DEGENERACY OF HOLOMORPHIC MAPS OMITTING HYPERSURFACES

Fumio Sakai

Let W be a projective algebraic manifold of dimension n and D a hypersurface on W. Let $f : \mathbb{Z}^n \longrightarrow W - D$ be a holomorphic map. We say that f is <u>degenerate</u> if the Jacobian of f vanishes identically. In this note, we shall deal with the influence of the singularity of D on degeneracy theorems of f.

1. Notations

A hypersurface D on W is said to have <u>simple normal crossings</u> if each irreducible component of D is non-singular and D has normal crossings, i.e., D is locally given by $w_1 \cdots w_j = 0$, where (w_1, \dots, w_n) are local coordinates of W.

Let L be a line bundle on W. Let $h^i(L) = \dim H^i(W, \mathcal{O}(L))$. The <u>L-dimension</u> $\kappa(L,W)$ of W is roughly the polynomial order of $h^0(mL)$ as a function of positive integers m. Note that $\kappa(L,W)$ takes one of the values $-\infty,0,1,\ldots,n$. Here we need the following fact: $\kappa(L,W) = n$ if and only if

$$\limsup_{m \to +\infty} m^{-n} h^{0} (mL) > 0.$$

If $c_1(L)>0$, then $\kappa(L,W)=n$. For a divisor D, we denote by [D] the associated line bundle. We write $\kappa(D,W)=\kappa([D],W)$.

2. <u>Degeneracy</u> theorem

Picard's theorem states that any holomorphic map $f: \mathbb{C} \longrightarrow \mathbb{P}_1$

omitting three points is a constant map. We begin with the following generalization of this theorem.

 $\underline{\text{Theorem}}$ 1 ([15], see also [2],[10]). Let W be a projective algebraic manifold of dimension n and D a hypersurface on W. Suppose that

- (i) $\kappa(K_W+D,W)=n$, where K_W is the <u>canonical</u> bundle of W,
- (ii) D has simple normal crossings. Then any holomorphic map $f:\mathbb{C}^n\longrightarrow W$ -D is degenerate.

Remark. In case $W=\mathbb{P}_n$ and D= a hypersurface of degree d, the hypothesis (i) is satisfied if and only if d>n+2.

The following example shows that we cannot remove the hypothesis (ii).

Example 1. Let \mathbb{P}_2 and $\mathbb{D}=\{w_0^{d-1}w_2-w_1^d=0\}$, where $[w_0:w_1:w_2]$ are homogeneous coordinates of \mathbb{P}_2 . By the above remark, if $d \geq 4$, the hypothesis (i) is satisfied. D has only one singularity at [0:0:1]. Define a holomorphic map $f:\mathbb{C}^2=(z_1,z_2)\longrightarrow \mathbb{P}_2$ by $f(z_1,z_2)=[1:z_1:z_1^d+e^{z_2}]$. Then f omits D and the Jacobian of f is

$$J_{f} = \begin{vmatrix} 1 & 0 \\ dz_{1}^{d-1} & e^{z_{2}} \end{vmatrix} = e^{z_{2}} \neq 0.$$

In what follows, we shall consider the question: what happens when D has worse singularities than simple normal crossings in Theorem 1?

3. Resolution of sigularities

Let W be a projective algebraic manifold of dimension n and

D a hypersurface on W. If D does not satisfy the hypothesis (ii) in Theorem 1, by desingularizing D, we can find W* and D* satisfying the following conditions:

- (i) $\pi:W^*\longrightarrow W$ is a composite of monoidal transformations,
- (ii) $\pi: W^*-D^* \rightarrow W-D$ is biholomorphic,
- (iii) $D^*=$ the support of π^*D ,
- (iv) D has simple normal crossings.

From Theorem 1, it follows

Theorem 2. If $K(K_{W*}+D*,W*)=n$, then any holomorphic map $f:\mathbb{C}^n\longrightarrow W-D$ is degenerate.

To calculate $K(K_{W*}+D*,W*)$, we study the process of the desingularization, in which we have a sequence of monoidal transformations $\pi_i:W_{i+1}\longrightarrow W_i$ with non-singular centers C_i such that

(i)
$$W_0 = W$$
, $W_\ell = W$ *,

(ii)
$$D_i = \text{the support of } \pi_{i-1}^* D_{i-1}^*$$

(iii)
$$D_{\ell} = D^*$$
, which has simple normal crossings.

Define

 \overline{D}_{i} =the strict transform of D_{i-1} by π_{i-1} , E_{i} =the exceptional locus of π_{i-1} , i.e., $\pi_{i-1}^{-1}(C_{i-1})$, δ_{i} =the codimension of C_{i} in W_{i} ,

 $\nu_{\, \mathbf{i}} \! = \! \mathsf{the}$ multiplicity of the singular locus of D $_{\mathbf{i}}$ at C $_{\mathbf{i}}$. Then we have

<u>Propsition</u> 1. $\kappa (K_{W*} + D*, W*) \leq \kappa (K_{W} + D, W)$.

This follws from properties (1), and further if D has simple normal crossings, the equality holds. Moreover we have the following

<u>Proposition</u> 2. Let $f:V \longrightarrow V$ be a birational morphism, where V, V are projective algebraic manifolds. Let D be a hypersurface on V and put D=the support of f*D. Then

$$\kappa (K^{\Lambda,+D},\Lambda,) = \kappa (K^{\Lambda+D},\Lambda)$$
.

Remark. $\kappa(K_{W*}+D*,W*)$ is independent of the desingularization W*,D*. In fact let W_1,D_1 be another desingularization of D. There exists a desingularization W**,D**, which is obtained by a sequence of monoidal transformations of W*, with centers over D*, such that there is a birational morphism $\phi:W**\longrightarrow W_1$. The assertion follows from the above propositions.

<u>Definition</u>. We say that D has quasi-negligible singularities if $v_i \leq \delta_i$ holds for $i=0,\ldots,\ell-1$.

<u>Proposition</u> 3 ([15]). If D has quasi-negligible singularities, then $\kappa(K_{W*}+D*,W*)=\kappa(K_{W}+D,W)$.

Proof. By (1), we have

$$\kappa(K_{W_{i}}^{+D_{i}},W_{i}) \geq \kappa(\pi_{i-1}^{*}(K_{W_{i-1}}^{+D_{i-1}}),W_{i}) = \kappa(K_{W_{i-1}}^{+D_{i-1}},W_{i-1}).$$

Hence we have $\kappa(K_{\widetilde{W}*}^+ D*,W*) \ge \kappa(K_{\widetilde{W}}^+ D*,W)$, which proves Proposition 3.

Thus the hypothesis (ii) in Theorem 1 can be weakened as:

(ii) * D has quasi-negligible singularities.

Examples of quasi-negligible singularities

- (i) normal crossing is quasi-negligible,
- (ii) a curve has quasi-negligible singularities if and only if its singularities are ordinary double points,
- (iii) the isolated singularity $w_1^d + \cdots + w_n^d = 0$ is quasi-negligible if $d \leq n$ (this type appeared in Carlson [1]),
- (iv) on surfaces the singularity defined by $w_1^2 + w_2^2 + w_3^{k+1} = 0$ (type A_k) is quasi-negligible.

<u>Proposition</u> 4([15]). If the Kodaira dimension $\kappa(W) = \kappa(K_W, W)$ ≥ 0 , then we have $\kappa(K_W + D^*, W^*) = \kappa(K_W + D, W)$.

Therefore in case $\kappa(W) \geq 0$, the hypothesis (ii) can be removed. This leads us to study the case $\kappa(W) < 0$. Note that $\kappa(W) < 0$ if and only if $h^0(mK_W) = 0$, for every positive integer m.

In case n=2, a surface S with $\kappa(S)<0$ is birationally equivalent to $\mathbb{P}_1\times C$, where C is a curve (ruled surface). We have

<u>Proposition</u> 5. Let S be an algebraic surface and D a curve on S. If $(K_S+D)^2-(v_0-2)^2-\cdots-(v_{\ell-1}-2)^2>0$, then $\kappa(K_S+D,S)=2$ implies $\kappa(K_{S*}+D*,S*)=2$.

<u>Proof</u>. By (1), putting $\delta_i = 2$, we get

$$(K_{S_{i}}^{+D_{i}})^{2} = (\pi_{i-1}^{*}(K_{S_{i-1}}^{+D_{i-1}}) + (2-\nu_{i-1})E_{i})^{2}$$

$$= (K_{S_{i-1}}^{+D_{i-1}})^{2} - (\nu_{i-1}^{-2})^{2}.$$

Hence we obtain

$$(K_{S*} + D*)^2 = (K_S + D)^2 - (v_0 - 2)^2 - \cdots - (v_{\ell-1} - 2)^2 > 0.$$

Let $\Gamma=K_S+[D]$, $\Gamma*=K_{S*}+[D*]$. Using this notations we have $\Gamma*^2>0$. We infer from the Riemann-Roch theorem that

$$h^{0}(m\Gamma^{*})+h^{2}(m\Gamma^{*}) \geq \frac{1}{2}m\Gamma^{*}(m\Gamma^{*}-K_{S^{*}}) +p_{a}(S^{*}).$$

Note that $h^2(m\Gamma^*)=h^0(K_{S^*}-m\Gamma^*) < h^0(-(m-1)\Gamma^*)$. Thus the above inequality shows that either $h^0(m\Gamma^*)>0$, or $h^0(-(m-1)\Gamma^*)>0$, for large m. By (1), $\Gamma^*=\pi^*(\Gamma)-[\mathfrak E]$, $\mathfrak E$ is an exceptional divisor of π . If $h^0(-(m-1)\Gamma^*)>0$, then $h^0(-(m-1)(\Gamma^*+[\mathfrak E]))=h^0(-(m-1)\Gamma)>0$, which is a contradiction. Hence $h^0(m\Gamma^*)\geq \frac{1}{2}(\Gamma^*)^2m^2+\cdots$, which proves $\kappa(\Gamma^*,S^*)=2$, q.e.d.

 $\underline{\text{Example}}$ 3. Let $S=\mathbb{P}_2$ and D= a hypersurface of degree d. The hypothesis in the above proposition is

$$(d-3)^2 - (v_0-2)^2 - \cdots - (v_{\ell-1}-2)^2 > 0$$
.

Let $\kappa *= \kappa (\Gamma *, S*)$. We give some examples:

$$\Gamma^{*2}=1$$
, $\kappa^*=\infty$,

(ii) a conic and two lines meeting at one point,

$$\Gamma^{*2} = 0, \quad \kappa^* = 1,$$

$$\Gamma *^2 = 2$$
, $\kappa * = 2$,

(iv) the curve in Example 1,

$$\Gamma^{*2}<0$$
, $\kappa^*=-\infty$.

Remark. Let V, V be projective algebraic manifold of dimension n and let $f: V \longrightarrow V$ be a finite morphism. For a hypersurface D on V, let D'=the support of f*D. Then it is easily seen that $\kappa(K_{V'}+D',V') \ge \kappa(K_{V}+D,V)$. Let V'*,D'* and V*,D* be desingularizations of V,D' and V,D, respectively. Is it true that

$$\kappa (K_{V'*} + D'*, V'*) \ge \kappa (K_{V*} + D*, V*)$$
?

4. Concluding Remarks

Let ${\tt M}$ be a complex manifold of dimension ${\tt n}$. We define the following properties of M.

- (ED)_k Every holomorphic map $f: \mathbb{C}^k \times \mathbb{D}^{n-k} \longrightarrow M$ is degenerate, where \mathbb{D} is the unit disk $\{z \mid |z| < 1\}$,
- Every holomorphic map $f: \mathbb{C}^k \longrightarrow M$ is degenerate in the sense that the rank of the Jacobian matrix of f is not maximal anywhere.

 $(AD)_k$ Every holomorphic map $f: \mathbb{C}^k \longrightarrow M$ is algebraically degenerate, i.e., the image $f(\mathbb{C}^k)$ is contained in a proper subvariety of M.

Obviously we have the following relations:

$$\begin{array}{ccc}
\text{(HD)}_{k} & \longrightarrow & \text{(ED)}_{k} \\
\downarrow & & \downarrow & \downarrow \\
\text{(HD)}_{k+1} & \longrightarrow & \text{(ED)}_{k+1}
\end{array}$$

The proof of Theorem 1 ([15]) implies the following stronger form of Theorem 1. (The conclusion of Theorem 1 is $(ED)_n$.)

Theorem 1, M = W - D satisfies property (ED)₁.

<u>Proof</u>^{*)} Let $\mathbb{D}_{r} = \{z \mid |z| < r\}$. Replacing B[r] in [15] by \mathbb{D}_{r}^{n} , we have the following Schottky-Landau theorem.

Theorem ([15]). Assume the same assumptions on W and D as in Theorem 1. Let $f\colon \mathbb{D}^n_r \longrightarrow \text{W-D}$ be a holomorphic map with $J_f(0)\neq 0$. Then $r^{2n} < C \mid J_f(0) \mid^{-2}$, where C is a constant depending only on f(0).

We proceed to the proof of Theorem 4. Assume that there exists a non-degenerate holomorphic map $f: \mathbb{C} \times \mathbb{D}^{n-1} \longrightarrow W-D$. By a translation of coordinates, we may assume that there exists a holomorphic map $f: \mathbb{C} \times \mathbb{D}^{n-1}_{r_0} \longrightarrow W-D$, with $r_0 < 1$, $J_f(0) \neq 0$. Define a holomorphic map $\psi: \mathbb{D}^n_r \longrightarrow \mathbb{C} \times \mathbb{D}^{n-1}_{r_0}$ by

^{*)} This type of argument is due to I.Nakamura.

$$\psi: (z_1, \ldots, z_n) \longrightarrow ((\frac{r_0}{r})^{n-1} \frac{z_1}{a}, \frac{r_0}{r} z_2, \ldots, \frac{r_0}{r} z_n),$$

where a= $|J_f(0)|$. Let g=fo ψ . Since $|J_g(0)|=|J_f(\psi(0))||J_{\psi}(0)|=1$, we obtain a holomorphic map g: $\mathbb{D}^n_r\longrightarrow W$ -D, with $|J_g(0)|=1$ for arbitrary r, which contradicts the above theorem, q.e.d.

Several degeneracy theorems are known.

Theorem (Fujimoto [4], Green [6]). Let H_1, \ldots, H_{n+k} be hyperplanes in general position in \mathbb{P}_n . Let $M = \mathbb{P}_n - H_1 \cup \ldots \cup H_{n+k}$. Then any holomorphic map $\mathbb{C}^1 \longrightarrow M$ is contained in a linear subspace of dimension $[\frac{n}{k}]$.

Corollary. If $k \ge n+1$, then M satisfies property (HD)₁.

Corllary (Green [6]). Let H_1, \ldots, H_d be hyperplanes in \mathbb{P}_n in arbitrary position. Then $M = \mathbb{P}_n - H_1^{\vee} \ldots^{\vee} H_d$ satisfies properties (AD)₁ and (ED)_n if $d \ge n+2$.

Corollary (Green [6], p.39). Let W be a complex manifold of dimension n and let D_1, \ldots, D_k be hypersurfaces on W such that each $D_i \in |L|$, for a fixed line bundle L. Let s_i be the section defining D_i . If the algebraic dimension a of $(s_1, \ldots, s_k) \leq k-2$, then M=W- $D_1 \cup \ldots \cup D_k$ satisfies properties (AD) 1 and (ED) n-a+1.

Theorem (Green [6], cf.Fujimoto [5]). Let D be a Fermat variety $w_0^d + \cdots + w_n^d = 0$, in \mathbb{P}_n , where $[w_0 : \cdots : w_n]$ are homogeneous coordinates of \mathbb{P}_n . If d > n(n+1), then $\mathbb{P}_n - D$ satisfies properties (AD)₁ and (ED)₁ (ED)₁ is a consequence of Theorem 4).

Theorem (Green [8]). Let D be a non-singular curve of degree d in \mathbb{P}_2 . Let D* be the dual curve of D in the dual projective space \mathbb{P}_2^* . If $d \ge 3$, then \mathbb{P}_2^* -D* satisfies property (HD)₁.

Theorem ([15]). Let A be an abelian variety of dimension n and D an arbitrary hypersurface on A. Then A-D satisfies property (ED) $_{\rm n}$.

Example 4. Let $X_a = \{z_1^{a_1} + \cdots + z_n^{a_n} = 0\}$ in \mathbb{C}^n . If $\sum_{i=1}^n \frac{1}{a_i} < 1$, then $\mathbb{C}^n - X_a$ satisfies property (ED)₂.

<u>Proof.</u> Let $U_a = \{z_1^{a_1} + \cdots + z_n^{a_n} = 1\}$. Then $\mathbb{C} \times U_a$ is an unramified covering of $\mathbb{C}^n - x_a$. By the assumption, U_a satisfies property (ED)₁ (see [15]). So $\mathbb{C} \times U_a$ and $\mathbb{C}^n - x_a$ satisfy property (ED)₂.

References

- [1] Carlson, J.: Some degeneracy theorems for entire functions in an algebraic variety. Trans. Math. Soc. 168, 278-301(1972)
- [2] ______.,Griffiths,P.: A defect relation for equidimensional holomorphic mappings between algebraic varieties. Ann.of Math. 95, 557-584 (1972)
- [3] Dahlberg,B.: Holomorphic mappings into smooth projective varieties. Arkiv för matematik. 12,59-71 (1974)
- [4] Fujimoto, H.: Extensions of the big Picard's theorem. Tohoku Math.J. 24, 415-422 (1972)
- [5] _____: On meromorphic maps into the complex projective space. J.Math.Soc.Japan 26, 272-288 (1974)
- [6] Green, M.L.: Some Picard theorems for holomorphic maps to

