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DEGENERACY OF HOLOMORPHIC MAPS OMITTING HYPERSURFACES

Fumio Sakai

Let W be a projective algebraic manifold of dimension n
and D a hypersurface on W. Let fxnn-——9 W-D be a holomorphic
map. We say that f is degenerate if the Jacobian of f vanishes
identically. 1In this note, we shall deal with the influence of

the singularity of D on degeneracy theorems of f.

1. Notations

A hypersurface D on W is said to have simple normal cross-

ings if each irreducible component of D is non-singular and D
has normal crossings, i.e., D is locally given by'wl---wj=0,
where (wl,...,wn) are local coordinates of W.

Let L be a line bundle on W. Let hi(L)=dim H(W,O()).

The L-dimension «(L,W) of W is roughly the polynomial order of

ho(nm,) as a function of positive integers m. Note that K(L,W)
takes one of the values =~,0,1,...,n. Here we need the follow-
ing fact: k(L,W)=n if and only if

limsup m—nho(nEJ)>O.
m—+o

If cl(L)>0, then ¢ (L,W)=n. For a divisor D, we denote by [D]

the associated line bundle. We write kK (D,W)=x([D],W).

2. Degeneracy theorem

Picard’s theorem states that any holomorphic map f:G—-9Pl
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omitting three points is a constant map. We begin with the

following generalization of this theorem.

Theorem 1 ([15], see also [2],{10]). Let W be a projective
algebraic manifold of dimension n and D a hypersurface on W.
Suppose that

(i) K(KW+D,W)=n, where KW is the canonical bundle of W,

(ii) D has simple normal crossings.

Then any holomorphic map f:mn—————é-W—D is degenerate.

Remark. In case W=:Pn and D= a hypersurface of degree 4,

the hypothesis (i) is satisfied if and only if d>n+2.

The following example shows that we cannot remove the hy-

pothesis (ii).

_ _rd-1 _d_ e
Example 1. Let W—ZP2 and D-{wO W, wl—O} , Where [wo.wl.wz]
are homogeneous coordinates of ZPZ. By the above remark, if d>4,

the hypothesis (i) is satisfied. D has only one sindularity at
[0:051] . Define a holomorphic map f:(]:2=(zl,zz)——————-—)]P2 by

zZ
:zd+e 2]. Then £ omits D and the Jacobian of f is

f(zl,22)=[l:zl 1

1 0 2

dzl e

.In what follows, we shall consider the gquestion: what hap=-
pens when D has worse singularities than simple normal crossings

in Theorem 17?

3. Resolution of sigqularities

Let W be a projective algebraic manifold of dimension n and
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D a hypersurface on W. If D does not satisfy the hypothesis (ii)
in Theorem 1, by desingularizing D, we can find W* and D* satis-

fying the following conditions:

(i) TiW*¥ ——> W is a composite of monoidal transformations,
(ii) 7m:W*-D* — W-D is biholomorphic,
(iii) D*= the support of 7*D,

(iv) D has simple normal crossings.

From Theorem 1, it follows

Theorem 2. If K (K& +tD*,W*) =n, then any holomorphic map

f:mn—————>W—D is degenerate.

Proof. It suffices to consider f as a holomorphic map to

W*-D*, q.e.d. W*=D*

n/ “'TT

£:0 W-D

To calculate K (KyxtD*,W#) , we study the process of the
desingularization, in which we have a sequence of monoidal trans-

formations ﬂ_:Wi+l————a Wi with non-singular centers Ci such that

i
(i) WO=W, W%=W*, W*=?é D ?£=D*
i i = * : M
(ii) D,= the support of m¥ _1Pi-17 : :
(iii) D,=D#*, which has simple normal f v
[ Wy ) D,
. m, ¥ ¥
crossings. 0 0
W= 0 D) D0=D

Define
D,=the strict transform of D; 1 by L
. . -1
E,=the exceptional locus of Tioqr 1.2, ﬂi_l(Ci_l),

§.,=the codimension of C. in W,,
i i i
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vi=the multiplicity of the singular locus of Di at Ci.

Then we have

=B -5 =% -
Di—Di+Ei, “f-lDi—l—Di+vi-lEi' Kwi—wi_lei_l+[(Si_l 1)Ei]’
(1)

Example 2. We examine the cusp D= {y =x }

<E>K E

PrOEsitiop 1. K(Kw*+D*,W*);K(KW+D,W);

This follws from properties (1), and further if D has simple
normal crossings, the equality holds. Moreover we have the

following

Proposition 2. Let f:V7——> V be a birational morphism,

where V°,V are projective algebraic manifolds. Let D be a hyper -
surface on V and put D’=the support of f*D. Then

K(KV‘+D“,V');K(KV+D,V)-

Remark. K(Kwﬁ*D*,W*) is independent of the desingulari-

ztion W% ,D*. In fact let Wl’D be another desingularization of

1
D. There exists a desingularization W#* ,D**, which is obtained
by a sequence of monoidal transformations of W*, with centers

over D*, such that there is a birational morphism ¢:W**~——)Wl.

The assertion follows from the above propositions.
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Definition. We say that D has quasi-negligible singulari-

ties if vi;ai holds for i=0,...,1-1.

Proposition 3 ([i5]). If D has quasi-negligible singulari-

ties, then K(KW*+D*,W*)=K(KW+D,W).

Proof. By (1), we have
i o i-1 i-1

Hence we have KKy + D%, W*) > K(KW-+D ,W), which proves Proposi-

tion 3.

Thus the hypothesis (ii) in Theorem 1 can be weakened as:

(ii) =* D has quasi-negligible singularities.

Examples of quasi-negligible singularities

(i) normal crossing is gquasi-negligible,
(ii) a curve has quasi-negligible singularities if and
only if itsisingularities are ordinary double points,
(iii) the isolated singularity wg+--o+wg=0 is guasi-negli-
gible if dxn(this type appeared in Carlson [21)
2, 2, k+1_

(iv) on surfaces the singularity defined by wl+w2+w3 =0

(type Ak) is quasi-negligible.

Proposition 4([15]). If the Kodaira dimension K(W)=K(KW,W)

20, then we have K(Kw*+D*,W*)=K(KW+D,W).

Therefore in case k(W)>0, the hypothesis (ii) can be

removed. This leads us to study the case k(W)<O0. Note that

k (W)<0 if and only if ho(mKW)=O, for every positive integer m.
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In case n=2, a surface S with «(S)<0 is birationally equiva-

lent to IPixC, where C is a curve (ruled surface). We have

Proposition 5. Let S be an algebraic surface and D a curve

0
implies K(KS*+-D*,S*)=2.

on's. If (KgD) - (v '2)2"""\’Q—1'2)2> 0, then k(Kg+D ,5)=2

Proof. By (1), putting Bi=2, we get

)E, ) 2

2_, %
(KS.+Di) _(wi_ (K + Di PE;

) + (2-v, _
i i-1 1

-1

2 2
(v, _472) 7.

Hence we obtain
‘ 2 2 2 02
(Rg #D* ) “=(Kg+ D ) "= (v=2) "=+ .- (Vsz-l 2)">0.
Let P=KS+[D}, P*=KS*+[D*]. Using this notations we have F*2>0.
We infer from the Riemann-Roch theorem that
0 2 1

h” (mI'*)+h (mr*liimr*(mf*—KS*) +pa(S#).
Note that h®mr*)=h’ (Kg,-n%) < h®(-(m-1)T*). Thus the above
inequality shows that eithef/ho(mr*)>0, or ho(—(m—l)F*)>O, for
large m. By (1), Tx=¢* (T)-]|€] , £ is an exceptional divisor of
T. If ho(—(m—l)T*)>0, then ho(—(m_l)(F* +[€J»=h0(*(m-l)T)>0,

2 2

which is a contradiction. Hence ho(mr*l;%(r*) m“+..., which

proves g (I'*,S*%)=2, g.e.d.

Example 3. Let S=1P, and D= a hypersurface of degree d.

2

The hypothesis in the above proposition is
2 2 - 42

(d-3) —(vo 2) "= (vﬁ—l 2)">0.

Let k*=x(I'*,S%). We give some examples:



(i) four lines meeting at one point,
F*Zz—l, K’*:r—oo, %

(ii) a conic and two lines meeting at one point,

F*2= 0, K'*=l,

(iii) a gquintic with two cusps,

r#2=p, =2,

(iv) the curve in Example 1,
I‘*2<01 KEx= = . /3
N’

Remark. Let V',V be projective algebraic manifold of
dimension n and let f: V——>V be a finite morphism. For a
hypersurface D on V, let D° =the support of f#*D. Then it is éasily
seen that K(KV,+D',V');K(KV+D,V). Let V *,D°*%* and V#,D* be
desingularizations of V,D” and V,D, respectively. 1Is it true that

K (K 5 tD7 %, V7% )2 k (R, +D*,V*) 2

4. Concluding Remarks

. Let M be a complex manifold of dimension n. We define the

following properties of M.

(ED)k Every holomorphic map f:G:kXDn_k-—'—>M is degen-
erate, where D is the unit disk {z]| |z <1},
(HD)k Every holomorphic map f:¢k~———>M is degenerate in

the sense that the rank of the Jacobian matrix of f is not maximal

anywhere.
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(AD)k Every holomorphic map f:¢k~—~—?M is algebraically
degenerate, i.e., the image f(Ek) is contained in a proper sub-

variety of M.

Obviously we have the following relations:

(HD), ——— (ED),

Q l l>/ (HD)n=(ED)n

(HD), ,; — (ED), .,

The pron of Theorem 1 ([15]1) implies the following strong-

er form of Theorem 1. ( The conclusion of Theorem 1 is (ED)n.)

Theorem 4. ©Under the same assumptions on W and D as in

Theorem 1, M =W-D satisfies property (ED)l.

Proof?) Let IDrﬁ{z|1z|<r}. Replacing B[r] in [15] by ID?,

we have the following Schottky-Landau theorem.

‘Theorem ([15]). Assume the same assumptions on W and D as in
Theorem 1. Let f:iD? ——— W-D be a holomorphic map with Jf(O)#O.
Then r°® <c [Jf(O)]_z, where C is a constant depending cnly on

£(0) .-

We proceed to the proof of Theorem 4. Assume that there
exists a non-degenerate holomorphic map,f:mx]Dn-l————~e W-D.
By a translation of coordinates, we may assume that there exists
. n-1 . .
a holomorphic map f.E?CDr ——> W=D, with r0<l, Jf(O)#O. Define

a holomorphicAmapxp:Zﬁg—_*——5 meD:—l by

0

* ) This type of argument is due to I.Nakamura.
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r z, T r
w:(Zl,-..,Zn)———‘—?((;o)n lal'z‘ozz'...';ozn)’
where a=|J.(0)|. Let g=foy . Since |Jg(0)[=’Jf(w(O))HJw(O)[ =1,

we obtain a holomorphic map g: JD?———) W-D, with |J_(0)|=1 for

arbitrary r, which contradicts the above theorem, g.e.d.
Several degeneracy theorems are known.

Theorem(Fujimoto [4], Green [6]). Let Hl" "’Hn be hy-

+k

perplanes in general position in ]Pn. Let M= ]Pn— HlU. "UHn+k'
Then any holomorphic map t'— M is contained in-a linear sub-

space of dimension [‘E 1.

Corollary. If k>n+l, then M satisfies property (HD)l.
Corllary(Green [6]). Let Hl" . .,Hd be hyperplanes in IPnin
arbitrary position. Then M= ]Pn— Hl\/ ..\/Hd satisfies properties

(AD)l and (ED)  if d>n+2.

Corollary(Green [6] , p.39). Let W be a complex manifold of
dimension n and let Dl""’Dk be hypersurfaces on W such that
each Di€|Ll, for a fixed line bundle L. Let s; be the séction
defining Di. If the algebraic dimensionaof(sl,... ,sk) <=k—2,

=W- . i i i (
then M DM..\/D, satisfies properties (AD) ; and (ED) _a41-

Theorem (Green [6], cf.Fujimoto [5] ). Let D be a Fermat
variety wg+- . +wd=o, in ]Pn, where [w.: .. .;wn] are homogeneous
n
coordinates of JPn. If d>n(n+1l), then ]Pn.—D satisfies properties

(AD)l and (ED)l( (ED)l is a consequence of Theorem 4).
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Theorem(Green[8]). Let D be a non-singular curve of degree
d inﬁPz. Let D* be the dual curve of D in the dual projective
spaceiPS. If 423, then]Pz—D* satisfies property (HD)l.

Theorem{ [15]1). Let A be an abelian variety of dimension n

and D an arbitrary hypersurface on A. Then A-D satisfies prop-

erty (ED) .
R an n nl
Example 4. Let X _={z "+<:'+z "=0} in €. If Zi=15i< L,

then mn—xa satisfies property (ED)2.

a a o
Proof. Let Ua={zll+...+znn=l}. Then Cx U, is an unramified

. n . . . .
covering of @°X _. By the assumption,. U, satisfies property (ED),

(see [lS])L So Ean'and mn-xa satisfy property (ED)Z.
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