goooboooogn
O 2360 19750 46-75

46

Implementation of Gentzen-Type Formal System

Represénting Properties of Functions®

Yoshiaki Iwamaru, Morio Nagata and Masakazu Nakanishi
Keio miv.
Toshio Nishimura

Tokyo Univ. of Education

ABSTRUCT. Gentzen-type proving method formulated by T. Nishimura
has been implemented. This theorem provervis written in KLISP
which is a subset of LISP 1.5. The input and output form is
designed nearly to the natural notation in mathematics. When

this prover succeeds in proving a problem, its proof figure

will be displayed on line priﬁter. Our processor can be used

to investigate the properties of the functions. Using the
induction and fixed point theorem, we got respective proofs

for properties of recursive programs.
1. Introduction

In this paper we describe a kind of the implementation of
the proving method in Gentzen-type formulation presented in
[2]. Our processor is programmed in LISP language. The way to -
use this theorem prover and the outline of its processor will
be shown.

The features of this theorem prover are the following.

(1) Assumptions, definitions and a;sequent'to be proved,

we call them a problem, can be provided in the same style as

% This is partly supported by CUDI foundation.

/

we usually use in mathematical notation. With a processor
written in LISP, it is usually very annoying to have to use

an input form with many parentheses. Using the pseudo functions
advance and prinl, we can design the processor which has
natural input and outbut facilifies.

(2) This processor includes efficient processing methods .
of propositional calculus, composition of functions and
infinitary sum. Then we can treat with the fixed point
operator. By this we can prove fhe correctness or the
equivalence of programs which include loops or recursive
definitions.

(3) After the proof procedures for some problems are
completely made, corresponding proof figures representing the
proving processes are printed on the line printer. Each

proof figure is an upside down form of usual one of Gentzen-

type.
2. Grammer of Gentzen-Type Theorem Prover

The input for this processor are assumptions, definitions
and a sequent to be proved. Each of assumptions, definitions or
a sequent is called a statement. A statement is usually written
in a line (72 columns). If a statement continues two or more
lines, we write a period at 72nd column of the previous line

for presenting continuation.

45
2.1 Sequent
A sequent is generally written in the following.

Lislygs ey L, = Ty Py e s Ty

(n, m > 0)

where each Zi’ r3 is called an expression. An expression is
constructed with identifiers (alphanumeric characters of no
more 32, beginning with a letter, where a letter is defined

as an alphabetic letter except the letter "V") and operators

as follows.
e (e) @e el@ez f(ez,ez,...,en)
2f ?f‘(el,ez,...,en) f<n> f<n>(ez,62,...,en)

where (:)denotes a unary operator, (:) a binary operator,
e and e; an identifier or an expressi&n.

The precedence and the meaning of operators are shown
in Table 2.1. If two or more successive operators in an
expression have the same precédence, the expression is
recognized as if the operators are executed from left to
right., For example, a + b + ¢ is recognized as (a+b) +e
but not a + (b + ¢e).

A fixed point operator is denoted as "?'". A labeled
function f<n> represents that we apply f n times¥.

Undefined element "Q" is represented as "%", "w" is as "@".

% In [2], ?f is represented as 9f, f<n>is as fn.

3

TABLE 2.1 Operator Precedence Table

Precedence Operator Symbols Meanings
1 . concatenation
2 4 exponentiation
3 LN multiplication, division
4 - wmary minus
5 + , addition, subtraction
6 = equality
7 \ negation (v)
8 8 and (A)
9 v or (V)
10 > implication (D)
11 = equivalence (=)

2.2 Assumptions

The general form of an assumprion is

where e] or 62

dencted as

Sv

is an expression. An arbitrary expression is

wherev 1s an identifier, which is called an arbitrary pattern.

4

511

For example, the distributive law of addition and multiplication

is written as
$X % (8Y + $Z) -> SX * $Y + $X * $Z

Assumptions are numbered automatically by the order of
appearance. When a proof figure is displayed, the number of

applied assumption is indicated where it applied.
2.3 Definitions

The general form of a definition is

where p is usually f?n>(m1,x2,...,xm) (m > 0), n must be
"N" or "N + 2" (£ =0, 1, 2, ...) and e is an expression.
A definition is considered as a kind of assumptions by the
processor, but a formal parameter z; needs not to be an

arbitrary pattern $Xi. For example,

M z) = pix) 1 7 \plx) a*fH(z-1)

is wpitten as®

* Using the rule of assumption and rules of algebra, this
definition may be written as

F<SN+1>($X) = P(SX)EL V \P($X)ESX*T<SN>($X-1)

F<N+1>(X) = P(X)&1 Vv \P(X)8XFF<N>(¥-1)
2.4 QOther Rules

The hypothesis of associative law is built in this
prover. The associative law is applied for ., * and +.

This hypothesis is the same effect as following assumption.
$A op ($B op $C) -> $A op $B op SC

where op is one of ., * and +.

Assumprions written by user are applied before the
application of the associative law, so we must write the
following assumption if we want to apply the inverse of

above hypothesis.
$A op $B op $C -> $A op (SB op $C)

McCarthy's conditional expression is based on the

form of if-then-else. For example,

if p then e, else e

1 2

is represented as

p&elv\p&eg

An expression p like above is called p;type expression. A
p-type expression has thé following restrictions.

(1) An identifier beginning with the character "0", "P"
or "Q" is a p-type expression.

(2) An expression p(xl,xg,...,xn) is a p-type expression,
where p is an' identifier beginning with the character "O",
"p" or "Q".

In proving process, the following rules are applied to
the expression which contains p;type expressions.

(1) f(p) is decomposed into p.

(2) f(p op k) or f(k op p) is decomposed into p op f(k)
or f(kj op p respectively, where op is a logical connective.

(3) f(\p) is decomposed into \p,

where p 1is.a p-type. expression and X is not.
3. Processor

Our processor of Gentzen-type theorem prover consists of

three phases: translator, prover and visualizer. These are

- successively executed. Problems are read by translator, and
are translated into S—expressioné. Then they are put into the
auxiliary memory. Prover gets problems in S-expressions
translated before, proves them and puts proof trees into

the auxiliary memory. Visualizer gets these proof trees,

and writerproof figures on line printer, which is easy to

see for men. The process is shown in Fig. 3.1.

(/Ewoblems)

TRANSLATOR

TN

< . .
Ihtermedzate\

}

!

/

\§-Expressi0@4

PROVER

?roOfLIT;;:\
)
~r

B

Forms in

VISUALIZER

Proof Figures

FIG. 3.1 Block Diagram of Gentzen-Type

Theorem Prover

This processor is written in KLISP which is a subset of
LISP 1.5. Pseudo functions mprint and mread are used for
input and output of S-expressions, advance for input of
arbitrary characters, prinl and terpri for output of

arbitrary characters.

54
3.1 Translator

Using the following function®, translator reads a line.
Then, applying well known parsing method*#%, it translates

statements into prefixed forms.

input[] = [eq [eor ; advance[] 1 -> nil ;

t -> cons [curchar ; input[]]]

Translation rules are as follows:

(1) An identifier is translated into an atomic symbol,
"@" and "%" are into "UNDEEF".

(2) -e, \e is translated into (MINUS e¥*), (®*NOT e%)
respectively. ‘b '

(3) ;P e (op is a binary Qperator which is +, -,
, /, =, &, V, :=:, etc.) is translated into (op el* 62*);
The correspondence of OP and OP% is shown in Table 3.1.

If two or more successive operators have the same precedence,

they are translated into as the following example.

a+b+c -» (PLUS (PLUS a* b%) c¥)

* So as to be able to write a sequent (or an aséumption) more
than 72 characters, more complicated function is actually used.
%% The method of recursive procedure using operator precedence

table.

(4) The arbitrary pattern $v in an assumption is
translated into (= %),
(5) f<n> is into (LABEL f%* n¥*).
(6) ?f is into (% f%),
is i z £ * &*
(7) f(el,ez,...,en) is into (f* e,® et ... e,).

where the symbol with *® on its upside represents translated

forms.

TABLE 3.1 Translation Table of Operators

op op*
CONC

4 EXPT

% TIMES

/ DIV
(uwnary) - MINUS

+ PLUS

- DIFFERENCE

= EQSIGN

\ #NOT

& #AND

v #0R

> *IMPLIES

=3 ‘ *EQUIV

/0

D)

ab

The order of translation is the following.

(1) Translation of sequents: A sequent is translated
according to translation rules, then its translated form in
S-expression is put into the auxiliary memory.

(2) Translation of assumptions and definitions:
Assumptions and definitions are successively translated,
assumption numbers and flags indicating definitions are
added. Assumptions andrdefinitiéns are translated into a
list with the following form and put into the auxiliary

memory.

(assumption® ... assumption* definition®

ee. definition¥)
where assumption® has the form
(ass1* . (ass2* . n))
and assl*, ass2* is a translated form of left part, right part
of the assumption respectively. »n is the assumption number.
definition® is
(defi® . (defe2* . L))

where defZ: is a translated form of

f<n> (xl,x2,...,a%g (m>0)

1

Every formal parameter < is translated into (= xi*).
def2% is a translated form of right part of definition.
Every formal parameter in the right part which is also in

the left part is translated into (= xi*), too. "L" is an

indicator for a definition.

3.2 Prover

The prover consists of main control part called

proof controller and several sequent manipulation functions.

Proof controller controls and applies sequent manipulation
functions for the problem. A sequent manipulation function
has a type which is NORMAL or ABNORMAL.

A NORMAL type function makes the object sequent
matching each pattern. If pattern matching succeeds,
the value of the application of the function becomes a
list of transformed sequents. When proof controller applies
a NORMAL type function and the matching fails, then it
applies the next NORMAL type function. If pattern matching
succeeds, the list of transformed sequents is successively
proved by proof controller, to construct a proof tree.
If a sequent of the list fails, the value of proof controller
is "FAIL". There is no automatic backtracking facility in
NORMAL type functions. While ABNORMAL type functions have

built-in backtracking facilities.

2

3.2.1 Proof Tree

The value of proof controller is a tree constructed
with S-expression. We call it proof tree. The proving process
is recorded in the proof tree. The form of proof tree is

as follows.

(VALID . sequent) _ ' | (1

(ind sequent proof tree ... proof tree) (2)

When a same expression appears in both parts of a seqﬁent
or when there is w (expressed as "UNDEF") in the left part
of a sequent, proof tree (1) is constructed. When a sequent
is transformed 1o some sequents and each of them is proved,
proof tree (2) is comnstructed. The indicator <nd which is a
specified atomic symbol shows a wéy of the £ransformation.
The second element of the list (2) is the sequent before
transforming.

For example, we prove
A, A>B -> B

its proof figure is in Fig 3.2 and its proof tree is the

following.

/3

2y

(DEF-OF-*IMPLIES
((A (%IMPLIES A B)) (B))
(LEFT-OR-ELIM
((A (%R (*NOT A) B)) B)
(NOT-ELIM
((A (*NOT &)) (B))
(VALID . ((A) (A B))))

(VALID . ((A B) (B)))

where DEF-OF-*MPLIES, LEFT-OR-ELIM and NOT-ELIM are indicators®.

A,\A -> B A,B -> B

A, \AVB -> B

A,A>B -> B

' FIG. 3.2 Proof Figure of A , A>B -> B

% Indicators of our actual processor have more simplified

forms for saving space.

14

6u

3.2.2 NORMAL Type Functions

NORMAL type functions are divided into two groups.

Two VALID functions are in one group. One of them is a
function that tests if thére exists a same expression in
both parts of a sequent. Another is a function that checks
whether there exista the undefined element w in the leff
part of a sequent or‘not. The second group consists of
functions for thé transformatioﬁ of sequents. Elimination
of logical symbols and decomposition of functions are in
this group.

VALID functions provide the terminal value of the proof
controller, that is (VALID . sequent).

There are 8 functions for trahsformation of sequents
dependent upon logical symbols. They are listed as follows.

(1) Search an expression with "#NOT" in the top level
in the left part. If exists, then remove "#NOT" from the
expression and move the new expression to right part.

(2) Search an expression with "#NOT" in the top level
in the right part. If exists, then remove "#NOT" from the
expression and move the new expression to left part.

(3) Searchvan expression with "#AND" in the top level
in the left part. If exists, then remove ”*AND" and generate
two side expressions.

(4) Search an expression with "#%0OR" in the top level
in the right part. If exists, then remove "*OR" and generate

two side expressions.

15

(5) Search an expression with "#OR" in the top level
in the left part. If exists, then generate two sequents,
one includes left operand of "*OR" instead of the expression,
the other does right operand.

(6) Search an expression with "#AND" in the top level
in the right part. If exists, then generate two sequents,
one includes left operand of "#AND" instead of the expression,
the other does right operand.

(7) Every ">" in the top level of a sequent is transformed

according to the following definition.

a>b -> \avb

(8) Every ":=:'" in the top level of a sequent is transformed

according go the following definition.

a:=:b -> a>béb>a

The decomposition procedure of functions is as follows.

(9) i. The expression whose subexpression is p-type
and is not connected with a logical symbol will be transformed
only into the p-type subexpression.

(8) ii. If an expression has subexpressions and also
there exists p-type expression in thelr operands, the
expression will be transformed into two subexpressions
combined with the logical symbol.

For example, if p is a p-type expression, the following

transformation will bé done.

16

flp) ->p
fpvk) -> pvf(k)

‘f(p&elv péey) -> péfle)Vpéfie,)

The transformation précedure for fo, w is as follows.

(10) f<0> is transformed to %. %(el,ez,...,en) is
transformed to @.

The value of each function 1~4 and 7710 is a list of a
transformed sequent. The value éf 5or 6 is a list of two

transformed sequents.

3.2.3 ABNORMAL Type Functions

A function for transforming fixed point operator
and a transformation function for assumptions and definitions
are ABNORMAL type functions.
The order éf transformation of fixed point operator
is as follows. ex(x) denotes a expression with subexpression z.
(1) ex(?f) is transformed to ex(f<0>)Vex(f<N+l>);
(2) Proof controller wi;l be called to attempt to
prove the transformed expression. If proved, the value of
this function will be the value of proof controller.
(3) If the value of proof controller is "FAIL" ex(?f)
is transformed to ex(f<0>)Vex(f<1>)Vex(f<N+2>).
(4) Proof c§ntroller will be called to attempt to
prove the transformed expression. If proved, the value of
this function will be the value of proof controller. If

fail to prove, the value 1s "FAIL".

6J

In matching process for assumptions and definitions,
it is first tried to make assumptions match, and definitions
next. If an assumption matches two or more subexpressions
of a sequent, it is fir;t applied to the leftmost and
innermost ekpression.

If an assumption (or a definition) matches a subexpression,
right part of the assumption (or the definition) is
substituted for the subexpression. Proof controller will
be called to try proving this néw sequent. If proof controller
can not prove it, the‘sequent will be tried to apply to
other subexpression with the same assumption. If the proof
can succeed for no subexpression in the sequent, the next
assumption (or definition) will be applied.

If a sequent transformed by an assumption (or a
definition) is the same form as a sequent that has ever
been in the proving.process, it is considered that the
matching fails. This procedure is provided for preventing

to occur an endless 1loop.
3.2.4 The Order of Application of Sequent Manipulation Functions

The order of application has much influence on efficiency
of the proving process. In some cases, the proéf may be
impossible. Our prover provides the standard order of
application, but the order is changeable. The standard order
of application, the feature and type of sequent manipulation

functions are shown in Table 3.2.

64

TABLE 3.2 Standard Order of Application of

Sequent Manipulation Functions

Order Function Name Feature Type
1 check check same expression NORMAL
in both parts of a
sequent
2 undefcheck check undefined element NORMAL
in the left part
3 %*notl elimination of \ NORMAL
in-the- left part
b *notr elimination of \ NORMAL
in the right part
5 *andl elimination of & NORMAL
in the left part
6 %orr elimination of V NORMAL
in the right part
7 %orl elimination of V NORMAL
in the left part
8 *andr elimination of & NORMAL
in the right part
9 %implies change an expression NORMAL
by definition of >
10 %equiv change an expression NORMAL
by definition of :=:
11 undef rewrite fo to % and NORMAL
%(e) to @
12 decomp decomposition of NORMAL
functions '
13 fixedpoint decomposition of ABNORMAL
: fixed point operator
1y assump apply assumptions ABNORMAL
and definitions

I5

conce

apply associative law

ABNORMAL

19

3.2.5 Automatic Tracing

Only after trying, we can know if the problem is provable or
not. For an unprovable problem, it may take the prover much time
to try all possible cases. In some cases, the prover may not
terminate proving forever.

When the value of prover is "FAIL" after exhausting every
possibility, we would frequently like to know what kind of
assumption is needed. So, if our processor fails to prove a
problem, it automatically prints the trial process of the proof.
This output is printed with the number to show the recursion level

only when matching suceeds.

3.3 Vzisualizer

Visualizer i1s a program which displays an external
representation of the process proved by the prover. We pay
attention, in converting the internal proof tree into the external
proof figure, to the following two, (1) each sequent in a proof
figure sould be in the most natural form, (2) proof figure
displayed by -the visualizer shows explicitly the correspondence to
the inference procedure in the proving process. For (1) We display
a sequent in the manner just like the problem input, infixed form.
For (2) We display the proof figure using the structure of stairs

corresponding to the level of sequents in the proof tree.

20

66
3.3.1 Retranslation of a Sequent into an External Representation
A sequent has the following internal form.
A. 4,)
1

where Al and Az are internal representations of left and right

parts respectively. They are retransformed into

* *
47 = 43

where A; and Ag are external representation of 4, and 4

y) 2
respectively. 4, (7=1,2) is a list
(BZ B2 .. Bn.)
7
Here each Bj (g=1, 2, ... , ni) is an expression. If we can

translate Bj into B; (G=1, 2, ..., ni), the external

representation of Ai’ i.e. Ag is as follows.

If Ai is NIL then its external representation will be a null
string.

Retranslation method of expression Bj (g=1, 2, ... , ni).
is just the same as the translation method of the translator.

If an internal expression is an atomic symbol then the

2l

8 'I

retranslated form is the print name of the atom. If an internal

expression has the form
(op o B) or (op a)
then it is retranslated into the external expression in the form
(a* op* B*) or (op* a*)
where op is an operator in Table 3.1, a, B, an subexpression, and
op*, a* and B* are external representation of op, o and 8
respectively. Here we must consider of the following. In
retranslation a labeled function, we must display the induction
level of the function. For example,
(LABEL F (PLUS N 1))
will be retranslated to
F<N+1> .
It is important to erase parentheses if there is no ambiguity in

evaluating an expression. So the external representation will be

more natural than the fully parenthesized expression.

22

3.3.2 Output of a Proof Figure

Proof.genarated by the prover is transmifted to the
visualizer through auxiliary memory device asvan internal
representation. This representation has the structure of a proof
tree 3.2.1 (1) and (2).

In order to display a proof tree externally to show the
process of its'inferences in the proof, we display the proof
figure with the structure of stairs. A Gentzen-type proof figure

in Fig.3.3 is shown internally as follows
(a.a (B b (y e (VALID,e)) (VALID.A)))

where a,8 and y are indicators for rules of inference. This proof

tree will be represented as Fig.3.4

FIG. 3.3 An Example of a Proof Figure

Currently, we use a line printer as an output device of the
proof figure, and from the restriction of the character set, we
use "M, MRV WM ofc, to write an arc of the proof figure. From
the proof tree in Fig.3.l, visualizer draws the proof figure in

Fig.3.5.

23

a*
a*
b
B*
o*
v*
d*
FIG. 3.4 Displayed Form of Fig. 3.3
A, A>B —> B
,t
4 DEF.CF >
+
%<+ A , \AVB -> B
;r.
4 LEFT V-ELIM.
+
<4< A , \A -> B
4 4
4 4 \-ELIM.
4 4
+ et A -> A , B
+
af
+
%<4« A , B -> B

FIG. 3.5

Proof Figure of A , A>B -> B

24

69

7

This visualizing program is controlled by mainly two
functions, prinsub and printree. prinsub controls a list of the

proof trees

(proof tree, preoof tree, ... proof treen)

It outputs all elements of this list one by one. Output of
prinsub is just the transmittion of the control to printree.
printree manipulates a proof tree of 3.2.1 (1), (2). printree
just prints out a sequent in the proof tree with sequent
translation, and transmitts the control to prinsub with its
proof tree list.

In the actual figure drawing, there is a physical limitation
with the line printer, the number of characters in a line. In
KLISP every line is atmost 100 characters. If we can know that
with the structure of stairs the external representation of a
sequent is not able to be written in the line, we must control
the operation for carriage return and line feed (CRLF). For this,
we count the ﬁumber of characters for tabulation and the external
representation of a sequent. If the control is in the second level
of the stair, then before CRLF elimination of the blanks, which
was inserted for better looking, will be tried. The blank
eliminating operation has two levels, elimination of blanks
except for the blanks in fhe both side‘of n->", elimination of
every blanks in the sequent. After the blank eliminating operation
if it is not yet enough to print the sequent in the‘line, or

the control is in the deeper level of the stairs, CRLF is tried.

25

If this CRLF cuts some arcs in the figure, then the connectors
of the arcs and the connecting numbers will be added.
Visualizer also prints out the problem itself. First the
sequent to be proved, the definitions if there are, assumptions
if there are, and then the proof figure if proved. An example will

be shown in appendix.

4. Conclusions

This processor has been implemented in TOSBAC-3400/30 (24
bits/word 16K words) KLISP interpreter. KLISP interpreter has
about 4K cells of free list. The processor has succeeded in
proving all examples in [1].

We consider there are some problems about our processor.

(1) Currently we use only static assumptions. We have to
extend the processor to accept a kina of dynamic assumptions,
say, procedural assumptions.

(2) The processor should have some well known and useful
algebraic theorems, and theorems never to be used should be
automatically deleted from the system. Theorems prepared should
be selected at users' will.

(3) Ve consider that our theorem prover will be more

powerful if the conversational facility is added. We hope to

report an implementation of a conversational theorem prover.

26

REFERENCES

(1] Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for
proving properties of programs. Proc. of an ACM Conference on
Proving Assertions about Programs, New Mexico State Univ.,
New Mexico, January 6-7, 1972, 27-50

[2] Nishimura,T. Gentzen-type formal system representing
properties of functions. This Publication of ﬁhe Research

Institute for Mathematical Seciences

Appendix. A proof figure of the associativity of append

Problem append[append[x;y];z] -> append[x;appendly;z]]

Definition of append'

append[x;y] = [null[x]->y;
t->cons[car[x];append[cdr[x];y]1] 1 ;

Assumptions

1. Inductive assumption
2. A property of cons

A proof figure of this problem is shown in the next page.

217

esensvs KLISP=1, SYSTEN (VERSION-8) .covscs GENTZEN

PROVE CUIFXYD) =3 IF(XIUGLYS2D) . Associativity of Append

wITH DEFINITION

Be FCNA1(XLT) ® PLXISYVIPIXIRCIHIXDHFCV(TIXILYIY

WITH ASSUMPTIONS

1o GUFCHUBATYILFZ) =3 FOD(IX.GIBY,¥2))

2. GLCLHIVX) #¥YJ2¥7) <> CLHITXIELEYL¥2))

PROOF FIGURE

GUIFIX,Y302) => TFUXLGULYLZIY
. FIxED POIKT
P GULF (0> (XY, TIVRLFCNALI LTI 4TY =D . TF LR BLYaZID
: LEFT V-ELIN,
:..-- GUFCOIXeYI,Z) => FFLXLGLY,TIY
. : FIXED POINT
:.-.. GIT(Xs¥Is2) =3 IFONCUYLTI)
: £1xe0 POINT
:---- G(::Z) > IX.0(Y.2))

.
Soeve & 2> PFFIN.GIY,Z))

.
v
.
.
.
*
.
.
v (2 FIXEV POINT
.
.
.
*
.
Seeer GLFANSLIIXOYILZ) => TF(NLGLY.ZY)
o
. FIXED POINT
.
essne GIFCHOLI(XPY) ST} =D FLOPIX2O0(Y,ZIIVFLINSII(NLGIVLZE) .
.
»’ AIGAT v-ELIM.
.
Sesee GIFCNELIIXSYILTY =3 FLOIIX,BLY,2)D o FANSLDIXoCIVagss
.

.

.

.

R

L R T S e

. Oy DEFINITION.
.

Seren GIPIXIRYVAPLXIZC(NIND JFCNILTINDSTI14T) o> FLOMIRICIVTV) o FANOLIIXIBIY,2H)
. B
.
.
.
*

“ Seesdseed

.
. FLNCTION DECONP,
.

e CIPLXIRYIZIVEENPIXISCINIRISF A ITIX QY)T 2Z) =3 FRODIXSCIYZIY o FANSLI(XSGLY,2IY-
3
. LEFT v-ELIN.
.

eeser GIPIXIRY,T) => FCOMMMEENRBEY » FENCLY{X,GLY,2ZY)

.]
. ’ FUNCTION OECONP, -
+ .)
. Brere PUXIRGLYIZ) => FLOXIXeGUIV.ZI) 5 FENOIIXsGIYs2))
’ A N
. v LEFT R-ELIN,
v * .
A Seeee BIX) s GIYSZ) =D FCODIXLGLY,23) & FCNSLX(IX,G(Ys2))
*
afow

.
Q4> *
*

74-01-27

PAGE 0006

T e s Lo T IOty TR PIE RS)

.

M 4y DEFINITION

.

srese PIX) 5 GUYLZ) <> FUODINGIVLZI) & P‘(X)lﬁl'l;7lv\’(!)&l:hﬂ!).F(“)(\'(Ilaﬂ('lzl)l
. -

.
.
*
*
e-cedacr
*
. RIGHT V-ELIN,

.
erose FLX) 4 GLYLZ) =) FCODCX,GUYL21) o BIXIAGIY,Z) » \PUXIZCLHIXDsFANILTIXD2GLYS23))
.

. RIGHT &-ELIR,

.

seves PIX)) GULYeZ} => FCODIXsGEVZI) » PEX) » \PLXIACIHIXIWFCNILTIXIHCIY.2)))
.

.

? .
®sese PIXS 5 GIY2Z) =3 FLODINLCIYIZI) » GULYZY 5 \PIXIRCEMIXISFINI(TIX)2CCY2))

«“>
ssse
-
v
v
®eree GIAPIXIZCLNEXISF CNIITINISYIILZ) =D FLODINLGLYLZID » FANTLIIX,GLY,Z))
3

.
3eee

e)

: ‘rencrion OECHNP,
:.--' APEXIAGICIHINI LFCXITINI e X)), 2) =2 FCOIUXLGIYSTD) o FANTLI(XL,GLYT)D
v LEFT geeLIn, ’
eers ABIXD o GLCEHIXIPFCH> (TEX)o¥312)" > FEOUN,GIVSZIY & FENoLLXsGUVS71)

*
.
*
*
Beeedeasdara)asa)
*
v NeELTN,
*
Sever GICIRIXISFCNILTIXIOTDIaT) > PERY & FLOI(X,GLYLZIY » FEN*1XIX,GLYS2))
°
*
’
*
.
Bees)oac=)ere)eo=)
.
o - wy DEFINITION
.
teern GICIMIXIAFANIITIXINYI)aZ) =PRI FLOIN,GIYoZ I, PIXIRGLVSZIVNPIXILCIMHINI LF AN (TN 4G(Y,2))
* .
M
L]
*
*
GeeePeme)
.
. RIGHT v-ELIN,
* - -
seene GECCHIX)HFENIETIXD YD DT =IPUX]HF COD (X0 QEYAZ) I PIXIAGIYSZD2\PIXIECINIX) oFCNI (TEND2B(Y2)D)

L 4
.
.
- ¥
*
td
.
o RIGHT E-ELIN,
[) .
.l'--bs GLCIMIX) SFKHILTEXD Y DI02)=2P LX) oF COD (X, BLYs2) 2P IXL\PIXIECIHIXI SFCNI(TIXD »GLY273))
e . o
»: * RIGHT 2-8LIn, - .
- e v o -
» seren CICIRIXI S PGS TTEXDITIINZD =5 PUXD » FCOX(XsB(Y22)) » PLX} » \P(XD
. L IR P
’ * T NeELIM.
* * e :
; : - Sstes PIX) , 0(6(’!(!1.'(’!}!7(!1n"l.-ll “> PIX) 5 FCOX(X,GLY,20) 5 PLX)
]] B
.. L
: s cu':(mxnn»n(xnn;.z) =2 PLXYoFCODIXSGLYHZ) I 2PIRD »CLHIXD SFNDLTIXD 4B(Y02)2)
osse L] .
<1>

v
SceeYaceIasadens)

.

. ASSUNPTION 2

. -

seore CIHIXISGEFCENILTEXDSYIOZIY =3 PIX) » FANDUXSGLYLZ)) 5 PUIXY » CUHIXDI,FCNDITININGLY,2)Y)
. - ° °
* ASSUMPTION 1

M .
ecess CLHIXIPFSNIITIND 0GUYS2)D) o> PUIXISFCODIXIGEYTIaPIXI2CIHIX) SFANIITIXINGLYS2)))

«a>
L1213
’
*
* . -
Sevee BICIHIXISFCHILTIXIIYIIIZY > PLXIoFCODIRICIYLZII LY, ZIoNPIXIECTHIX) SFANILTIXIPCLY7 1Y
. AR
* RIGHT &-ELIN,
*
®vees GICIHIXISFCDETINIIYIILZY =3 PIX) » FLOIIXLGIYLZIY 5 GLY2Z) » \P(X)
’
v \-ELIN,
’

.
L4
*
. Serer PLXY o GICEHIXILFENDETINILYINLZY => PIX) , FLOX(X,GLYs2)) 5 GLY,2)
* B
* .
»
srees GICIHIXIIFCIIITINISIYIILZ) => PLXISFLOI(XCLYL2)I,CLY 2D oCINIXILFANDLTIND,GLY,2)))
(]
[]
.
[3

3
Secedanedecad

ASSUMPTION 2

seees

seee CLAIXYSGIFANDETINDSYILZID > PIXY o FIOXUIX2BIYaZ)} o GLY,2) » CULHIX)I,FINIITIXISGLYLZ)))
*
. ASSUNPTION &
.
Sreor CLHIXILFENDETINGLGLYSZII) = PUXILFAOIINLGIYSZI)oBUYs2)aCLHIXILFODLTIX)SCLY, 2000

THIS CONPLETES THE PROOF,

