goooboooogn
0 2360 19750 8-14

3

A NATURAL DEDUCTION SYSTEM FOR ASSERTIONS
by -
Shigeru Igarashi (Kyoto U.)
ABSTRACT: First-order logic is extended so as to include formulas expressing
the termination as well.as the cor?ectnessbof . algorithmic statements. The
intended formal system is a generalization of the natural deduction system NK
postlated b; Gentzen. The termination of recursive procédures is proved gy
mathematicai induction and_the cortectnéss'fdrmulas introducedlby Hoare are
expressed and proved cénvéniently ﬁroursystam,tﬁeré&ydescribing the semantics
~of statemengs.
Let T beban axiomatized extension of Peano arithmetic which is dgnoted by
N, and L(T) the first-order laﬁguage of T.

The statements over L(T) are defined inductively as follows.

There are symbols called {(m,n)-ary procedure symbols for each m and n.

A (0,0)-ary procediire symbol is called a statement constant. Moreover there are

symbols called (m,n)-ary constructors for each m and n where m or n is



Intended Interpretation of Assertions.

Let A(x,y), or A in short, be a statement whose leff-occurring variables
are x and other‘variables are y. We consider A rgalizes a partial transfor-
mation_{é of_the assignments of natural numbers (as the unive;se of T) to the
variables designated by x and vy. For.eaéh such assignment i, i(a), i(b), ...
shall denote the ﬁumerals ﬁname of ntmber) a;signed to the variables a, b, ...,
respectively. We may supp§se that | .

a) for each i, (Ai) (a) dis defined either for all a within =x or y; or for
no variabie; and that
b) (A1) (a)=i(a) for a within y, if éi is defined.

Wé-extend A for the assignments i dinvolving variaﬁles other than x or

y, by simply letting Qéi)(é)ﬁi(é) for such a variable.- Whenever we evaludte

the truth of a subexpression of an assertion we use the assignments to all the

variables occurring in that assertiorn. The truth of af's is defined by induction
as follows.

1. We know the truth of an insténce of a formula F of L(T). Therefore we leﬁ

F(a,b,;..) be true for the assignment i if the instance F(i(a),i(b),...) of
F 1is true; and let it be false otherwise.
2. We let APMF be true for‘ i if Ai is defined and F is true for the
assignment Ai; and be false otherwise.
3. The truth of "4 and A-B ére defined simply by the truthvtable. Thus
A vis true for i if and only if A #s false for 1.
4. Ve let '(a)A(a) be true for i if " A(a) is true for every j such that
i(b)=j(b) for each b except a; and be false otherwise.

An assertion formula A4 1is true if A 1is true for every assignment i.
Thus Af‘0=0 means - A terminates (for every initial assignment.) A b0=1

is a contradiction for any A. .The correctness formula of the form

F{A}G [Hoare (1969). 1Igarashi,
London, and Luckham (1973)]



10
not 0.

a) For an (m,n)-ary procedure symbol f and terms t tn (abbreviated

1> "2

by t with n understood)and arbitrary but distinct variables x X

1* ot 0 ¥y

(abbreviated by x with m understood),
f(xi, - ;xm>;’tl,‘... ’Atn)f namgly,'f(x;t)

is a statement.
b) For an (m,n);a:y constructor symbol - K, quantifier-free formulas Flyoeees
.ﬁm, and statementé A

1° .ot 5_An?.

L F , A

K(Fl, a‘o'-o m: 1, ‘ ~ n?’

is a statement.

Assertion formulas, or af's in short, are the formulas inductively defined

as follows.

a) For a statement A and a formula F over L(T), APMF is an atomic asser-—
tibn formula, of Eéﬁ in shoft.. An aaf is an af.

b) If A is an af, then .QA is én af,

e If A and ‘B ére af's, then A+B 1is an af. ‘

d) If A is an af and x ‘does not occur 1éft*) in A,Athén (x)4 1is an af.
Henceforce a formulavshall mean only a formu;a.over L(T). Aﬁ assertion formula

will be called an assertion on.occasions.

%) A wvariable x; is said to occur left in f(xl,...,xm;t), 1<i<m.
A variable x is said to occur left in a statement or an assertion if it oceurs

left in a statement of the form £(y;t), within that statement or assertion.



Li

W. Constructors. [ F]
AN F BN G
AB N\ G
F abhe T ar BhG
Fla,B] N G F {A,B] NG
V. Primitive Procedures. x*-y!\ Xx=y. t=u__x+tN F
' ’ xtu N F

AN 0=0.
(A coded ﬁrocedure is regarded as a primitive procedure, e.g.
x=afy=b - Swap (x,y; ).}\x=b&y=a._ » )‘
WM. Specification and Define-d Pfgced_urés. :

r=u . flxzs,e) RF K  At)N B

f(x;s,u) NF fxe)N F

EXAMPLE A. Mutually recursive procedurés computing the greatest common divisor
of two numbers;.'. |
Declaration: .p(z;x,y) proc if x=y then z:=x else q(z;x,y).
q(z;x,y) proc if y<x then, P(z;x-’.y,f) else q(z;y,x).
To prove: (x)(y) (p(z;x,¥) [\ z=ged(x,y)). (Size of proof = 225% of EXAMPLE C).
Induction hypothesis: (x)(y)(h(x,y)<n > p(zix,y) [\ z=g¢d_(x.,y)); where
h(x,y)=Ceby) /ged (x,5) 5 or=0, (x=y=0).
EXAMPLE B. Procedure tj.i:anslated -from»a'p_vgg_l_g program computing }1!
Declarat:ion.: f(x,ys;a,b) proc if" a<n  then [x:=a+l;y:;=bx;f(x,y;x;y)] ‘else
‘[:'::-%a;y:_=b]. | | v
Specification: f£(x,y;a,b) | yil_lﬁ a,b.  (Size of proof _='1st of EXAMPLE C).
To prove: f(x,y;o,l) [\ y=n! |

Key assertion: f(x,y;n-k,b) [\ - x=n&y=b-n!/ (_n-li) !

++) . F|A,B| denotes if F then A else B in ALGOL60.
**), f 1is specified by f(w;y,z). \ialue'z.

*%%) f is declared by £(w;y) proc A(w,y).

£



)
o

is expressed in our language by
(F > afpo=0) » 7 >aboy,

which describes that if A terminates for every initial assignment of values to

variables satisfying the formula 'F then the resulting‘assignment (corresponding

to such initial assigonment) satisfies G .

Summary of Natural Deduction system for Assertions

The following inference rules are used for assertion ﬁqrmulas.
I. Logical Inference.

Propositional connectives. All the rules of inference in NK except the

quantifier rules are used.

Quantifiers. . A bound variable must not occur left within its scope, so that

all the quantifier rules except the universal specification are used with
this restriction.

Universal specification. _ (x)A(x)
A(t)

No variable in the term t occurs: left in A(t).

II. Equality and Induction. t=u A(tj
A(u)

No variable in the terms t or u occurs left in A(t), nor in A(u).

[ AC@)].7

A(0) A(atl)
(®)AK)

L]
a does not occur left in A(a), besides a satisfies the condition of

eigenvariable.
IT. Formulas and Atomic Assertionmns.. Af~ F A}\ G
AN F&G
1.
AN F T F  TE PG
AN G G
AN 0=0 F_ %) A 0=1
AN F 0=1

+ Tl F denotes that F is a theorem in the first-order theory T.

%) No free variable in F occurs left in A.

5



EXAMPLE C. Recursive procedure computing n!
Declaration: f(y;x) proc if x=0 then y:=1 else [f(y;x-1);y:=xy].

To prove: £(y;x) h y=x! (Size of this proof def 100%)

tlﬁl ) y=a! (dis)

Loso  yelN y=1 £(y;a) N y=a! |a=a'-1  a'y=a'! *)
0=0 | y<«1, s'|hy=1 'f(y;a'—l)!\ y=al yea'yhy'a't
£(y;0) N y=1 |} y=l»y=0! a'#0  f(y;a'-l);y«a'y hy=a'!
£(y;0) N y=0! ' a'=0|y«l, f(y;a'-1);y«a'y|pNy=a'!

£(y;a') N y=a'!

x) (£(y;x) b y=x!)

£(y;x) N y=x!

Remark. The following rule is a derived rule.

F(t)

x<t N F(x)

*) The above rule is used.

Discussions

The language of the assertion formulas can be generalized in the following
manner. This definition is much ;impler than the original both for the forma=
tion of formulas and the truth valuation. However one usually doesntpeed this
generalized assertion formula in proving the éorrectﬁess of programs.

Assertion formulas, or af*s, iq thé generalized sensejare defined induc=’
tively as follows.
a) An atomic formula over —L(T) is an af.
b) If A is an af, then v 4 is an af.
¢) If A4 and B are af's, then AyB is an af.
d) If A4 is an af, and x  is a variable, then (x)4 is an af.

e) If A is a statement, and A is an af, then AN A is an af.



14
The truth of the assertion formulas, in the generalized sense, is defined

inductively as follows.

1. If A is a formula over L(T), then .4 is said to be true for i if
it is true for the assignment i °in the sense of predicate calculus.
s

2. We let A}vA' be true fori‘i if jéi is defined and 4 1is true for Ai ;

and let it be false otherwise, (etc.)

As shown as examples, the constructor while—do'ean be uniformly translated
into recursive procedures;-so'that we?esn give simple inference rules for this
constructor as the relatlvely sound rules of our formalism.

Cf. “Automatic program verlflcation I" Stanford AIM 200.

"Admissibility of fixed-point induction in first-order logic of typed

theories" Stanford AIM 168, Proc. Symp. Th. Prog. (USSRﬁhcademy of

Sciences, in Russxan), or Lecture Notes in Computer Science. " (Springer

Verlag, English edition)

ACKNOWLEDGMENTS
C. Hoare, D. Luckham, R. London, and N. Wirth have done much in the study of the
correctness formulas and assertions. Hoare obtained a new induction principle
for recursive procedures. The recursive procedures have been studied by J.
de Bakker who based his study on the‘induction principle given by D. Scott.
(After my talks at IRIA and at WG2.2 (Stuttgart March 1974), Z. Manna communi-
cated with me about an independent formallsm by him and ‘'A.Pnueli on the same
subject. During my stay at IRIA R.Burstall'taught me his treatment of the

similar problems.)



