goooboooogn
0 236 0 19750 31-37

31

PROGRAM SCHEMAS WITHOUT GOTOS

Yutaka Kanayama
Department of Computer Science
The University of Electro-Communications
Chofugaoka, Chofu, Tokyo, JAPAN

Phone. 0424-83-2161

ABSTRACT

A programming system L for non-deterministic program

schema is introduced. The principal features of L are as

follows:

(1) All programs in L have two exits as subroutines in SNOBOL do.

(2) The branching function is realized by connectives <+ and +,
and a duality is observed between them.

(3) The looping function is realized by recursive calls which is
represented by a naming operator .

(4) The fourth connective (-) has the exit-exchanging effect
which has no equvalents in conventional programming languages.

(5) All predicate type operations in L may have side dffects.
In a sense, L 1s a proposal for goto-less programming. For

example, two programs if p then o else B and while p do o

are translated into L as follows: po + B and wx(pax + 1). A

program mx(pa + q + bx), however, has no equivalents in D-chart.
The meaning of a progra@Aés defined from its computation

||, which is a pair of simplg deterministic languages. Hence

the equivalence problem in L is solvable.

)
~

0. INTRODUCTION

Tanov introduced an abstréctkmodel of computer programs
and showed that the equivalence problem among them is solvablel[S]
Tanov schemas permit, however, unlimiﬁted use of GOTOé which are
considered undesirable>recently. In this papef we present a GOTO—
less programming language system L in which loops are expressed
by recursive calls.

In Section 1, we pfesent the syntax of L and a computation
|a| of a program a. It is easy to see that |a| is a pair of

simple deterministic languges.[7] Since”
AN
K_\/‘-/

The semantiqs is given in Section 2. " The meaning of a is
complerely determined by |a|, the equivalence problem in L is
solvable.

In appendices, the relations between our system and others

are discussed.

1. PROGRAMS AND THEIR COMPUTATIONS

First, we introduce the syntax of L. We use three kinds of

basic symbols and variables.

AO = {0} is the singleton set of a null exit symbol.
Ay = {1l,a,b,c,...} is the set of single exit symbols.
A, = {p,g,r,...} is the set of double exit symbols.
V= {x,y,Z,...} is the set of variables.

A program in L is a string constructed by basic symbols,

variables, -,+, m(naming operator) and parentheses:

(1) A basic symbol or a variable 1s a program.
(2) If x € V and o and B are programs, then sc are (a * B),
(a + B), (-a) and (mx a).
(3) A string is a program only if it can be shown to be a program

by (1) and (2).

In a program (mx o), the occurrence x is called a name and
o a scope of the name. An occurrence of a variable x is said to
be bound if it i1s a name or it is in a scope of the same name X;
otherwise, free. A program is said to be closed if it has no
free occurrences of variables. The notion of "normal form
program" supports the definition above that a free variable in a
scope is bound by a name.[1][3]

At this point, we stipulate some conventions to avoid the
use of parentheses and connectives in writing programs. First,
we may omit the outer pair of parentheses in a program. Second,
the connectives are ordered as follows: -, mw, * , +. Third,

(-a) may be written as a. Fourth, dots may be omitted. r_Then

pX + a stands for ((p-(-x)) + a). (FUx, osPxY demglen (AP ¥Y) fna=+ o+,

Thereafter, and ¥ stand for - or +.

*l,*z,...
In order to define the meaning of a program, we may
construct an abstract machine with a push-down stack which
executes non-deterministic computations under a specific
interpretation. We adopt, however, another way because it is
easier for us to utilize a well known result in formal language

theory.

34

Two alphabets I and ., denote the sets {a. | a e Al—{l}}

i

{p. , p, | pe Az} and ¢ U {x. , X, | x € V} respectively.

£3

The set of all words generated by an alphabet Z is denoted by Z

: * %
and the empty word, A. If wl,w2§; Z , then W1W2(§;Z) denotes

. *
the set {w w, | wy e Wy, wy, e Wy}, Let W. , w+§; Ty o, WE(W. 5, W)
%

and w € I, . Then w[W/x] means the set of all words obtained

\

from w by replacing each occurrence of x. in w by some w. € W. and
each occurrence of Xy in w by some w, € w+; i.g.,%wLwlx];=

. *
{vow%lvlw*z...w*kvk | VoXg Vi Xgoe o Xy Vye = W/\ VgseeraVy € (XV—{x.,x+})

N *1,...,%k ¢ {-,+}/\ Wgy € w*l/\ /\W*k € Wy }. Furthermore,
if w.',w+'§;zvﬁ and W' = (W.',W,'), then we stipulate that
wriw/x] = (U wiwxl,U wlw/x]). If o is a program, then
weW. ! weW, '
+
a computation of a, |a| = (|a|.,|a]) is defined as follows

(Jaf. and |o], are called a dot computation and plus computation

+

of o respectively.):

o] = (¢,4)

1] = ({1},9)

la] = ({a.},9), if ae A;-{1}

lpl = (p.},{p, 1), if p e A,

x| = ({x.},{x . 1), if x e V

la-] = (laf.18]. ,lal, U el l8],.0)

latg] = (Jal. U (ol l8]1.) 5 ol 18])

la] = (o], 5 la]) .
w ' = (¢,9),

|mxa| = K~J|ufxn, where - I“]Xv+l ‘
n=0 la]xn = la{[lalxn/x].

Infact |a|.,]u[+§; (2 Uix.,x, | x is a free variable in'aD*.

Hence, if a is closed, then |a|.,|a| & i

4.

3

Example 1.1 lpa + b|. = {p.a. , p+b,} , |pa + b|+ = ¢.

|pax + 1 = {p.a.x., D.2.X,, p+} , |pax + 1[+ = §.

|mx(pax + 1)|. = {p,, p.a.p, p.a.p.a.p ,...}, | mx (pax + 1)|+= b .
lpx + al. = {p.x., p.x,q., pa.}, [px +a|, = {p.x,q,, p,a,}.
|mx(px +q)|. = {p,q., P-P,G.5 P-D,4,d+> P-P.P, G-, P-P-D, A, G-5---1>

|mx(px +a)|, = {p,a,, P.P,A,Q,, P-P.P,A, A, QA ,---].

Korenjak and Hopcroft introduced the class of "simple
deterministic languages" in their paper[7]. Now we adopt an
extended definition that the singleton set {A} also is said to

be simple deterministic.

Theorem 1.1 For any a, |a}. and |a|, are simple deterministic.

+

Theorem 1.2 It is undecidable whether |a|,MN\|8|y = ¢ for

arbitrary o and B, for each ¥,

2. SEMANTICS

In this section, we describe how nondeterministic computations
of a program go on a specific domain.
Let D be an arbitrary nonempty set and if(D) the class of
all partial functions: D - D. An interpretatiogfgn L is a pair
(D, 6), where 8 1is a function: ZV - c}(D). It is extended to
ZV* > <¥(D) as follows:
"6(\) = Auu (= the identity function on D),
{e(wc) = Au[e(c)Qe(w)(u))], if w e ZV* and ¢ e Iy,

where 08(w)(u) = undefined implies 6(c)(6(w)(u)) = undefined.

5

36

IfXMg;ZV* and u € D, then 6(W)(u) denotes the set
{6(w)(u) | we W, 6(w)(u) = defined}. We write o =_ B if

I
0(|alyg)(u) = 6(|B]4)(u) for any u and *¥. Furthermore we write
Ea = B8 if « =; B for any I.

Theorem 2.1 [a = B iff |a| = |B].

Theorem 2.2 It is decidable whether = o = B for any a and B.

REFERENCES

[1] Cooper, D.C;, Programs for mechanical program verification,
Machine Intelligence 6, Edinburgh U. Press, ppid3-59.

[2] Dahl,0-J., E.W. Dijkstra and C. A. R. ﬁoare, Structured
programming, Academic Press, New York, 1972.

[3] Engeler, E., Structure and meaning of elementary programs,
Symp. on semantids of algorithmic languages, pp 89-101,
Springer; 1971.

[M]>Farber, D. J., R. E. Griswold and I. P. Polonsky, The
SNOBOL 3 programming language, BSTJ, 1966, pp 895-929.

[5] ianov, I., The logical schemes of algorithms, in Problems
of cybernetics, Pergamon Press, pp 82-140, 1960.

[6] Knuth, D. E. and R. W. Floyd, Nétes on avoiding "Go to"
statements, Information Proeessing Letters 1, pp 23—31l

[7] Korenjak, A. J. and J. E. Hopcroft, Simple deterministic

languages, Record of SWAT Symp., 1966, pp 36-146.

37

APPENDICES

A. TRANSLATION OF PROGRAMS INTO FLOWCHARTS

For -any program o, 1ts flowchart equivalent has zero, one

or two exits as subroutines in SNOBOL do.[4]

program 0 1 a o] X af

flowchart [%] 1 a

° o

Q|

program o+B TXO

+
flowchart . .I

X _JT)

() Free variables x in o are regarded as equal to the

whole program a.

B. TRANSLATION OF D CHARTS INTC PROGRAMS

Any D-chart{2] is translated in L as follows:
(1) a =+ a,
(2). @ then B - «aB,

(3) if p then o else B =+ po + B,

(L) while p do a > wx(pax + 1).

Note that if a is of this type, then o contains at most
one variable x and]a|+ = ¢. It is impossible to convert any
program in L into D-chart. For example, mx{pa + q + bx) has

no flowchart equivalents.[6]

