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Tricanonical map of a certain class of surfaces

by Yoichi MIYAOKA

INTRODUCTION. Let S be an projective algebraic surface defined

over the complex number field C. We let KS ’denote the canonic-

al bundle of S, and mKS its m-th tensor power. Consider the
rational map é%*%associated with the complete linear system
[mKS‘ (pluricanonical mép). S is called of general type if
@”,KS(S) is a surface for m)»0. Putting R =%2.:o HO(S,0@11IG)), the:
projective scheme X = Proj (R) 1is called an (abstract) canonical
model of S. It is known that the natural rational map
X—> @W,(g)fz Proj(,XHo(S:Mks)) 7

is an isomorphism for m»»0, and that the rational map S-—> X
is a birational morphism.

In this paper; we are concefned with the algebraic surface S
whoes numerical characters are: K52= l, pg= 0, where ég is
the geometric genus. We shall prove the following

MAIN THEOREM. égks. is birational.

Let S be a minimal surface of general type.

By this theorem Bombieri's result about the birationality of
pluricanonical maps [3] is sharpened as follows:

@31\’5 is birational except in the following cases:

a) K52=1, pg=2, where &, (S) is rational;

b) KSZ=2, pg=3, where ask(s)= p?;

c) K52=2, pg=0. (It is expected that the case c¢) does not

occur.)
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1. Generalities. In this section we review the well-known
resultg that are used in our proof.

THEOREM A (algebraic index theorem). Let S be an algebraic
surface. The intersection numbers for' pairs of divisoé’define
a quadratic form Q on the numerical divisor group Num(S). Q
is non-degenerate and has one and only one po3itive eigenvalue.

THEOREM B. Let S be a minimal surface of geheral type. Then
for any irreducible curve C on S we have

KSCQO.

Moreover, the curves C satisfying KSC=0 form a finite set
and are numerically independent of each other.

Let "D be an effective divisor on S. We:say that D is
numerially connected (or l-connected) if for any non-trivial de-
‘compos"ition D=D, +D,, D‘i>'0' we have D;D,>0.

THEOREM C (Ramanujam). If an effective divisor D is 1-
connected, then dim HO(D,C§)=1.

Let S be a minimal surface of general type and X a canonic-
al model of S. The natural map W;: S—>X is a minimal resolut-
ion of singularities of‘mx. X is a normal surface with a finite
numgéf of rational double points. Let MC be the maximal ideai'of
a rational double point P ‘on ‘X;‘Rﬂﬁnt ié an invertible sheaf
-that defines a divisor 2. 2 is éalled a fundamental cycle. 2
is a sum of irreducible curves Ci such that. CiKS=O. Conversely
such curves are contained in some fundamental cycles.

PROPOSITION 1 (Artin []I [2]).

(i) An effective divisor Z on S 1is a fundamental cycle if and

only if 2 is a maximal -.cycle with
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KSZ=0, Z27=0.

(ii) We have Kg =‘ZD'O*KX, where Ky is a line bundle on X.
(iii) For two line bundies 5, and 5,2 on a fundamental cycle,
§) and b2 are isomerphic to each other if deg 81 = deg & .
We shall denote the nux’nerical‘-fl:# equivalence by the symbsl. .
Thus D~D’ means that D is nume_r'j'.célly equivalent to D’.
[et S be a minimal surface of general type, Z a fundamental

‘egycle, W: S35 a blowing up, and E the exceptional curve on

~
S.

LEMMA 1 (Bombieri's connectedness theorem).

(i) If D is effective and D~mK (m>1), then D is l-connected.

S

(ii) If D is effective and D~mKS

composition D=D1+D2, Di> 0, DiKS> 0, we have 'DlDz._Z_B, except.

i £ Kz—lf"w a D ‘
i g =1f an 1 o©r D2~KS.

(iii) If D~mKg~=2 (m=1), then D is l-connected.

) % . . . R 2
(iv) If D~mfy K -2E (m=21), then D is l-connected except if Kg
L3
=1, m=2, D=D,+D D NDZ’?‘w KS"E.

(m=2), then for any de-

1 72 1
PROOF. For the convenience of the reader, we shall give a proof
following Bombieri [3]. We discuss in the rational numerical group

2

S °
(i) Let D=D1+D2, Di> 0 be a decomposition of D. We have

Numg, (S) = Num(S)® Q. We let t=K

= < y
0Zr D;KgEmt. Hence

Dy =4 kKs+8&, E-Ks=o0,
Da ::«{;(fmt——r)kg-—g,
DiD> = £ r(mt—r)— &2

=0

From Theorem A we infer éz <O except if E~0. D,D, implies that

172
r=0 or =mt, and §~O0. Therefore we have Dy or D,~0, i.e.,

3
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Dl or D2 = 0.
(ii) In this case l1=r£<mt-1. Suppose 2<r <mt-2. Then

D.D _,}_-r(mt-r)—?;_%--z (mt-2) = 2m-~2-

1927 7¢ T
Since mt>=4, 2m- -—12;2.3. Next consider the case r=p;K,=1.
Then D12=—Tl:—+ §2= odd. Hence, unless t=1 and g'rv(), Dlzg ~-1.
%
(iii) Let D=D,+D,, D;>0. B DK >0 and if D4R, we get

D, (D,+2)Z3, D,(D;+2)>3. Sqnuning ﬁp these, we have 2D1D2+DZ_2_6.

On the other hand, DZ=-ZZ#2. Hence D;D,=2. 1If D;Ks>0. and if

DlNKS,

p,’<-2,

we have D1D2=KS((m-l)KS—Z)=(m-—l)_.gl. If DiKS=0, we have

‘ : 2 2 . 2. 2
~mK_+ < = ~-Z)“-Dp,“~
oMK g, &‘_.o. ‘Hence 2D,D,=(mKs~2) “~D, "~D,, =-£~

D1D2=0 implies that SNO and that Dzn—mKS, Dl~'-Z, - a contra-
dictioﬁ.
(iv) Let D=D #D,, D, >0, and irleE. Then we have
¥%*
v [ A X
Dy~W D]-VE, Di{~-FK+E.

~ ; /- - L4 o ...

D,~WD4-(2-v), D (m-—=)Kg-% .

Note that D; 1is an effective divisor on S. So DiDé_}._l, and
D,D,21-v(v=2)E> = l+v(v-2).

Hence DlD2>0 unless wv=l. Suppose DJ!_KS>O and v=1. In this

case D;D, 23 unless Dy or Dj~K Hence D;D,>1l. Suppose

172+ 1 s
* % '
! ~ J K o~ - -T = - -
Dj~Kg. Then D,~W Ko~E, Dy~% (m=1)Kg-E, D;D,=(m-1)t-1.
. *
Thus D;D,=0 if and only if m=2, t=Ksz=1, D, ~w KS—E. Finally

7 — r2<_ ) (2 ) 12
suppose that DjKy=0. Then DJ =-2, and so D;Dj=-Dy 22,
=N’N’ - ry? .
Hence, D;D,=DiDy+v(v-2)=2 DD ~1=1. v Q.E.D.
THEOREM D. Let S be as in Lemma 1 and let £ an invertible sheaf
such that xn is spanned by its global sections and has three algeb-

raically independent sections for n»0. Then we have

4
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al(s, £ = o.
For the proof, see Mumférd [1.
COROLLARY. If a divisor M ~mKg (m>2), then Hl(S,M)=O.
PROOF. For n¥%» 0, consider the exact sequence ,
0 -> HOCS MBEM—E)—> HO(Smm*M)—> H(E 2w*M)— H' (§, nw M—E )
By the Serre duality theorem we have
aim B (S, @ H-E) = dim 8L (S, 2E~(mi)@M) .
Since D~W'I)W‘QE is l-connected by Lemma 1, H1 (gRE—{wlﬂi))
=0. Thus Hl(’s‘:mtb*H—E) = 0. Henqe ‘nM' ‘has no base point (n

»” 0). Now apply the theorem. Q.E.D.
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2. Numerical Godeaux surfaces. We call S a numerical
Godeaux surface if it is a minimal surface of general type
with numerical characters KSZ=1, pg=0, where pg denotes
the geometric genus dim HZ(S,Ek). The following theorem is
classical (see [7]).

THEOREM 1. For a surface of general type S, we have
,pg;;qédim Hl(S{C%). | |

In what follows, we denote by S a numerical Godeaux surface.
As a corllary to Theorem C»éﬁd Tﬁggrem l; we obtain the folldﬁ_
ing

LEMMA 2. If an effective divisor D is l-connected, then
' (s, Gs(-D))=0. |

LEMA 3. If D~Kg, we have dim H'(S,Og(D))<1:
PROOF. By the-Riemann?ﬁoch theorémfand the dorollary to
Theorem D, we have' dim HO(S,C%(zD))=2. .Suﬁpose that |
dim HO(S,'Gg(D)) =22. Then we have dim-Ho(S, Gs(2D)) 23, a
contradiction. | AQ.E.D.
LEMMA 4. If an effective divisor 'D~K, we have ﬁl(s,ék(D))
=0.

PROOF. We may assume that D is not linearly equivalent to

Kg- Since dim Ho(s,Ck(D))éél by Lemma: 3 and since
x(s, G(D))=X(s, Og(x))=1, ve have
dim H1(S, Gs(D))= -X(S, Os(D) ) +dim HO{S, Ox(D) ) +dim H2 (S, Os(D))
<. aim H2(S,G:(D))=0. Q.E.D.
Remark. By the vanishing of g, we know that the linear

equivalence coincides with the algebraic equivalence. Hence if

dim HO(S,C§(D))=1 (D>0), then there exists no effective divisor

“
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-algebréically equivalent to D except . D itself. Lemma 4

implies that for any non-éerr»'CéHz(S,Z)tor, there is one and
only one effective divisor D which is algebraically equivalent
to Ks+"C .

LEMMA 5. Let D be an effective divisor and assume that

dim|D|> 1. Then DRy 2.

PROOF. By Theorem B, we may assume that 'fDl is fixed part
free. Hence we have D220. 'This implies that DKZ2 or
DanS. But the latter case is impossible(see‘the Remark abOve).

Q.E.D.

We let M denote the generic me@ber'of‘the moving part
pf.the dicanonical system '2Kél,~F the fixed,

part of iZKS(. "Thus -I2KSl= !M,+F. From the Riemann-Roch
theorem we infer that ~IMI is composed of a pencil over a |
projective 1iné Pl. | | |

LEMMA 6. If M _is generically chosep, M is reducéd'and'
irreducible.f Morever, M and F satisfy one of fhe following
" numerical conditibns:'

a) ‘F=0;

b) ' FKG=0, F?=-2, M%=2, MF=2;

c) FKg=0, F2=-q, M%?=0, MF=4.

PROOF. First we note that stg;2 in virtue of Lemma '5; in
"other words, FKS=0. Suppose generic M admits a non-trivial

decomposition M=M,+M,, Mi>%L Since the M; can move, we have

1
Miksgéz, which is a contradiction. From FKS=0> follows. F2<;0
unless F=0. On the other hand,
2_ e 2 _ — :
F7=-FM=M"-2MK > ~2MK =-4. Q.E.D.
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Rmark. If D 1is a divisor numericaflly eqguivalent to 2KS,
then dim lD|=1. The similar argume§t in Lemma 6 is valid for
[Di in place of 12K8¥ Thus the fixed part D, of D
satisfies DOKS=O, and the generic member of the moving part is
an irreducible curve.
From the lemma above we obtain the following‘
COROLLARY. Let X denote the canonical model of S. _IZKX]
.has no fixed part and its generic.member‘is irreducible.
Let 'ﬁ be a generic member of IZKXI, and consider the natural
exact seguence '
0= & (=2Kk)— Ox — O — 0. |
Since X has at most a finite number of rational singularities
and 02(_2Kx) is an invertibie sheaf, we have canonical iso-.
mrphisms '
nt(x, 85 nl (s, 60,
mt (x, 8L 25) Sut (s, &€ 2x3)). o
' ‘ A

Vo : . . . - <.
Hence M 1is an irreducible curve of virtual genus .+ M)=4.

1

!

COROLLARY. F is a disjoint union of fuﬁdamentél cycles.
PROOF. Let 2 denote‘fundamentai 'cycle such ﬁhat anyéqf.
Since ZKS is trivial on Z, we have supp FDZ. Ifu Ez=—2r

then F 1is a fundamental cycle (éee Proposition 1). Assume
that F2;—4. It is sufficient to provelthat .F is not connec-
ted in this case; Since M2=0, M is base point free. If
M is generic, -M is a non-singular curve of genus 2. If

F is connected, /M\ ='w5(M), has a ‘4—pie point. Hence W({d\)

2+3=5. This COntradicts"the,above corollary. Q.E.D.

Now we proceed to the study of the tricanonical system !3K5l-

b
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LEMMA 7 (Bombieri). If CKS=0, then C 1is not contained in
the fixed part of l3KS'.
PROOF. Note that
aim 1%(s, 65(2K4-2)) 2 dim HO(s, 6, (2Kg)) ~dim B (2, &) =1,
and a fortiori IZKS-ZI contains a effective‘divisor -D. D
is numerically connected (see Lemma 1). So dim Hl(S,Cg(?-ZK))
=0. If C is contained in.the fixed ﬁart G of 3Kg ', G
must also contain the fundamenta1 cyc1e "% to which C belongs.
Hence we have the canonical isomorphiém
10 (s, 05 (3%g-2)) S 1% (s, Os(3Kg)) -
This implies that |
aim #' (s, Os(3Kg-2))=dinm B (s, Gs(lé-zxs));éo.
This is absurd. o Q,E;D.
LEMMA 8. (3Ks‘ ié.not_composed of a pehcil.
PROOF: Suppose the contraiy. §3Ké5) is a spacé curve of
deg=23. Let ’glgs be the resolution of the base points of

3K, » The moving part of l3ﬂ¥KS| ‘'is generically a union of

S
at least 3 components. Hencé 13Ks| conta%ns at least 3 ir-
reducible components each of which can move. Therefore IﬁKS]
‘admits a decomposition D;+D,+D; such that DiKS;§2. This
contradicts the equality 3KS =3.- Q.E.D. |
PROPOSITION 2. [3K,| has no fixed ‘part. |
PROOF. Suppose the fixed part‘ G>0. From'Lemma 7 we infer
that GK 0. (3KS—G)K'822, since othérwise rdimI3KS—.Zl< 1.
Note that 3K—GIFKS. This leads to the inequality
(3K4-G)G 3. Thus |

2" - -~ ' -
(3Kg=G) “= (3K4=G) 3Ky~ (3Kg~C) G £3.

7
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This implies the ablurd conclusion that éﬂ(g is a birational
map of S onto a quadratic or a cubic hypersurface P3.

| Q.E.D.

PROPOSITION 3. Let M denote the moving part of IZKS}.
If M is generic, M contains no base points of '3Ks|:

PROOF. First we consider the case where F2=0, -2 and M
is non-singular. 1In view of the exact sequence .

0 —> 1%(s, Os(3Kg))—> HO (M, Oy(3Kg[y)) 0,

we have only to prove thet'.v 3KS,H = EM+F, Mo is free from

base points. This is, however, a elassical fact. Next let

us consider the case F2=-4. In this case M is base point
free, so generic = M does not contain a base point. Final-
ly we consider the case F=0 and ‘M has a double point P
which is a unique base peint of [ﬁf., Let W':S—»S denote the
quadiic transformation at P and E - the aseociated exceptional

N o . . . :
curve on S. =ﬂfM—2E is a non-singular curve of genus 3.

The sequence of sheaves

0 Og (w*l( JE)—aegv(Bw’kg)-—a OxGFKlMI—> 0.

is exact and we obtain an injection u° (s C}%Bu?% ) ) €0 (M,C#ﬁhﬂ@.

Since dim H (VG“'(RI?‘KS ))=dim g (S G’*(B‘w Kg))=4, this is

-an isomorphism. On the other hand,‘k$ﬁ{4 is base point free.

Hence '3ufKS\ is base point free on. M. This implies;that |

‘3KS‘ has no base point on M. d;E.D.
COROLLARY. Let ﬂ% be the generic member of IZKX‘e Then

l3KXl has no base point on /n} and @ﬂﬁﬂ-—;é*‘ﬁ)C,P?' is a

,holomorphie mapping.l o

Remark. %@ém) is not a plane curve, so deg é&éMf=3_er 6.

/o
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If degésk(M)=3,@3k(M)'-—‘-' pl ‘and éﬂttM is a double covering. If
deg @,k(M)=6,§§JM is a birational‘morphism.
PROPOSITION 4. If deg JyM)=6,Py(M) is a complete inter-
section of type (2,3). Moreover §, [ ié an isomorphism.
PROOF. Consider the.exact sequenceé
O —> Ox(4k) > 6x (6kx) — 6% (6kx) — o
0 — Ox {(7Kkx)— Ox (?Kx) — Ok (9/0()__9 0.
By the Riemann-Roch the’orem} -dim H0 (ﬁ, %(GKX))=9. On the other .
hand, dimk?zHo (ﬁ, 6n(31(x)')=10. Hence there exists a quadric Q
which c'ontain @éﬁ) . Such_qpadx_:ié is unique. 1In fact, if two
guadrics contain a curve C, bdeg C_.§4. Next note that dim

u0 ('I’vl\, m(9Kx) )=15. Since there are only four independent cubic

surfaces which contain Q, there exists a cubic surfacfe R which
contains M) and ‘do‘es:_ not'con\tain Q. "_I‘hus, since deg R-Q
=degé3@)=6, we have'é,k(ﬁ)=R-Q.' W‘ebhave
’X(%M), G)= -3.

Accordingly TE(Q*(\))-—'W(M) =4, SJ.nce 393 A 1is a birational mor-
phism, this means é'sklM is .an isomorphism. ' Q.E.D.

We shall end this section by the following

LEMMA 9. Let W:S—>s l;e a- resolution of the base points of

(a4

'{3Ksi and let & denote the associated hoiomorphic mapping. If
e i ‘ .
$ maps an irreducible curve C onto a point, then C is an

A ~ .
exceptional curve on S or an irreducible component of funda-
mental cycles.
o~ . : . Vo

PROOF. Let C be an irreducible curve on S such that
A A
C =ux:'m'(C) is an irreducible curve with CK,>0. Suppose that
@ (C ) is a point. This is equivalent to the equality

i
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aim 8% (s, 05 (3Kg- W (C) ) =3.

From Lemma 5, we infer13183KS=1. The generic member D of
[3k-@(©)] is an effective divisor with DKg=2, D’< 2.
Note that D is not composed of a pencil. Let [D'I be the
moving part of ID[. We have D'ks=2 and D'?=2. Thus
éﬁ D,:S—-—)P2 ‘is a double covering, and D' is a‘non—sipgular
hyperelliptic curve of genus 3. Therefore KS‘D'gb"D"
Consider the exact sequence; ' '

0——>H0(s,65(—KS))aHO(s,GS(D'—KS))-;HO(D',GD«(D‘—KS))—-?O.
Since dim HO(D',E%ﬁD'-KS))=1, there exists an effective curve
p'e[0“k|. D" satisfies D"%=-1, D"K =1. Assume that D"
is l-connected. Then. H(s, Os(-D"))=0, and ml(s, Gs(Kg+D"))
=i’ (s, 65(D'))=0. This leads to the equality dim H’(S, Os(D'))
=1, a contradiction. Next suppose that D" is not l-connec-
ted. D" admits a deCo&?osition D"=D1“+D2" with D,"K_=1,

l°s

t‘l — u2 - " " . : R w
Kg=0, D,""< -2, Dy D,"=0.- Then wg infer that D;"~Kg.

pz
D '-KS~D1" is effective. Hence we have
. 0, : . as 0 _
dim H (S, SS(D_ '))= dim H (S,QS(KS+D1"))—2.

This is a contrandiction. ' ' Q.E.D.

/3
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3

3. Proof of the Main Theorem. We let §= §3Kg :S—rP and

@: 4)3Kx:x"9p3' Thus @=é°‘wo. Let m and d denote the map-
ping degree of él'_> and the degree of the hypersurface 51_5 (s) CP3,
respectively. In order to prove our main theorem it suffices
to deny each of the following possibilities:

(a) d=2; .

(b) d=3 and m=2;

(c) d=3 and m=3;

(d) d=4 and m=2.
We have proved that ?d is an irreducible curve of Qirtual
gehus 4 for a gene;'ic member AM élZKX' . First we prove the
following | ‘

A

LEMMA 10. If § (ﬁ)* is a projective line of degree 3 embed-
ded in P3, then ‘;n; 4. A

PROOF. Note that, if;é‘(M)‘ is of degree 3, m is even.
Suppose m=2. Let ’}?—'gx be a resolutio'n of the base.pbints'
of [3KXI and g:x—-)1>3
From Lemma 9 we infer that g"(@(ﬁ))—iﬁ\((ﬁ)'*' D
where D is a divisor whose support lies on the exceptional

.curves of X. Hence 5* (5@)”‘0)‘*@) = wx(ﬁ) lw*(p’).

But this is impossible, because

| = dim HO(FL O 2 dim H (B (A, Ggmg, (M) 2 2.

the associated holomorphic mapping.

Q.E.D.
LEMMA 11. Case ,(.a)_ does not occur.
PROOF. Suppose (a)f We have a pencil of reducible hyper-
plane sections H=Li+L§ on &®(s). Let(:v‘wzrsv—%.}' be a resolution

. . ~*
of the base points of [3KSI » and put §= $ow, ® H can be
~ N

a4 ~o ~
: . y =T, =T +
decomposed into L1+L2+N, where & (Li) Li' Li (Li) is a

13
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movable curve on S. So LiKSg2. This leads to a contradiction:
2):(1.1+L2)KS;4. | 0.E.D.
LEMMA 12. Case {(b) does not occur.
PROOF. Suppose (b). Let '?c’gx be the resolutien of the
base points and let l [+E +E, +E ,3!3“'le ' where lLl is the
moving part of l3’a§‘K , and the Ei are three dlstlnct excep~-
tional curves. é é is a finite moréhism (see Lemma 9).
Hence, in virtue of Zariski's Main Theorem, there exists the
(holomofphic) involut.ion Lt of ; induced by g . For the-
generic member ,1\‘; of IZKXI R C('W?P/‘\l))N 2Kyw . On the
other hand &(M) = 2H, whe;e H 1is a hyperplane section of
é (X). Hence we have
6 K= B -2 =i = 3 @) =B E)+ew M) =4aksc.
This is absurd. Q.E.D.
LEMMA 12. Case (c) does not occur. ‘
PROO‘F. Suppose (c). If é(s) is not normal, $(s) contains
a double line, and so we have a pencil of hyperplane sections
H=L'+L] where L! is the double line. We put !3Kf @H

=L+L +G , where é(L)—L’ and @(L )-L Since L is movable

1t
we have LK 22 and Ling.l. This is impossible.

Next we assume that @ (S) is a normal cubic. Let M, and
M2 be two é_eneric members of [ZKSl . é (Mi) are sections of
Cf(s) by quadric hypersurfaces. Let /\ denote the sublinear
system of ,ZHI generated by @(Ml) ahd q>(M2)., For any A€/,

%
PA  contains a divisor M G!ZKSI which is gererated by M

and M This implies that for any MG!ZKSl ’ Q(M)é/\. Since

-
é is a finite morphism, the set of base points of "N lies on

/4
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the image of the base points of IZKX,.. Take a general point
p, of $ ). é'l(Po)'=P+P'+P", P being a point of M. Let
M' and M" be two members of IZKXI which contain P' and
P" respectively. We have é(M);@(M')=<§(M"). In fact, if,-
say, ¢ (M)# f}(M'), then POG@ M)-P (M') and P is a base
point of /\ From the discussions above, we see that there.
exists a natural holomorphic mapping PlQIZKx"-—\‘-'IZKS,-?Pl;A
whose mapping degree =3. Since 3-sheeted covering Pl—) Pl
has its ramification locus of degree 4, the ramification locus R
of ¢ satisfies R 2 4=—2¢5==4M . on the other hand,
since é (S} is a normal cubic surface, we have - Ks% R— H
=Z4H-3k. This is a contradiction. | iQ.E.D.

LEMMA 13. Case (d) does not occur.

PROOF. S‘uppose’ (a). (3Kx! has a unique base point P.
Let (}?gx be the quadric transformation at IP, E the associ-
ated exceptional curve on X, and 3 the induced holomorhic
mapping (§~> P3 Let M denote the generlc member of ’ZKXI
We have seen that 4’ (M) is a complete intersection of type (2,3) .
Therefore |2u-3(M)| # ¢ and a fortiori [2GrE)~T @ | =
fZKX-ZEi# ?é Since P is a base point of ‘BK)J, we have
Hl(X, 654(2E"2KX),)7£ 0. This implies that 2Kg-2E  is not
l-connected; i.e., there exist effective divisors D, and D,

such that D,~D,~K_.~E, D

17Dy ~Rg 1
so dim [3KSwE-Dl[.;2. Let Nel3KS-E—Dl|. N~2Kg.  Choosing

Lo d
N generically, we may assume that § (N) is an irreducible plane

. o]
+D2612KS-2EI. é (Di) is a line

curve of degree 3. Note that, since é‘ and @i y is both

double coverings, §*(§§'(D|))— D . i’ (é(N)) N

Moreover é (Dl) is a Cartier divisor on H, and - M) (Q(D,)) is

15
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an invertible sheaf whose degree = 3. -So-we-have-

o~
-—

% ~
CGy(D)= ¢ Gaan) (¢(D1))

This implies that deg Gy(D)=6. But we have
ND1= 2KX (KX—E) =2,

This is a contradiction. Q.E.D.
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