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Propagation of Micro-analyticity for

Sblutions of'Pseudo—differential Equations I.

By

Tetsuji MIWA

Abstract.
Propagation of micro-analyticity is studled for a
solution u of a pseudo=differehtial equation P(x,D)u = 0
of a certain class whose charadteristiés are not neéessarily

of constant multiplicity.

Introduction.
" Let P(x,D)u = 0 be a single pseudo-differéhtial
equation of finite order defined in a neighborhood of “xg
= (xg, /:Tiom), a point in the cosphere bundle /-1S¥M of

a real analytic manifold M. This is known‘to be micréfadcally
equivalent to the simplest equation (B/BXI)mv =0 provi@ed
that P(x,D) is real and with constant multiple charaéteristics.
This faét implies in particular that under the same assumptions

. micro-analyticity oY equivalently the zero of a micro—function‘
solution u of P(x,D)u % 0 propagatés,along bicharadtéristic
strips of vP(x,D). (See Sato; Kawai and Kashiwara [1]; we
also refer to Kawai [2], HSrmander [3] and AndersSon [4] for
linear differential operatbrs with simple characteristics;)

Tt is the aim of the present article to e#tend,this

result on propagation of micro-analyticity to operatbrs whbse

characteristics are not necessarily of constant multiplicity.

Recelved AQ\H,Q 10, 1994,
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In this part I we establish lemmas on propagation of microQ
analyticity of a solution u of a pseudo—differéﬁﬁal equation
P(x,D)u = 0 for operators whose principa14symbol is a product
of real and simply characterdistic symbols. As an.easy corollary
of those lemmas we dedﬁce a thgoreh on analyticity of elementary
solutions for linear hyperbolic differential{opérators withv
real énalytic_coefficients. A key to our theorem is the
existence of good elementary solutions’for microfhyperbolic
operators (established in_Kashiwara}ana‘Kawai [91).

A part‘of the résults of this paper hés béeﬁiannounced '
~in Miwa tlo]. | |

In the case of operators with constant cbefficien@s far
reaching results have already been establishedvby Séveral’
authors (Atiyah, Bott and Garding (51, Anderssdn (61, [71
and Bernstein [8]). 1In the subsequent paft II we will éxt'end
the present results to the wider class of those'bseﬁdb—differ—‘
ential operators whose principal symbols are micro~loéally'  '
contact;transformable to constanﬁ—coefficiented symbols so
asrtq‘comprise the results of these.authors.'»‘

,' The author expresses his sincere gratitude to Proféssdr |

T. Kawai and Professor M. Kashiwara for their kind guidances

to their deep theory.
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1. Reductive Pseudo dlfferentlal Operators

TN TN N et N

and Thelr Blcharacberlstlc Strlps.

N T

In this section we 1ntroduce a class of pseudo—dlfferentlal

operators and define blcharadbrlstlc strips for them.

Definition 1.1. Reductive pseudo—dlfferentlal operators._

YL T N VAN R QTR NN e

Let P(x,D) be a pseudo-differential operator of finite
order defined in a neighborhood of kg = (xo, gom),,a point
in the cotangential projective bundle P¥X of a complex

manifold X. Let
5, .S,
(1.1) a(P)(x,€) = Py (x,E) " p,, (x;E)

be o irreducible decomposition of its principal symbol .at

x¥. We call P(x,D) veductive at XX if each P (x,£) is

0°
simply characteristlc, that 1s\va E)pj(x,g) is not parallel
’

gg dxid We call r the number of crossing and Sl+"'+sr

the multipllclty.

Examples of reductive symbols.ave

(1.2) £l - x3(g5+ - +ED),  amd
(1.3) (£2-2(x)E3-b(x)E3) (£2-c (x)£3-a(x)E)

with a(x), b(x), e(x) “and  d(x) positive when x 1is real.
F&———Both of (1.2) and (1.3) are reductive on their real
characteristic va:ieﬁies.

Definition 1.2. Blcharacteristic strips.

AT VA N T Wi Ve Wi S Vs

Let P(x,D) be as in Definition 1.1. We can define
»a bicharacteristic strip Bj(xg) of pj(x,g) through xg

as usual. We call Bj(xg) (j=1,+--,r) bicharacteristic

strips of P(x,D) through xg.

- 3 -
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2. A Survey on Mlcro—hyperbollc Operators

PR AN . P _/\_'\_v

In this sectlon we recall the results of Kashlwara and.
Kawai [9], which we need in section 3.

ILet M be a real analytic manlfold of dimentlon n
and X be ‘@ complex nelghborhokbvjyge denote by L the
cosphere bundle SﬁX = /Z1S*M and» by A its complex
neighborhood. We take a homogeneous local coordinates

(xla".sxns /:]T(El,'-e-,-'gn)m) of L.
Definition 2.1. Partlal micro—hyperbolicity. Let-
VAN . T\ A VA Y U s~ '\/‘W/
"P(x,D) be a pseudo—differential operator defined in a
neighborhood of xg ='(x0, /—lgom) and V be its character-
istic variety, that is, {(x,E=)€ AJo(P)(x,£) = 0}. Let
x* + /~Ivo be a point of Y-1SL = S;A. We say that P(x,D)
is partially micro-hyperbolic at x* + /“Ivo if x* + v/ZIvo

raad

- 1s not contained in the closure of V - L in LA, the real

monoidal transform of A with the center L (see Sato,

Kawai and Kashiwara [1]). This is equivalent to sayisgthat
(2.1) o (P) (y¥+/=1tv) # O

when y* is in L and near x*¥ and 0 < t < 1.

We denote by L X L the real analytic manifdld
/=1S¥(M x M) — M x /-18¥M — /-1 S*¥M x M and we take a
homogeneous local coord;hates v(xl,--~,xn,xi,-- ’Xn’ _
'/:T(gl,-. JE ,gl,---,g')w) of L X L. We identify L with
_ ! \{¢¢d
the anti-diagonal set of L X L, that 1s, gx X /—1(5, E)e)
€L % L}. -

Now let us consider in a coordinate neighborhood of L,

where £ # 0. We can use inhomogeneous local coordinates

I T
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(Xl’.“’xl’l’pl’”"pn—l) of L where pj = ——Jl(j=1’...’n_1)

and  (Xg, -+ ,X X, 0, X ! sPys 5P 15P]50  ,p)) of L x L
U

" where p. = ——i(j=l,---,n—1) and p! = —mi(j=1,-~-,n).' L is
iog, i g,

identified with {(xl, SeaX 3X st sX Dyt D 157 Pys

p,_-1)} in L % L.

B ~
Let. © be a subbundle of S§(L x L) induced from the

fundamental 1-form on L X L. Using the local coordinates

®° can be written as

: n-1 n-1
(2.2) {(x x,p,~p,1 (dx ~ ] psdx,-dx'+ } p, dx)e )}.
373 J
Jj=1 , moj=1
We consider S¥L ias a subbundle of- Si(L % L) of codimension
1 by the map v
- . n=1
(xl’."’xn’pl""’pn—i?( X a dx + 3 badg Yoo)
=1 j=1
n n-1 n-~1 n-1
b (x,X,D, p,1 ( Z asdx,— ) a; dx'+ e dep A+ Y dep3+( ) bij)dpn)m)

3”1‘ j=1+J =1 =19 =

Definition 2.2. Canonical map H.  There is a canonical

(VARSI Y e e "N DN AN,

map H from §%(L x L) - lﬁgto /-1SL induced from the

fundamental 1-form on L. H maps (x,x,p,-p,l,

n. n-1 ’
_( Zl?ing\Jz a.dx 3+ z bs dpj,jz b, d )m) to (x,p,/-1
n-1 ,
ta 2))0) .
(jz b «a/ax )= El(aan aJ}(B/BQJ)) )
Lemma 2.1. Let G 925.8**L Then we have
v S ' - : X0 -

P

<H(ei0, 0,> = —<H(62), 6,>-

If we denote by [ , ] the Lagrangean bracket (see Sato, Kawai

e e o ————

...'5_
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and Kashiwara [11y,

B

_<H(d§i), ax> = [aﬂ, a. ]

i

is valid}v

Now we explain the notion of normal setkahd conormal
set. Let M be a real analytic manifold, N be its sub-
manifold and G be a closed subset of M. The normal set
of G along N 1s the intersection of SNM and the closure
of G-N in \EQ and we denote it by SNG The polar of

%ﬂs, that is,
(2.3) {(x,E») & S§M,;<€,v> < 0 for any x+vo esﬁg}
. N

is calledvthe»conormal'set of G along N ~and we denote

\¥
it by SNQ.

kY

- Definition 2.3. ﬂ¢‘ and ALy Let x% _be a point
A~ \w im— A . R

g

of L and T be a subset in iﬁxL x L) over x%. We
denote ﬂf{r the set of all gerr;s‘ K of Cnﬁgmn) at x\*f
such that the fiber over X% of the conormal set of the
sﬁpport of XK along LCL Q»L contains a'neighborhood v

K——ﬁ-—~—-_-of the antipodal set of T. If A is a subsét

of /-ls\ﬁL then ldu_!\@ is denoted by zgf
VESA /JH\J(A) S
Proposition 2.1. Ring structure of F4 ﬂ4§\ is a
AN N VV\/\ T am— N o ¢ i

ring by the operation (K\(x x)dx, K (x"x)dx)

IK\(x x")K (x",xb)dx“}dxu if T 1is not empty.

Definition 2.14. 'dﬁ%, Let x% be a point of L and
V\"""\", N .- i .

A i
I be a subset of éi*L. The set of all germs u(x) of

‘ \ ; o ,
CTM at x¥ satisfying the following condition is denoted

- 6 -
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by ‘ﬁ%P; the normal set of the support of wu(x) along X%
/ ,

does not intersect the polar of T.

Prop081t10n 2.2. /‘f\ is an }({ N\ module by the operation .

(K(x,x0)did,u(x)) » (Ku)(x) = IK(x,xzc)u(x'v')dx\".
Now we can state the main theorem in Kashiwara and

Kawai [9].

Theorem 2.1. Existence of a good elementary s solutlon
[V A SINS T N NS TN S T~

Let P(x,D) be a single pseudo—differential operator of

finite order whlch is partlally mlcro—hyperbolic at x¥+/—lvo.

Then there exists a un_gue elementary solution E of P in

e et et
/r‘\

xi*/ lvd\\i§23§£252§»

%ﬁfﬁﬁ/:TVG’ that is, an element = E in

(2;u) . PE = EP = 1.
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3. Lemmas on .‘ Propagatlon of MlCI‘O analytlclty._,_
In this sectlon we prove lemmas on .- propagatlon of

micro—analyticity for solutions of pseudo-differential equations.
The following lemma is another expression of Lemma 3.1.5

and Lemma 3.1.6 of Sato, Kawai and Kashiwara [1].

Lemma 3.1. Normal set of a non s:mgular hypersurface.,

(VA U N - PN NS T TN

Let %(x) be a real analytic function defined in a neigh-

bbrhood of Xqs & point of a real analytic minifold M.

Assume that dflxg) # 0. We can rewrite as
P(x) = glx)(alx) + FIo(x))

where

g(Xd) # 0,
da(xy) # O

and b(x) Z0 on_ {xja(x) = 0} ’9_1:_ b(x)

Then the normal set SV of V = {x€Xjfx) = 0} is

{

as _follows.

i)  If b(x)

it

0, P__l}_g}:l (§1VEV>X = {v € (SMX)X ,'<V,da()f0-)>
| /70 0
= 0}.

ii) Ir b(x) >0 92’>'{X€M,'a(}_:) = 0}, then

(S V) 0\ =" {v €(SMX)XO;<v,da(x0)> < 0}.
ii1i) If b(x) <0 con {xeMja(x) = 0}, then

(SMV Av E(S X) <v da(x )> > 0}.
. XO . 0
iv) Otherwise (SMV)Xo = (SM x g7
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Let P(x,D) be a pseudo-differential operator defined
in a neighborhood of %%<= (0,+++,0;/1(0,+++,1)=) € L. We

assume that P(x,D) is reductive at gg% and (1.1) is an
irredﬁcible decomposition of its principal éymboi. Moreover
we assume that each Qi(x,&) is real and partially micro-
‘hyperbolic at i}a+ Y-1vo for such-an element -v‘ that
<v,w> = 0 where w is the fundamentai 1-form on L.

From Lemma 3.1, we have <v,dpi{x;6)> # 0. By a suitable

contact transformation of L, we can trghsform v into

B/Bpi, An associated quantized contact transfdrmation trans-

form P(x,D) so that we can take
p;(x,0) = by = 4(x,pW) (1 = 1,e.0,0)0

Therefore r-bicharacteristic strips through igﬁxcam,be
. N

parametrized by Xq- We denote by Bi- the positive

' : ﬁ&ﬁ&ﬁj}ﬂﬁx%)
(respectively negative) part, that is to say,YX; « 0, of

i-th bicharacteristic strip through ig;‘
Our first lemma on “‘propagation of micro4ana1yticity

is as follows.

Lemma 3.2. Assume that r = 2  and that

V1 L — e

(3.1) ‘{pi(x,E), bzfx,i)} # 0

at’Axgﬁ If u 1s a microfunction solution of the equation

P(x,D)u = 0 in a neighborhood of xgi and micro-analytic

et e e — e P N

on each B} (i = 1,2), then u’ is micro-analytic at x¥

For arbitrary r we have only a partiai fésult. We

do not know whether the following condition (3.3) is necessary

-9 -
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or not.

Lemma 3.3. Assume that

VIV T

(3.2) {pr £), py(x,E)} # 0 for 1 £

at ﬁ*i Moreover we assume that the skew—symmetrlc matrlx

- 0%

= ({pj'}\(X,E),pj\‘(x,E)}) i,j “—' l’lo..’r

xﬁ\ sat;sfies the follow1ng condltlon.

v s RN v

(3.3) For any principal minor

= e e T

Wa = ({%fx,,m, g},ﬂx,g)})t %,JeIC{l,.,.,r}

such that #(I) 2 2 and for any vector X = (Aps-+,Ay(}))
0

such that

such th 1" 2

s | P PR 20
;.#(I).\

if and only if a = (0,°¢+,0).

Then the conclusion of Lemma 3.2 is also valid for

r > 3.

: Y ’ .
Proof. We prove Lemma 3.3 under ke condition (3.3)

by the induction“on r. Let
(dplr-dqi)‘ {ves ¥L <v,dp,-dg;> < 0}.

We also denote by (dp qu.)w?(respectively (dp —dq;jf) the
. i Rl 1 7L )

set
'hfésxéL;<v,derdqi> > 0} (respectively
{ve sxaL ;’<v,dp1'—dqi>=0} .

- 10 -
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P(x,D). is partially micro-hyperbolic at xg +/~Ivo
for any v in A = /E\(dp\ - dgy)<. Let |
i=1

<0 Fa 0\

. \;lf ¢ ot ~ S » l - K—/ i  \
ro= ES(A)NS8,,L = (f\lk9<;pi1— agp)7) NS* ol

L

and FQ’ be its polar in §/“L
» m
From Lemma 2.1

\
<—H(dpi-dqi), }(dp —dq QV@ = <dgfrdqi) (deTd%ﬂ)7> < 0.

Hence {ﬁ\}(dp~—dq )T /\S* L}b’— -H(dp =dqy )
1 i 6 1
Put ?ﬁ.— —H(dpl dq, ) Then

0”‘— -".vo-ov A= r | s e o ‘
4}v/_ YlV Yf{- {121 \ i,Ai>0 i=1, . ST anq

(%lg°"?}r) # (0{"',0)}-

We denote by G -the support of u. If we can show that

(3.4) s SG’\Fg = ¢,

‘then a good elementary solution E for P(x,D) operates

on u. Hence we have
= (EP)u = E(Pu) '=

To prove (3.4), first we recall that micro—anaiyticity
propagates along a bicharacteristic strip if P(x,D) 1is
with constant multiple characterlstics.

Let us take a point ﬁ?{ on Bijfnear fg; From
condition (3.2), we may assume that pl—q (x,p) # 0 at
x¥ for j # i, that is, P(x D) 1is of constant multiplicity

l‘
at x§. If y} is a point on V; ='{pl-gifx’p) = 0} near

-~ 11 -



74

ifk P(x,D) 1is of constant multiplicity at §*< also. From
our assumptions, u 1is micro-analytic at xf‘ and hence at
91 If we consider the blcharacterlstic strip B (y{)
through yl, micro- analyt1c1ty of u propagates along B (y
until when ?i‘%l) meets_other chsracterlstlc varieties
AL £ D). | | |
Mlcro—analytlcity of u propagates along bicharacter-
istic strips on VJ\‘as well as on Yib hence from
our induction Rypethe esig§, u is still micro- analytic if
- the crossing point is of’multiplicity < r-1. (Note that |
from {:} assumption (3.2), a bicharsoteristic strip on Vk\
meets other V only once near fé Henoé if we put ’

T = ’N\ij u is mlcro—analytlc outside of T\JB (T) near’

*
X%eq B (X ).

fg, where B‘(T) =
) j?l,"',!‘

Hence

4

SQACAV.C ST V(-va).

/X&Ai X"é‘ - A

It follows that if S/%G/wfo}\v # ¢,
ALY

V---Vv ST # 6.
e+

This implies that for some ) = (Aff""lf)‘% (0,+-+,0)
such that )‘{i\; 0"”")‘::&}-; 0

<- 2 A H(dp dqy) dp'—-dq =0 (k=1,¢,r).

ger AT TRRTAC
From Lemma 2 1 this cowlyadicts &—————— assumption
(3.3).
It is easy to see that if n = 2 <>' condition (3.2)

implies ::: condition (3.3).

- 12 -



Lemma 3.4. Assume that n = 2 and (3.2) holds, then
o ssume .ena | A014s, taen
the conclu31on of Lemma 3.2 ‘E§WY§EE§:

et I ¢ i e e

Next we treat the case when r = 2 and the Poisson

bracket vanlshes at x% but not identically.  The case when
the Poisson bracket vanmishes identically w1ll be trea,ted in the
subsequent part II.

Lemma 3.5. Assume that r = 2 and that
\/\/"\/\./ e o o —— “__._.._.,,,,A JEp

‘{pil“(xsg)s 92(}(,6)} =

at ig. Further assume the following.
— "0\ -

(3.5) There exist positive integers my and m,: such that

anc_ My S

oy g oo oy spg i) # 0

Ti;times

NN R

mzftimes
t x& a
2L %g, #n
(3.6) A {pl; {p’,f,pz}}{pé; {Qi,z?z\}} >0

near i%t Then the conclu31on of Lemma 3.2 ”i§mvaliq:

T

e gt b € o 7 o o

Proof. Let (m (x%*), mg(xf)) be the smallest choice
/ Ea .

LrAouLIAY

of the integers satisfying (3.5) at XB‘ We prove this
lemma by the induction on m(x*) and mz(xg3.
, A
As in the proof of Lemma 3.3 it is sufficient to show
that |
' .V oy -
(3.7 vy v2/\§X6T s

where v, = "H(dQ1? i=1,2

- 13 -
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and T = {MeL/m. () = m(x¥) t = 1,2}.
‘ oA o /O\ ‘
Let us begin with the case when mi{kﬁ) = mé(xg) = 2.
s U s U

Then

If (3.7) is not valid,there exists a pair ("1‘?"2? # (0,0)

where x/'ﬁ; 0 (1 = 1,2) such that
~Ogpy + Agpgh pgd = 0 1 =1,2
and
'“}1-91‘- * Agpys Apyspgt) = 0

at i%& Since we have assumed (3.6), this is a contradiction.
Next we proceed <= to the case when mi(ig) = 2 and

my(x§) = 3. Then

T = {p, = Py = lpy.p,} = {py,{p; .3} = 0}

Hence if (3.7) is not valid, there exists a pair (Al,xz) #

>0 (i = 1,2) such that

(0,0), where ’ﬁii

~{%lp1%+ Xagz, pi} =.0 i=1,2,

and
(3.9) f{ﬁlpi + kgpg;{ pz;{pi,pz}}} = 0.

Since {py»lpyspy}} # 0, (3.8) implies that Ap = O Then,
since {92, {92\.’ {pi‘l,pg.,}}}} # 0, (3.9) implies that 7\2‘;= 0.
This is a contradiction. In the same way we can proceed
with the step of the induction and pfove the lemma.

-1 -
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L, Analytlclty of Elementary Solutions.
9 T e e T T

In thls section we define characteristic conoids for
operators treated in section 3 and show that the elementary
‘solutions for those operators are analytic outside the character-
istic conoids. |

Let P(x,D) be a pseudo-differential operator satisfying
the conditions stated in section 3. We assume that gﬁﬁx,p)
(i=1,++-,r) satisfy the assumptions of one of the lemmas
3.2 ~ 3.5,

Now we define "bicharacteristic closure" operation for
P(x,D).

Definition [ Bichafacteristic‘cloéﬁre. Let £%<'bé

A San A A W N e R U g :
a point in a nelghborhood where P(x,D) isfdefined. Let us

pursue a bicharabteristic strip ﬁw\(xgz through ﬁ*l It

N

may fall across a point Xl\\ 'r(§ ) > 2. Then we proceed
unuvpursulng ﬁ” (XIQ, one of the r(x *) bicharacteristic strips
through i*’ I% may fall across again a point XE\ of r(xz)
'; 2. Then we pursue some (ng and so on. fhe union of
these bicharacteristic strlpsbis denoted by. ﬁ*?iEQ and the
union of ﬁxfx%e and %%\ is called the positive bicharacter-
istic closure'bf xgg for .P(X,D).' Likewise we define Bﬁ(gg)
and the‘negative bicharacteristic closuré. Wevdeﬁote by

B(x ) the union of ﬁgiig) and X% and call it the

i SRR T

bicharacterlstic closure of igi for P(x,D).

(O n) . .
Now let KGECiMxM be the kernel function of a good
elementary solution E of Kashiwara and Kawai [9]. Then the
following theorem is a trivial consequence of lemmas in

section 3.

15 -
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Theorem 1. Micro analytlclty of elementary solutlons

[ SN e~ -

supp KCf(X,y,f_(E,n) € /=IS#(MxM) ;0(P) (x,E) = O(P)(y,—n)

=0 and (x,£) belongs to the po§1§iye“gigpqgacteg;§§§g_
closure of (y,-m)}U{(x,y,/7I(£,n) € IS8 2=y, E=-n}.

Now let ©P(x,D) be a m—thvorder linear differential
operator hyperbolic with respect to the direction (1,+--,0).
We assume that P(x,D) 1is reductive on the real characteristic
variety 'WQ\ and satisfies the assumptions of one of the

lemmas 3.2 ~ 3.5. We define the characteristic conoid for
P(x,D).

Definition }.,2. Characteristic conoid. Let y be a
i e N AN e e S e~

point in a neighborhood where P(x,D) is defined. Let

/

y
ﬁ¢(y) = a( ﬁ%iyﬁ))\Jy, where m: /~IS¥M - M.

yéen (Y)f\v“

This is called the positive characteristic conoid througﬁ
y  for P(x,D). Likewise we define Wt{y) and W(y).
Moreover we denote by W%(y)(respectively W(y)) the
complimenf of the connected component of the compliment of
ﬁx%yj (fespectively W(y)) which contains the germ of a

set
'{xglx—ylv<< 1, X[ = Yps X £ yl.

Now the foliowing theorem is a consequence of Theorem

4.1 and the fundamental exact sequence

0> a4 ~ @+1§"‘5\(@)+0.

Theorem U.2. Analytlclty of elementary solutlons

SN . . ———

- 16 -
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e i

Let E(x,y) be a good elementary solution for P(x,D), that

is to say E(x,y) 1is a hyperfunction satisfying

e e e st it

y

P(x,I}i\?E(x,y)? é@?{(y,D-?E(x,y) = é(x-;y)
4 - AN )

and .

supp E(X,Y) C{(x,y),"xl > Yl};

and let  En(x,y) (J = 1,°++,m) be the elementary solution
of the Cauchy problem for P(x,D), that is, <f_ e %\(x,y)

i.s‘__‘a »_;'}_y'perfu_nc;ion satisfying

P(x,ﬁx)gd{x;y) =0
and

DU 2 e ‘

(?/331) Ejﬁx,y)

=8 §(x-y).

Then we have

‘sing supp E(x,y)C{(x,y),;’x 6W+(y)},
supp E(x,y) C{(x,y);x W (y)},
. sing supp E}J.f\(x,y)C {(x,y)yxew(y)}

and

supp Eg(x,3) C{(x,y)5x e Ry}

- 17 -
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