =
o T ‘ 1j J L
Sy and |u| = Zj«.; cf. [6].
J ) .

) Theoremﬁ 2 Let M be a manifold and o an involutlon on M.

Let F ' be the fixed p01nt set of ¢ . F is a dlSJOlnt union of

submanifolds Fy, .-, Fﬂ .

i) n*6(6) e h*(Mz) is given by

Tt*0 () = A!(l)

where the A, on 'th;fight-ﬁand side 1is Eﬁe .usual Gysin homorrnor-‘

phism h* (M) ——>h*(M2-)_; If {ui}r is a homogeneous rh*(p.t':) ‘basis

* : = — ‘a. . * (- .
of h"(M) and A:(l) zaijuix'uj' w1§h ‘aij € h™(pt) then

the aij's satisfy the relation

Zj‘—aijcjk = Sik (the Kronecker § )
G = U * 3 .. .

where cjk p,(u. s uk) with p : M —> pt.

PO d*e(o—)eh ®t) ® 1*) C ThE () © b*e
Z, h*(pt) , 2, h* (pt) '

is given by

| 4

> 5w CHOTD L ypo 3 g )
.4

_d*e(f) =

1
% W]-. 1.(9()+lodao( (Wl ) PO (Vo (M) )

where j, 1is the Gysin homomqrphism' of the inclusion j : Fc M
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and m = dim M.

Remark 3. In Theorem 2, when the theory h* is the usual

cohomology théory H¥( ; Zz), the formula for d* @ (&) reduces

to £,
: 205 L, [2)
m < .

where £, =dim F,.
e i*

Theorem‘l;. ‘Let M, ¢ and Fi. be as in Theorem 2. Suppose

that h* = B¥( ; 2,). 1f we write
f.

2035 ) [%—___1 - a
2 2 31O EDD 20 v 0 = S
where 'u;._ e_Hi(M; 22) then w;e must have
u, = 0 for | i>2,

i , , 2

Corol'lary 5. Under the situation of Theorem 4 the element

0() € H;Z(MZ; Z,) 1is given by
| m
(5]

m-21
(e) = 2w "Ply) + 6y

where 81 is characterized by the conditions
a) ? € T,-image

and

b) m*f ='A..(1) + u

u_ .
ﬂx‘_‘l

2

Corollary 6. Under .the situation of Theorem 4 assume moreover

that dim Fi &< dim M/2 for all 1i. Then
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f

£ [51 ,
2_.; jv(V (F,) ) =0
i=1 s= - st
and 6(¢) € H (Mz; ZZ) is characterized by the conditions

2,
a) 6(s)e T, ~image
and |

b) T*O(&) = A, (1) .

Corollary 7. Let M be an m-manifold which is a Zz-homology

sphere and 6  an involution on M. Then, in the usual homology

m 2 . .
ZZ(M : Zz) is given by

theory H*( ; 22), _ the element B(&) € H

T, (1 x/u) if 6 1is not trivial,

B(sr) =
w‘1“,+ T, (Ixpm) if o is trivial,

where ME Hm(M; 22) is the cofundamental class.

Now let N be another manifold _With an involution T and

f : N—™»M a continuous map. We put

A ={ylyeN, fr(y) =i}
and define an equivariant map E : N —7M2 :by f(y) = (£(y), £T(y)).
The following is fundamental for our theorems of the Borsuk-Ulam

type.

Theorem 8. If A(f) = ¢ then the class f*@(d') € h; (N)
' 2
vanishes.

Corollary 9. Let f denote the restriction of f on the

fixed point set F(T) tgj_ T . Suppose that we have

ey
(3 2 5 (v (B £ 0
h !

=1 s=0
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in H; (pt) ® H*(F(T); 22) then the set A(f) is not empty.
- 72

When the involution T on N 1is free the module h"’z‘ (N)
v : : 2
is canonically identified with h*(N/Zz) .

Corollary 10. Let M and N be manifolds of the same dimen-

m

2
for all components F, of the fixed point set of ¢ . Let T be

sion m. Let 6 be an involution on M such that dim Fi<‘

a free involution on N and £ : N—>M a continuous map. Then,

in the usual cohomology, the evaluation of the class. f*0(6) €

Hm(N/ZZ) on the fundamental_'class [N/Zz] is given by

<V/z,), B6()> = X(O)

where Y (f) 1is the equivariant Lefschetz number of £ as defined

_g'._rl[Bl]. Cvonsequently if i(f) # 0 then A(f) # ¢.

Corollary 11. Let M be an m-manifold which is a Zz-homology

sphere with an involution 6 . Let N be an m-manifold with a

free involution T and £ : N—> M a map. Then we have

~ l+deg £ if & is trivial,
<IN/z,], £%6(e)D ={

deg £ if 6 1is not trivial.

Consequently if 6 1is not trivial and degf # 0 then A(f) # 4.

‘2. 1Indication of proofs. Lemma 1 is a consequence of the

following structure theorem for h; (Mz) and a localization theorem
2 ! .

due to tom Dieck [2] applied to the diagonai map d.

Theorem 12. 1In h; (MZ) the union U (Uwf-kgrnel) coincides
‘ 2 k>1 —_—

with 7TC,-image which is isomorphic to h*(Mz)/h*(MZ)T through 7,.
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*

The homomorphism 7T restricted on 7C,-image is injective.

(MZ)/(‘rC.-imagLe) is a free h; (pt)-modtile and
2 - 2

is generated by P-image. Its rank is equal to the rank of the

The quotient h;

h*(pt)-module h*(M).

Theorem 12 is proved using the Gysin exact sequence of the

2 —> s® X M2 and the following prop-

double covering T ¥xM X
2

erties of T,, T* and P :

TL*?E.(q.x v) =uxv+vxu,
E*P(u) =uxu.
Part i) of Theorem 2 follows from the commutativity of the

diagram
4, 9
“h*M) ———> n*M°)

a8 I ko
) ———3——>h§ ™)
2 2

which holds since 7t is a covering projection.

In order to prove Part ii) we consider the submanifolds A4 M)
and d(M) of Mz-. They are invariant under the action T . Their
rintérsection is canonically idehtified with F. Let j' : Fc A(M)
and j : FC d(M) be the inclusions. Let , ’Vj, and vd ‘be the
- normal bundles of j" and d revspectively. We see thﬁat AM)
and a(M) cut each other cleanly along F, that is, ))j, is a
subbundle of j* ))d. Thus we have the excess bundle E = j*l)d/ Vj,

and it follows from the clean intersection formula (cf. [6]) that
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a* A, (1) = 3, (e(E))

(pt) ® hn*(F) 1is the h*-theory Euler class of

where e(E) € h;v
2 h*(pt)

the bundle E with Zz-action. In our situétion we have

Lemma 13. The bundle E 1is isomorphic to the normal bundle

Vd,

Vé, is induced from T.

of the diagonal map d': F —_—->F2 where the Zz-action on

From Lemma 13 and the clean intersection formula applied to

the commutative diagram

F ——> F
. .2
|3 s
M d ! M2
we infer that ,
.2 2
| o rah ey
(*) d Af(l) =d | RN s
in (S-lh; (pt) ® h*M). But we have a formula due to Nakaoké

_ 2 h*(pt)

[5] which expresses ,7d3(1) in terms of VN(M), P0 and a“(wl)

and a .similar one for d;(l). Using these in (%) we obtain the
- formula in Part ii) of Theorem 2. |
_ Finally Theorem 8 follows from the fact that £¥8(¢") is the

Poincaré dual (in the equivariant cohomology) of f-l(A(M)) = A(f)

in N.
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