goooboooogn
0 2360 19750 153-173

1]

[on—y
LJ
[
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1, Introduction
Computational Complexity (quantitative)

Theory of Computation
Correctness (qualitative)

Performance (quantitative)

Operating System

Correctness (qualitative)

Performance
Queuing Model
Working Set Model
Scheduling Algorithm etc.
» Correctness
Synchronization Problem
Resource Allocation Problem

Structure of System etc.

2. Petri Net Model [1]

Definition 2.1 (Petri Net)

A Petri Net N is a directed graph defined as a quadraplet,
(T,P,A,BO> , Where ’\
T = {tl,...,tm} is a finite set of transitions the node of
P =.§pl,...,pn} is a finite set of places T} the graph
A= {al....,ak} is a finite set of directed arcs of the form

{x,y)> which either connect a transition to a
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place or a place to a transition
BOCZP is the initial stone distribution, the set of
places which have stones initially.
transition - event
place — condition

Definition 2.2 (firing)

firin
An occurrence of event e 1s rep- —=I208 5

resented by firing the transition ¢
which represents e

For any t, 1if each of its input
places has at least one stone, t is enabled to fire. If t fires,
a stone is removed from each of its input places and a stone is added

to each of 1ts output places.

3. Synchronization Problem
3-1 Synchroﬁizing Primitives
(1) conflict-free type primitives
fork - - Join
activate - wait
wakeup - block
(2) conflict type primitives

lock - unlock

seize - release

conflict-free with conflict

(3) 1nterrﬁption type primitives
force
Conflict : Two transitions are said to confiict
1f they share an input place and can
be in enabled condition at the same time.
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3-2 Semaphore Systems and Its Variations
(1) Semaphore System Proposed by Dijkstra [2]
Semaphore Variables (integer type)
P-operation
V-operation
It can represent both the conflict-free type and the conflict
primitives,.
(2) Generalized Semaphore Systems
(i) Parallel P-operation [3,4]
P[sl,sz,...sn]
which waits for all semaphores to become non-zero,and then
simultaneously operates on all of the semaphores.
(1i) Separation of the Door of a Critical Section from P-opération[S]
(a) A phrase P of a program may be preceded by any number n
of occurrences of semaphores:
sl: Syt ees 183 P
The set {s

1,52,...,sn} is a "semapnhore apvlication"

whose "values" is %i%,si. A phrase P thus preceded
by a semaphore application cannot be initiated when
the value :? 84 is negative. If an unsuccessful attemot
has been made to initiate such a phrase, we shall say
that the phrase is pre-initiated.

(b) The operation down s decreases the value of the
semaphore s by 1.

(c) The operation up s 1increases the value of the semaphore

s by 1. If the operation up s makes one or more



semaphore applications take the value 0, then all
pre-initiated phraseés containing these applications
are initiated collaterally. |
(3) Conditional Critical Region [6,7]
{ resource r; Q;//Q5//...//Q, }
Ql,Qz,...;Qn : disjoint processes executed
in parallel
with r do C C: critical region
with r when B do C B: Boolean expression
with r do C await B
3-3 Classes in Synchronization Problems
« simple Petri Net: Petri Net in whieh no more than one input place
of a transition is shared as input place with other .
vtransitions
« non-simple Petri Net: Petri Net in which more than two input place
of a transition is shared as input place
with other transitions

e conflict-free Petri Net: Petri Net in which two transitions which

share an input place are not enabled
(ready to fire) at the same time.

s Petri Net with conflict: Petri Net in which two transitions which

share an input place may be enabled at

the same time,
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conflict-~free with conflict

simple producer-=consumer problem mutual exclusion vroblem
. : readers-writers problem

non-
simple cigarette smokers' problem | dinig philosopher problem

(1) producer-donsumer problem [2]

The producer produces a certain portion of information that has
to be processed by the consumer,

The consumer can process the next portion of information which

is produced by the produder.

begin
semaphore numq ;3 numg := 0} producer: consumer.
parbegin : :
producer: begin : ® ‘ e)
againl: produce the next portion ;
add portion to buffer ; A
V(numq) 3 ‘

go to againl

end 3 —+ Lo
consumer: begin ' ‘ - : -
again2: P(numa) ;

take portion from buffer
go to again2 - ’
end

process portion taken H
(2) mutual exclusion problem [2]

“-e

parend
end ;

Construct the N processes, each with a critical section, the

execution of which must exclude one another in time.

begin
semavhore free ;3 free := 1 ;
parbegin

process 1: begin
~ LIt P(free) ;
critical section 1 ;
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V(free) ;
remainder of cycle i 3
go to Li

-

end

parend

end ;

(3) readers-writers problem [8]
Two classes of processes wish to the
resources., '

Writers must have exclusive access.,

Readers may share the resource with an unlimited number of other
readers,

begin
Integer readcount ;
semaphore mutex,w ;
readcount := 0 ; mutex :=w := 1 3
parbegin
begin
Reader 1: P(mutex) ;
readcount := readcount + 1;
if readcount = 1 then P(w)
V{mutex) ;

we

reading 1is performed

P(mutex) ;

readcount := readcount - 1;
if readcount = 0 then V(w)
V{mutex) :

we

end 3
begin
Writer j: P(w) 3

writing is performed

Vw)
end
parend

end ;
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(4) cigarette smokers' problem[3]
Three smokers X,Y,Z are
sitting at the table.
X - with tobacco
Y - with paper
Z - with matches
Each one of them are not
allowed to give any ingredi-
ent to another, On the table
in front of them, two of the
three ingredient will be placed,
and the smoker who has the
necessary third ingredient
should pick up the ingredient
from the table, make a cigarette
and smoke it. Since a new
set of ingredient will not
be placed until this action
is completed, coordination

is needed among the smokers,

programs
r.: P(c’) r,: P(b)
37 v(s%) 2" y(s%)
V(s¥) V(s%)
go to r3 go to r,
x: P(X) ' 4. P(Y)
? Vie) ¢ V(b)
go to Qx go to 93

R e

r.: P(a)

1 vy(sd
V(sZ)

go to rl

(37:1 P(Z)
V(a)
go to 63
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Ax; P(St) oyt de ;
P(S%) ’ .
P(ty) . .
if x>0 then ( X«x - 1 3

Vix4) -

go to dv)
else
V{tx)
P(t1)
P(t:)
y<y + 1
z<¢<z + 1
V(ty)
V(tz)
V(sS?)
V(St)
V(X)
go to dx

wes we

(5) dining philosopﬁer problem [4]

The 1ife of a philosopher consists
of an alternation of thinking and eat-
ing. PFive philosophers are sitting

at the table, each philosopher having

his own place at the table.

They need to use two forks when
eating. Five forks are provided, one between each philosopher's
place, The only forks that a philosopher can pick up are those on
his immediate right and his immediate left.

The probiem is to write a program for .each philosopher which
will ensure that he contributes at all times to the greatest good'
of the greatest number,

Introduce a state variable "C",

C[i} = 0 : philosopher 1 is thinking.
c{i} = 1 : philosopher i is hungry.
C[1i] = 2 : philosopher 1 is eating.

-8~



egin

2 semaphore mutex 3 (initially = 1)

' semaphore array psem[0:4] '3 (initially all elements = 0)
integer array c[0:4] ; (initially all elements = 0)
procedure test(integer value k) 3

begin
it C[(k - 1)mod 5] = 2 and C[k] = 1 and C[(k + 1) mod 5] = 2 do
" begin
Clk] := 2 ;
V(psem[k])
nd; €Nnd

parbégin

begin

philosopher i: think
P(mutex) 3
cli] = 1 3
test(i);
V{mutex) 3
P(psem[i]s H
eat 3
P(mutex) 3
clfi1] := 03
test((1 + 1)mod 5) ;
test ((i - 1l)mod 5) ;
V(mutex) 5
go to philosopher 1

end 3

parend
end 3
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Proposition

A pfoblem which is represented by a non-simple Petri Net cannot
have a solution in a program with P- and V-operations but without
any conditional statement,
3-4 Comparison of Various Semaphore Systems

Readers-Writers Problem

(1) Semaphore Application

begin
semaphore TrT,w 3
el v ros=owo o= 03
parbegin
begin
"READER i"
w: down r;
reading ;
up r
end ;
begin

"WRITERS j"
r: w: down w

we we

writing
up W
end
parend
end

(2) Conditional Critical Region [7]

begin
resource V j

Integer aw,rr ;

arbegin
b egin -

0

READER: with v when aw =
do rr :=rr + 1;
reading 3
with v. do rr t=rr - 1
end ; “
begin
WRITER: with v do aw := aw + 1 awalt rr =0 ;
writing ;=
with v do aw := aw - 1
end "
parend
end ;
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Proof of Correctness
Case Analysis [2],[41,[51,(7]
Basic Properties of P- and V-operations [9]

Application of Floyd's Method [10]

Resource Allocation Problem

Resource Allocation [12]

« Reusable Resources

fixed total number of units in a pool

. Consumable Resources

no fixed total number of units., If a unit is acquired by a
process, the unit ceases to exist. Only a process which is
a producer of the resource can Pelease units of the resources,

Any released units immediately become available.

« Exclusive Control

no resource sharing

« Shared Control

4.2

resource sharing

Deadlocks [11,12,13]

For reusable resource systems without resource sharing

Deadlocks
The situation that co-operating processes prevent their
mutual progress even though no single one requests more
resources than are available. |

Deadlock Strategies

Detection and Recovery [14]

{ Static Prevention [15,16]

Prevention
Dynamic Prevention [12,13,17,18,19]
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1) Detection and Recovery
Deadlocks are detected when théy'happen; When a deadlock is
detected, the system can feco&ér by terminatihg the deadlocked
processes or by pre-empting resources from processes,

2) Prevention
By using some information about users' demand, the system allocates
resources so that a deadlock is not possible.

Static The allocation rule does not depend on the current
state of the system.
Dynamic The allocation rule depends on the current state

of the system,

(1) Habermann's Formalization [13]

It utilizes information about maximum claims of all the users.

n ¢ number of procesSes in the system (Pl,P2, ...,Pn)
m : number of the types of resources in the system

a

a% avallable resource vector first prepared in the system
a =1. : ai = number of resources of type 1

an
B= D1sBpseeesly ) = P13 Pyp +ee Py : user claim matrix

bml bm2 bmn
b1K = maximum number of resources of type 1 that will be needed

at one time by process Pk'

~12~
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¢ = ( E1’32""’gn ) = cll Cip = ®1in : allocation matrix
®m1 ®m2 ®mn
Cip = number of resources of type 1 allocated to Pk
a,B: constant in time
[ variable in time gﬂt)

allocation state = (a , B, c(t) )
Allocation state,for which the following three conditions are
satisfied, are called realizable states.,

R1 : Y x b < a (no process claims more resources than are available)

k
R2 : c<B (no process will try to seize more resources that

it has claimed)
R3 ¢ %g: ¢ <2 (at most all resources are allocated)
If v;:e use r(t) := a - ZaCy
R3': r(t) Z2 O

Definition 4.1 (safe state)

A realizable state (a ,E’,E}t)) is calledia safe state if ther
is a full sequence S such that
R4 : Y Pres DBy < r(t) + > cq (t)

s <Sk) ~ :
safe sequence : a full sequence satisfying condition R4

Theorem 4.1

When no process will release its resources until it :has been'
allocated all its claimed resources, the process will not get into
a deadlock if and only if the allocation state is safe.
Theorem 4.2

If the allocation state is safe and a subsequence S fulfills

condition R4, S can be extended into a safe sequence.

-13-



Theorem 4,1 --- n!
Theorem 4,2 —-- n?
Russel[14],Ho1t[12] === n (linear algorithm)
(2) Hebalkar's Formalization [17]

It utilizes information about user demand for each job step.

Definition 4.2 (demand graph)

A demand graph is a finite directed graph with arcs and nodes;

the nodes are called transitions. Associated with each arc is a
quantity called a demand. A quantity called the capacity C is given
to the demand graph, and the demands associated with the arecs of
a demand graph are always less than or equal to the capacity C.

rectilinear demand graphs

an acyclic demand graphs with the property that the components
are unilateral
chain Ci: an unilateral component corresponding to~one process i
arc a} : J-th arc on the chain C, (1 Sjéipi), where C,has pyares

initial and terminal arcs : defined as usual

slice S : a set of arcs, one from each Ci

S IX Ci : the arc from a chailn Cithat goes into a slice S

initial slice SI : a slice composed only of initial arcs

terminal slice ST : a slice composed only of terminal arcs

- predecessor set of the slice S : transitions that lie above the slice

successor set Suc(S) of the slice S : transitions that lie below

the slice
demand d(a})

e

: demand associated with an arec a§

The demand associated with initial and terminal nodes are assumed
to be 0.
-ll-
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Example 4,1 (demand graph)

c c C

1 2 n
ar |0 adl 0 al| o
1 1, 2 2
a; d(a2)a2 d(a2) ag d(ag)
¥
] ; :
. X |
1 : 2‘r ’
a d( )da a n
D D4 () ag4 a( )
i/
q
a; 0 ai 0 a; 0
4 2y ny

The allocation state is represented by a slice,

move on a chain C1 : Si - SJ s Where S, 1s animmediate successor of S

J 1

Two moves are sald to be connected if they can be represented

in the form Sl-~> 82 and S2-J> S3, respectively,
macro-move : a sequence of moves, every pair of which is connected,

uni-chaln macro-move : a macro-move all of whose components are

moves on the same chain

Definition 4.3

A slice is said to be feasible if the sum of the demands associated
with'the arcs in it is no greater than C.

Definition 4.4

A feasible slice of a demand graph 1s safe if there exists

a connected sequence of feasible slices from the slice in question

to the terminal slice of the graph.

A slice all of whose immediate successors are infeasible represents

-15-
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a state of deadlock.
Let's consider rectilinear scalar demand graphs, (i.e. all the
demands are scalar values,)

Safeness Algorithm

Algorithm to test the éafeness of a given slice 06 .
S: variable to represent slices
{C} : set of chains of the demand graph
Step 0
Set S equal to 6 and {C} equal to {cl,cz,...,cn} . If S
is feasible, go to Step 1, If S is infeasible, go to Step 5.

Step 1
Pick a chain from {C]|, and go to Step 2.

Step 2

Attempt to construct a uni-chain macro-move down Ci‘from S
so that the slice resulting from each component move is feasible,
Terminate the macro-move at the first point where a;slice S' results
that satisfies both

a(s' X ¢;) < d(sXcy)
and d(Sue(s') Xy ;) % d(s'Xc,).

If such a sequence can be constructed, go to Step 4; if not

(i,e, if some move results in an feasible slice), go to Step 3.

Step 3
Delete C, from {C} . If {c} is now empty, go to Step 5;

if not go to Step 1.

Step 4
If S' is not Sp s then replace S by S', set {C} equal to

-16-
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i \ ]
1€13C0s0+Cp and go to Step 1. If S' is ST’ then stop. ( §is safe.)

Step 5
Stop with failure. ( § is unsafe,)

Theorem 4.3
A feasible slice § of a demand graph D 1is safe if and only 15

the Safeness Algorithm terminates sucecessfully when applied to & and D,

Example 4.2

Cl 02 C3
! |
! | .
1 b ‘ [
S’S_'Ta..__,___________i _______ __:_Q._S"S.',S"
1 _\‘\\ L N ,,rﬂ "
4 \\\51 7 ,'// 3 ‘
. \\ < /, f
0 Q2. 12
/',”;r‘“\\\ [ '" o
{ ~ T
8 S" //,' 9 \\_ T-J’—s‘ ,S ’S
@_r_- _/’/ i e
Sll’sn 2 /l 6 ‘,/1 6
y ' ’ Su’l/ r ‘/> <
7 @ // 3 // 3
mro ,.m‘ // 4 @/,/ S‘-" < o
. S ,S $_§_—-_t9:__’ ______ _9,./_’5.”_—_-— -g@-_slmu
) 4 L}

Capacity = 10

rectilinear vector demand graph

demand graph with loops and decisions
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4.3 Effective Deadlocks

Assume that each of the processes iterates its loop indefinitely.
Assume also that the resource scheduler continues granting requests
in the queue as long as the requests are safe., Then, there is a
possibility that the progress of some processes are delayed indefinitely.
even though deadlock danger does not exist.

This situation is called effective deadlock (permanent blocking[20],

indefinite postponement[21], individual starvation [22] ).

Prevention of Effective Deadlocks

(1) Holt [20]
array t[l:n],ull:n] ;

t[1] : When P, requests, t[i] is set to the time of the request.

i
When P releases, t[1] is set to =1,
uli] : the maximum time process Pi'must wait for a request before

the resource scheduler will activate a special strategy.
if t[i] = -1 then waittime := 0
else waittime := now - t[1i]
If there is any process Piwhich has waited‘beyond its maximum
time, the scheduler must activate the following strategy.

(a) All safe requests by processes having nonzero allocations should
be granted. This continues until enough resources are available
so that the request by Pi is safe, Process Pifis then granted
its requests,

(b) Each process other than P1 is examined to see if its maximum
waiting time has been exceeded. If so, the process which has
waited longest beynd its maximum waiting time is designated

process P, and this strategy is repeated by returning to (a).

=18~



(2) Saito [23]

When all the processes are totally
ordered based upon the values of the
maximum demands, make a directed cycle C
whose n-th node is labelled by the n-th

process identifier in the ordered set.

The Allocation Strategy

When the process Pireleases several resources:
(a) Search the next waiting process PJ along the cycle C starting
from 1. Stop when there 1is no waiting process along this cycle C
before Pi appears again,
(b) Pre-allocate resources to Pj as much as possible so long as
the allocation state is safe,
(c) Stop when there is no resource left. Otherwise, let PJ be Pi’
and go to (a) to repeat it.
(3) Digkstra [22]

Prevention of individual starvation in the dinig philosopher problen

5. Concluding Remarks

(1) Formal Proof Method for Synchronizing Processes

(2) Implementation of Deadlock Prevention Algorithm by using
Synchronizing Processes and the Proof of its Correctness

(3) Structure of Synchronizing Processes

-19-
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