Tricanonical map of a certain class of surfaces by Yoichi MIYAOKA

INTRODUCTION. Let S be an projective algebraic surface defined over the complex number field C. We let K_S denote the canonical bundle of S, and mK_S its m-th tensor power. Consider the rational map Φ_{mK_S} associated with the complete linear system $\left| mK_S \right|$ (pluricanonical map). S is called of general type if Φ_{mK_S} (s) is a surface for $m\gg 0$. Putting $R = \sum_{m=0}^{\infty} H^0(S, \mathcal{O}(mK_S))$, the projective scheme X = Proj(R) is called an (abstract) canonical model of S. It is known that the natural rational map

is an isomorphism for $m \gg 0$, and that the rational map $S \longrightarrow X$ is a birational morphism.

In this paper, we are concerned with the algebraic surface S whoes numerical characters are: ${\rm K_S}^2=1$, ${\rm p_g}=0$, where ${\rm p_g}$ is the geometric genus. We shall prove the following

MAIN THEOREM. Φ_{3K_5} is birational.

Let S be a minimal surface of general type.

By this theorem Bombieri's result about the birationality of pluricanonical maps [3] is sharpened as follows:

 Φ_{3k_5} is birational except in the following cases:

- a) $K_S^2=1$, $p_g=2$, where $\Phi_{3k}(S)$ is rational;
- b) $K_S^2 = 2$, $p_q = 3$, where $\Phi_{3k}(S) = P^2$;
- c) $K_S^2=2$, $p_g=0$. (It is expected that the case c) does not occur.)

1. Generalities. In **this** section we review the well-known results that are used in our proof.

THEOREM A (algebraic index theorem). Let S be an algebraic surface. The intersection numbers for pairs of divisor define a quadratic form Q on the numerical divisor group Num(S). Q is non-degenerate and has one and only one positive eigenvalue.

THEOREM B. Let S be a minimal surface of general type. Then for any irreducible curve C on S we have

$$K_SC \geq 0$$
.

Moreover, the curves C satisfying $K_S^{C=0}$ form a finite set and are numerically independent of each other.

Let D be an effective divisor on S. We say that D is numerially connected (or I-connected) if for any non-trivial decomposition $D=D_1+D_2$, $D_1>0$, we have $D_1D_2>0$.

THEOREM C (Ramanujam). If an effective divisor D is 1-connected, then dim $H^0(D, \mathcal{O}_D)=1$.

Let S be a minimal surface of general type and X a canonical model of S. The natural map $w_0\colon S\to X$ is a minimal resolution of singularities of X. X is a normal surface with a finite number of rational double points. Let w be the maximal ideal of a rational double point P on X. $w_0 \mapsto w$ is an invertible sheaf that defines a divisor Z. Z is called a fundamental cycle. Z is a sum of irreducible curves c_i such that $c_i \kappa_S = 0$. Conversely such curves are contained in some fundamental cycles.

PROPOSITION 1 (Artin [] [2]).

(i) An effective divisor Z on S is a fundamental cycle if and only if Z is a maximal cycle with

$$K_S^{z=0}$$
, $z^2=0$.

- (ii) We have $K_S = \overline{w_0}^{\kappa} K_{\chi}$, where K_{χ} is a line bundle on X.
- (iii) For two line bundles δ_l and δ_2 on a fundamental cycle,

 δ_l and δ_z are isomorphic to each other if $\deg \delta_l = \deg \delta_z$.

We shall denote the numerical equivalence by the symbol \sim . Thus $D \sim D'$ means that D is numerically equivalent to D'. Let S be a minimal surface of general type, Z a fundamental cycle, $\varpi \colon \widetilde{S} \rightarrow S$ a blowing up, and E the exceptional curve on

LEMMA 1 (Bombieri's connectedness theorem).

ĩ.

- (i) If D is effective and D \sim mK (m \geq 1), then D is 1-connected.
- (ii) If D is effective and $D \sim mK_S$ $(m \ge 2)$, then for any decomposition $D=D_1+D_2$, $D_i > 0$, $D_iK_S > 0$, we have $D_1D_2 \ge 3$, except if $K_S^2=1$, and D_1 or $D_2 \sim K_S$.
- (iii) If $D \sim mK_c Z$ $(m \ge 1)$, then D is 1-connected.
- (iv) If $D \sim m \overline{w}^{*} K_{S}^{-2E}$ ($m \ge 1$), then D is 1-connected except if K_{S}^{2} =1, m=2, $D=D_{1}+D_{2}$, $D_{1}\sim D_{2}\sim \overline{w}^{*} K_{S}^{-E}$.

PROOF. For the convenience of the reader, we shall give a proof following Bombieri [3]. We discuss in the rational numerical group $\operatorname{Num}_{\mathcal{O}}(S) = \operatorname{Num}(S) \otimes \mathcal{O}$. We let $t=K_S^2$.

(i) Let $D=D_1+D_2$, $D_i>0$ be a decomposition of D. We have $0 \le r=D_1K_S \le mt$. Hence

$$D_1 = \frac{r}{t} K_s + \xi, \quad \xi K_s = 0,$$

$$D_2 = \frac{1}{t} (mt - r) K_s - \xi.$$

$$D_1D_2 = \frac{1}{5}r(mt-r) - \xi^2$$

From Theorem A we infer $\xi^2 < 0$ except if $\xi_{\sim 0}$. D_1D_2 implies that r=0 or =mt, and $\xi_{\sim 0}$. Therefore we have D_1 or $D_2^{\sim 0}$, i.e.,

 D_{1} or $D_{2} = 0$.

(ii) In this case $1 \le r \le mt-1$. Suppose $2 \le r \le mt-2$. Then $D_1 D_2 = \frac{1}{t} \cdot r (mt-r) - \xi^2 \ge \frac{1}{t} \cdot 2 (mt-2) = 2m - \frac{2}{t}.$

Since $\text{mt} \ge 4$, $2\text{m} - \frac{2}{t} \ge 3$. Next consider the case $\text{r=D}_1 \text{K}_S = 1$. Then $\text{D}_1^2 = \frac{1}{t} + \xi^2 = \text{odd}$. Hence, unless t=1 and $\xi \sim 0$, $\text{D}_1^2 \le -1$.

军

- (iii) Let $D=D_1+D_2$, $D_i>0$. If $D_iK_S>0$ and if $D_i \not\leftarrow K$, we get $D_1(D_2+Z) \ge 3$, $D_2(D_1+Z) \ge 3$. Summing up these, we have $2D_1D_2+DZ \ge 6$. On the other hand, $DZ=-Z^2=2$. Hence $D_1D_2 \ge 2$. If $D_iK_S>0$ and if $D_1 \sim K_S$, we have $D_1D_2=K_S((m-1)K_S-Z)=(m-1)\ge 1$. If $D_iK_S=0$, we have $D_1^2 \le -2$, $D_2 \sim mK_S+\xi$, $\xi \le 0$. Hence $2D_1D_2=(mK_S-Z)^2-D_1^2-D_2^2 \ge -\xi^2$. $D_1D_2=0$ implies that $\xi \sim 0$ and that $D_2 \sim mK_S$, $D_1 \sim -Z$, a contradiction.
 - (iv) Let $D=D_1+D_2$, $D_1 > 0$, and $v=D_1E$. Then we have $D_1 \sim \overline{w}^* D_1' vE$, $D_1' \sim \frac{r}{t} K_S + \xi$.

 $D_2 \sim 70^* D_2' - (2-v)$, $D_2' = (m - \frac{r}{t}) K_S' - \xi$.

Note that D_1' is an effective divisor on S. So $D_1'D_2' \ge 1$, and $D_1D_2 \ge 1-v(v-2)E^2 = 1+v(v-2)$.

Hence $D_1D_2 > 0$ unless v=1. Suppose $D_1'K_S > 0$ and v=1. In this case $D_1'D_2' \ge 3$ unless D_1' or $D_2' \sim K_S$. Hence $D_1D_2 > 1$. Suppose $D_1' \sim K_S$. Then $D_1 \sim \boldsymbol{w}^*K_S - E$, $D_2 \sim \boldsymbol{w}^*(m-1)K_S - E$, $D_1D_2 = (m-1)t-1$. Thus $D_1D_2 = 0$ if and only if m=2, $t = K_S^2 = 1$, $D_1 \sim \boldsymbol{w}^*K_S - E$. Finally suppose that $D_1'K_S = 0$. Then $D_1^2 \le -2$, and so $D_1'D_2' = -D_1'^2 \ge 2$. Hence, $D_1D_2 = D_1'D_2' + v(v-2) \ge D_1'D_2' - 1 \ge 1$. Q.E.D.

THEOREM D. Let S be as in Lemma 1 and let \mathcal{L} an invertible sheaf such that \mathcal{L}^n is spanned by its global sections and has three algebraically independent sections for $n\gg 0$. Then we have

$$H^{1}(S, \mathcal{L}^{-1}) = 0.$$

For the proof, see Mumford [].

COROLLARY. If a divisor $M \sim mK_S$ $(m \ge 2)$, then $H^1(S,M) = 0$.

PROOF. For $n \gg 0$, consider the exact sequence

$$0 \to H^{0}(\widetilde{S}, m\overline{\omega}M - E) \to H^{0}(\widetilde{S}, m\overline{\omega}^{*}M) \to H^{0}(E, m\overline{\omega}^{*}M) \to H^{1}(\widetilde{S}, m\overline{\omega}^{*}M - E).$$

By the Serre duality theorem we have

$$\dim H^1(\widetilde{S}, \mathfrak{M} H - E) = \dim H^1(\widetilde{S}, 2E - (n-1) \widetilde{W} H)$$
.

Since $D \sim (m-1) \overline{w} M - 2E$ is 1-connected by Lemma 1, $H^1(\widetilde{S}, 2E - (m-1) \overline{w} H))$ =0. Thus $H^1(\widetilde{S}, m \overline{w} H - E) = 0$. Hence |nM| has no base point (n $\gg 0$). Now apply the theorem. Q.E.D. 2. Numerical Godeaux surfaces. We call S a numerical Godeaux surface if it is a minimal surface of general type with numerical characters $K_S^2=1$, $p_g=0$, where p_g denotes the geometric genus dim $H^2(S, \mathcal{O}_S)$. The following theorem is classical (see [7]).

THEOREM 1. For a surface of general type S, we have $p_{_{\mbox{${\cal G}$}}}\! \geq \! q \! = \! \dim \, H^1(S, {\cal O}_{\!S}) \, .$

In what follows, we denote by S a numerical Godeaux surface.

As a corllary to Theorem C and Theorem 1, we obtain the following

LEMMA 2. If an effective divisor D is 1-connected, then $H^1(S, \mathcal{O}_S(-D))=0$.

LEMMA 3. If $D \sim K_S$, we have dim $H^0(S, \mathcal{O}_S(D)) \leq 1$.

PROOF. By the Riemann-Roch theorem and the corollary to Theorem D, we have $\dim H^0(S, \mathcal{O}_S(2D))=2$. Suppose that $\dim H^0(S, \mathcal{O}_S(D)) \geq 2$. Then we have $\dim H^0(S, \mathcal{O}_S(2D)) \geq 3$, a contradiction.

LEMMA 4. If an effective divisor $D \sim K$, we have $H^1(S, \mathcal{O}_S(D))$ =0.

PROOF. We may assume that D is not linearly equivalent to K_S . Since dim $H^0(S, \mathcal{O}_S(D)) \leq 1$ by Lemma 3 and since $\chi(S, \mathcal{O}_S(D)) = \chi(S, \mathcal{O}_S(K_S)) = 1$, we have

$$\dim H^{1}(S, \mathcal{O}_{S}(D)) = -\chi(S, \mathcal{O}_{S}(D)) + \dim H^{0}(S, \mathcal{O}_{S}(D)) + \dim H^{2}(S, \mathcal{O}_{S}(D))$$

$$\leq \dim H^{2}(S, \mathcal{O}_{S}(D)) = 0.$$
Q.E.D.

Remark. By the vanishing of q, we know that the linear equivalence coincides with the algebraic equivalence. Hence if $\dim H^0(S, \mathcal{O}_S(D))=1$ (D>0), then there exists no effective divisor

algebraically equivalent to D except D itself. Lemma 4 implies that for any non-zero $\tau_{\mathcal{E}^{H}}^{2}(S,Z)_{tor}$, there is one and only one effective divisor D which is algebraically equivalent to $K_{S}^{+}\tau$.

LEMMA 5. Let D be an effective divisor and assume that $\dim D \geq 1$. Then $DK_S \geq 2$.

PROOF. By Theorem B, we may assume that |D| is fixed part free. Hence we have $D^2 \ge 0$. This implies that $DK_S \ge 2$ or $D \sim K_S$. But the latter case is impossible (see the Remark above). Q.E.D.

We let M denote the generic member of the moving part of the dicanonical system $2K_S$, F the fixed part of $2K_S$. Thus $2K_S = M + F$. From the Riemann-Roch theorem we infer that M is composed of a pencil over a projective line P^1 .

LEMMA 6. If M is generically chosen, M is reduced and irreducible. Morever, M and F satisfy one of the following numerical conditions:

- a) F=0;
- b) $FK_S^{=0}$, $F^{2}=-2$, $M^{2}=2$, MF=2;
- c) $FK_S=0$, $F^2=-4$, $M^2=0$, MF=4.

PROOF. First we note that $MK_S \geq 2$ in virtue of Lemma 5; in other words, $FK_S = 0$. Suppose generic M admits a non-trivial decomposition $M = M_1 + M_2$, $M_1 > 0$. Since the M_1 can move, we have $M_1 K_S \geq 2$, which is a contradiction. From $FK_S = 0$ follows $F^2 \leq 0$ unless F = 0. On the other hand,

$$F^2 = -FM = M^2 - 2MK_S \ge -2MK_S = -4$$
. Q.E.D.

Rmark. If D is a divisor numerically equivalent to $2K_S$, then dim |D|=1. The similar argument in Lemma 6 is valid for |D| in place of $|2K_S|$. Thus the fixed part D_O of D satisfies $D_OK_S=0$, and the generic member of the moving part is an irreducible curve.

From the lemma above we obtain the following COROLLARY. Let X denote the canonical model of S. $2K_X$ has no fixed part and its generic member is irreducible.

Let \widehat{M} be a generic member of $\left|2K_{X}\right|$, and consider the natural exact sequence

$$0 \to \mathcal{O}_{X}(-2K_{X}) \to \mathcal{O}_{X} \to \mathcal{O}_{M} \to 0$$
.

Since X has at most a finite number of rational singularities and $\mathfrak{S}_X(-2K_X)$ is an invertible sheaf, we have canonical isomrphisms

$$H^{i}(X, \mathcal{O}_{s}) \stackrel{\approx}{\Longrightarrow} H^{i}(S, \mathcal{O}_{S}),$$
 $H^{i}(X, \mathcal{O}_{s}(-2K_{S})) \stackrel{\approx}{\Longrightarrow} H^{i}(S, \mathcal{O}_{S}(-2K_{S})).$

Hence $\widehat{\mathbb{N}}$ is an irreducible curve of virtual genus $\widehat{\mathcal{F}}(\widehat{\mathbb{M}})=4$.

COROLLARY. $\widehat{\mathbb{F}}$ is a disjoint union of fundamental cycles.

PROOF. Let $\widehat{\mathbb{Z}}$ denote fundamental cycle such that $\widehat{\mathbb{Z}}\cap F\neq \widehat{\Phi}$.

Since $2\mathbb{K}_S$ is trivial on $\widehat{\mathbb{Z}}$, we have supp $\widehat{\mathbb{F}}\supset \widehat{\mathbb{Z}}$. If $\widehat{\mathbb{F}}^2=-2$, then $\widehat{\mathbb{F}}$ is a fundamental cycle (see Proposition 1). Assume that $\widehat{\mathbb{F}}^2=-4$. It is sufficient to prove that $\widehat{\mathbb{F}}$ is not connected in this case. Since $\widehat{\mathbb{M}}^2=0$, $\widehat{\mathbb{M}}$ is base point free. If $\widehat{\mathbb{M}}$ is generic, $\widehat{\mathbb{M}}$ is a non-singular curve of genus 2. If $\widehat{\mathbb{F}}$ is connected, $\widehat{\mathbb{M}}=\widehat{\mathbb{W}}_0(\widehat{\mathbb{M}})$ has a 4-ple point. Hence $\widehat{\mathbb{M}}(\widehat{\mathbb{M}})$ 2+3=5. This contradicts the above corollary. Q.E.D.

Now we proceed to the study of the tricanonical system $\widehat{\mathbb{J}}_S[.]$.

LEMMA 7 (Bombieri). If $CK_S=0$, then C is not contained in the fixed part of $\left| 3K_S \right|$.

PROOF. Note that

 $\dim \ H^0(S, \mathcal{O}_S(2K_S-Z)) \geq \dim \ H^0(S, \mathcal{O}_S(2K_S)) - \dim \ H^0(Z, \mathcal{O}_Z) = 1,$ and a fortiori $\left| 2K_S - Z \right|$ contains a effective divisor D. D is numerically connected (see Lemma 1). So $\dim \ H^1(S, \mathcal{O}_S(Z-2K)) = 0$. If C is contained in the fixed part G of $3K_S$, G must also contain the fundamental cycle Z to which C belongs. Hence we have the canonical isomorphism

$$H^0(s, \mathcal{O}_s(3K_s-z)) \xrightarrow{\approx} H^0(s, \mathcal{O}_s(3K_s)).$$

This implies that

 $\dim H^{1}(S, \mathcal{O}_{S}(3K_{S}-Z)) = \dim H^{1}(S, \mathcal{O}_{S}(Z-2K_{S})) \neq 0.$

This is absurd.

Q.E.D.

LEMMA 8. $|3K_S|$ is not composed of a pencil.

PROOF. Suppose the contrary. $\Phi_{3K_S}(S)$ is a space curve of $\deg \ge 3$. Let $\Im S$ be the resolution of the base points of $\Im K_S$. The moving part of $\Im K_S$ is generically a union of at least 3 components. Hence $\Im K_S$ contains at least 3 irreducible components each of which can move. Therefore $\Im K_S$ admits a decomposition $D_1 + D_2 + D_3$ such that $D_1 K_S \ge 2$. This contradicts the equality $\Im K_S^2 = 3$. Q.E.D.

PROPOSITION 2. |3Kg| has no fixed part.

PROOF. Suppose the fixed part G > 0. From Lemma 7 we infer that $GK_S > 0$. $(3K_S - G)K_S \ge 2$, since otherwise $\dim \left| 3K_S - Z \right| < 1$. Note that $3K - G + K_S$. This leads to the inequality $(3K_S - G)G \ge 3$. Thus

$$(3K_S-G)^2 = (3K_S-G)3K_S - (3K_S-G)G \le 3.$$

This implies the ablurd conclusion that Φ_{3K_S} is a birational map of S onto a quadratic or a cubic hypersurface P^3 .

Q.E.D.

PROPOSITION 3. Let M denote the moving part of $2K_S$. If M is generic, M contains no base points of $3K_S$. PROOF. First we consider the case where $F^2=0$, -2 and M is non-singular. In view of the exact sequence

 $0 \rightarrow H^0(S, \mathcal{O}_S(3K_S)) \rightarrow H^0(M, \mathcal{O}_M(3K_S|_{M}))$ 0, we have only to prove that $3K_S|_{M} = \overline{k}_{M} + F|_{M}$ is free from base points. This is, however, a classical fact. Next let us consider the case $F^2 = -4$. In this case M is base point free, so generic $\Longrightarrow M$ does not contain a base point. Finally we consider the case F = 0 and M has a double point P which is a unique base point of M. Let $W: \widetilde{S} \rightarrow S$ denote the quadric transformation at P and E the associated exceptional curve on \widetilde{S} . $\widetilde{M} = WM - 2E$ is a non-singular curve of genus 3. The sequence of sheaves

 $0 \to \mathcal{O}_{\widetilde{S}}(\overline{w}^{\sharp} K_{s} - 2E) \to \mathcal{O}_{\widetilde{S}}(3\overline{w}^{\sharp} K_{s}) \to \mathcal{O}_{\widetilde{M}}(3\overline{w}^{\sharp} K_{s}|_{H}) \to 0.$

is exact and we obtain an injection $H^0(\widetilde{S}, \mathcal{O}_{\overline{S}}(3\overline{w}^{\mathbb{K}}K_S)) \hookrightarrow H^0(\widetilde{M}, \mathcal{O}_{\overline{M}}(\overline{w}^{\mathbb{K}}))$. Since $\dim H^0(\widetilde{M}, \mathcal{O}_{\overline{M}}(3\overline{w}^{\mathbb{K}}K_S)) = \dim H^0(\widetilde{S}, \mathcal{O}_{\overline{S}}(3\overline{w}^{\mathbb{K}}K_S)) = 4$, this is an isomorphism. On the other hand, $|\widetilde{K}_{\overline{M}}| + E|$ is base point free. Hence $|3\overline{w}^{\mathbb{K}}K_S|$ is base point free on M. This implies that $|3K_S|$ has no base point on M. Q.E.D.

COROLLARY. Let \widehat{M} be the generic member of $2K_X$. Then $3K_X$ has no base point on \widehat{M} and $4K_X = \widehat{M} \cdot \widehat{M} \cdot \widehat{M} = \widehat{M} \cdot \widehat{M} \cdot \widehat{M} \cdot \widehat{M} = \widehat{M} \cdot \widehat{M} \cdot$

Remark. $\Phi_{3k}(M)$ is not a plane curve, so deg $\Phi_{3k}(M)=3$ or 6.

If $\deg \Phi_{\mathbf{k}}(M)=3$, $\Phi_{\mathbf{k}}(M)\cong P^1$ and $\Phi_{\mathbf{k}}|_{M}$ is a double covering. If $\deg \Phi_{\mathbf{k}}(M)=6$, $\Phi_{\mathbf{k}}|_{M}$ is a birational morphism.

PROPOSITION 4. If $\deg \Phi_{\mathbf{X}}(M) = 6$, $\Phi_{\mathbf{X}}(M)$ is a complete intersection of type (2,3). Moreover $\Phi_{\mathbf{X}}(M)$ is an isomorphism.

PROOF. Consider the exact sequences

$$0 \to 0_{\times}(4kk) \to 0_{\times}(6kx) \to 0_{\widehat{H}}(6kx) \to 0,$$

$$0 \to 0_{\times}(7kx) \to 0_{\times}(9kx) \to 0_{\widehat{H}}(9kx) \to 0.$$

By the Riemann-Roch theorem, $\dim H^0(\widehat{M}, \mathcal{O}_{\widehat{K}}(6K_X))=9$. On the other hand, $\dim \mathcal{S}^2H^0(\widehat{M}, \mathcal{O}_{\widehat{K}}(3K_X))=10$. Hence there exists a quadric Q which contain $\Phi_{3k}(\widehat{M})$. Such quadric is unique. In fact, if two quadrics contain a curve C, $\deg C \leq 4$. Next note that $\dim H^0(\widehat{M}, \mathcal{O}_{\widehat{K}}(9K_X))=15$. Since there are only four <u>independent</u> cubic surfaces which contain Q, there exists a cubic surface R which contains $\Phi_{3k}(\widehat{M})$ and does not contain Q. Thus, since $\deg R \cdot Q = \deg \Phi_{3k}(\widehat{M})=6$, we have $\Phi_{3k}(\widehat{M})=R \cdot Q$. We have

$$\times (\Phi_{\mathbf{k}}(\mathbf{M}), \mathcal{O}) = -3.$$

Accordingly $\mathcal{T}(\Phi_{\mathbf{3k}}(M)) = \mathcal{T}(M) = 4$. Since $\Phi_{\mathbf{3k}} \cap M$ is a birational morphism, this means $\Phi_{\mathbf{3k}} \cap M$ is an isomorphism. Q.E.D.

We shall end this section by the following

LEMMA 9. Let $\mathfrak{D}: \widetilde{S} \to S$ be a resolution of the base points of $|\mathfrak{K}_{S}|$ and let $\widetilde{\Phi}$ denote the associated holomorphic mapping. If $\widetilde{\Phi}$ maps an irreducible curve C onto a point, then C is an exceptional curve on \widetilde{S} or an irreducible component of fundamental cycles.

PROOF. Let \widetilde{C} be an irreducible curve on \widetilde{S} such that $\widehat{C} = W_0W(\widetilde{C})$ is an irreducible curve with $\widehat{CK}_X > 0$. Suppose that $\widetilde{\Phi}$ (\widetilde{C}) is a point. This is equivalent to the equality

dim $H^0(S, O_S(3K_S - \overline{w}(C)) = 3.$

From Lemma 5, we infer $w(\widetilde{C}) K_S = 1$. The generic member D of $|3K_S - w(\widetilde{C})|$ is an effective divisor with $DK_S = 2$, $D^2 \leq 2$. Note that D is not composed of a pencil. Let |D'| be the moving part of |D|. We have $D'K_S = 2$ and $D'^2 = 2$. Thus $\Phi_{D'}: S \rightarrow P^2$ is a double covering, and D' is a non-singular hyperelliptic curve of genus 3. Therefore $|K_S|_{D'} = |D'|_{D'}$. Consider the exact sequence:

 $0 \to \operatorname{H}^0(S, \mathcal{O}_S(-K_S)) \to \operatorname{H}^0(S, \mathcal{O}_S(D'-K_S)) \to \operatorname{H}^0(D', \mathcal{O}_D(D'-K_S)) \to 0.$ Since $\dim \operatorname{H}^0(D', \mathcal{O}_D(D'-K_S)) = 1$, there exists an effective curve $D'' \in [D'-K]$. D'' satisfies $D''^2 = -1$, $D''K_S = 1$. Assume that D'' is 1-connected. Then $\operatorname{H}^1(S, \mathcal{O}_S(-D'')) = 0$, and $\operatorname{H}^1(S, \mathcal{O}_S(K_S + D'')) = \operatorname{H}^1(S, \mathcal{O}_S(D')) = 0$. This leads to the equality $\dim \operatorname{H}^0(S, \mathcal{O}_S(D')) = 1$, a contradiction. Next suppose that D'' is not 1-connected. D'' admits a decomposition $D'' = D_1'' + D_2''$ with $D_1''K_S = 1$, $D_2''K_S = 0$, $D_2''^2 \leq -2$, $D_1''D_2'' = 0$. Then we infer that $D_1'' \sim K_S$. $D'' - K_S - D_1''$ is effective. Hence we have

dim $H^0(S, \mathcal{O}_S(D')) = \dim H^0(S, \mathcal{O}_S(K_S+D_1'')) = 2.$

This is a contrandiction.

Q.E.D.

- 3. Proof of the Main Theorem. We let $\Phi = \Phi_{3k_s}: S \to P^3$ and $\widehat{\Phi} = \Phi_{3k_s}: X \to P^3$. Thus $\Phi = \widehat{\Phi} \circ W_0$. Let m and d denote the mapping degree of Φ and the degree of the hypersurface Φ (S) $\subset P^3$, respectively. In order to prove our main theorem it suffices to deny each of the following possibilities:
 - (a) d=2;
 - (b) d=3 and m=2;
 - (c) d=3 and m=3;
 - (d) d=4 and m=2.

We have proved that \widehat{M} is an irreducible curve of virtual genus 4 for a generic member $\widehat{M} \in /2K_{\widehat{X}}|$. First we prove the following

LEMMA 10. If $\frac{2}{4}$ (\hat{M}) is a projective line of degree 3 embedded in P³, then $m \ge 4$.

PROOF. Note that, if $\widehat{\Phi}(M)$ is of degree 3, m is even. Suppose m=2. Let $\widehat{X} \to X$ be a resolution of the base points of $\left| 3K_X \right|$ and $\widehat{\Phi}: X \to P^3$ the associated holomorphic mapping. From Lemma 9 we infer that $\widehat{\Phi}^*(\widehat{\Phi}(\widehat{M})) = \widehat{w}^*(\widehat{M}) + D$ where D is a divisor whose support lies on the exceptional curves of X. Hence $\widehat{\Phi}^*(\widehat{\Phi}(\widehat{M})) \mid \widehat{w}^*(\widehat{M}) \cong \widehat{w}^*(\widehat{M}) \mid \widehat{w}^*(\widehat{M})$. But this is impossible, because

$$H = \dim H^{\circ}(\widehat{M}, O(\widehat{M})) \ge \dim H^{\circ}(\overline{W}^{*}(\widehat{M}), O_{\overline{W}^{*}(\widehat{M})}(\overline{W}^{*}(M))) \ge 2.$$

Q.E.D.

LEMMA 11. Case (a) does not occur.

PROOF. Suppose (a). We have a pencil of <u>reducible</u> hyperplane sections $H=L_1'+L_2'$ on $\Phi(S)$. Let $\overline{w}:S\to S$ be a resolution of the base points of $\left| 3K_S \right|$, and put $\widetilde{\Phi}=\Phi \circ \overline{w}$. $\widetilde{\Phi}^*$ H can be decomposed into $\widetilde{L_1+L_2}+N$, where $\widetilde{\Phi}(\widetilde{L_1})=L_1'$. $L_1=\overline{w}(\widetilde{L_1})$ is a

movable curve on S. So $L_1K_S \ge 2$. This leads to a contradiction: $3=3K_S^2 \ge (L_1+L_2)K_S \ge 4$. Q.E.D.

LEMMA 12. Case (b) does not occur.

PROOF. Suppose (b). Let $X \to X$ be the resolution of the base points and let $|L| + E_1 + E_2 + E_3 = |3\overrightarrow{w}K_X|$, where |L| is the moving part of $|3\overrightarrow{w}K_X|$ and the E_1 are three distinct exceptional curves. $\Phi = \Phi_L$ is a finite morphism (see Lemma 9). Hence, in virtue of Zariski's Main Theorem, there exists the (holomorphic) involution C of X induced by Φ . For the generic member M of $|2K_X|$, $C(\overrightarrow{w}(M)) \sim 2K_X$. On the other hand $\Phi(M) = 2H$, where H is a hyperplane section of $\Phi(X)$. Hence we have

 $6\varpi^*k_{x}-2E_{y}-2E_{y}-2E_{y}=\widetilde{\Phi}^*(\widehat{\Phi}(\widehat{H}))=\varpi^*(\widehat{H})+\iota\varpi^*(H))=4\varpi^*k_{x}.$

This is absurd.

Q.E.D.

LEMMA 12. Case (c) does not occur.

PROOF. Suppose (c). If Φ (S) is not normal, Φ (S) contains a double line, and so we have a pencil of hyperplane sections $H=L'+L'_o$ where L'_o is the double line. We put $\left| 3K_S \right| = \Phi^*H$ $=L+L_1+L_2+G$, where $\Phi(L)=L'$ and $\Phi(L_1)=L'_o$. Since L is movable we have $LK_S \geq 2$ and $L_1K_S \geq 1$. This is impossible.

Next we assume that $\Phi(S)$ is a normal cubic. Let M_1 and M_2 be two generic members of $2K_S$. $\Phi(M_1)$ are sections of $\Phi(S)$ by quadric hypersurfaces. Let Λ denote the sublinear system of 2H generated by $\Phi(M_1)$ and $\Phi(M_2)$. For any $\lambda \in \Lambda$, $\widehat{\Phi}\lambda$ contains a divisor $M \in 2K_S$ which is generated by M_1 and M_2 . This implies that for any $M \in 2K_S$, $\Phi(M) \in \Lambda$. Since Φ is a finite morphism, the set of base points of Λ lies on

the image of the base points of $|2K_X|$. Take a general point P_O of $\Phi(M)$. $\Phi^{-1}(P_O)=P+P'+P''$, P being a point of M. Let M' and M'' be two members of $|2K_X|$ which contain P' and P'' respectively. We have $\Phi(M)=\Phi(M')=\Phi(M'')$. In fact, if, say, $\Phi(M)\neq\Phi(M')$, then $P_O\in\Phi(M)\cdot\Phi(M')$ and P_O is a base point of Λ . From the discussions above, we see that there exists a natural holomorphic mapping $P^1\cong |2K_X|\cong |2K_S| \to P^1\cong \Lambda$ whose mapping degree =3. Since 3-sheeted covering $P^1\to P^1$ has its ramification locus of degree 4, the ramification locus R of P_O satisfies P_O and P_O is a hormal cubic surface, we have P_O is a contradiction.

LEMMA 13. Case (d) does not occur.

PROOF. Suppose (d). $|3K_X|$ has a unique base point P. Let $\widetilde{X} \longrightarrow X$ be the quadric transformation at P, E the associated exceptional curve on X, and $\widetilde{\Phi}$ the induced holomorhic mapping $\widetilde{X} \longrightarrow P^3$. Let \widetilde{M} denote the generic member of $|2K_X|$. We have seen that $\widehat{\Phi}$ (\widehat{M}) is a complete intersection of type (2,3). Therefore $|2H - \widehat{\Phi}(\widehat{M})| \neq \widehat{\Phi}$ and a fortiori $|2(3K_X - E) - \widehat{W}(\widehat{M})| = |2K_X - 2E| \neq \widehat{\Phi}$. Since P is a base point of $|3K_X|$, we have $H^1(X, \widehat{C}_X(2E - 2K_X)) \neq 0$. This implies that $2K_S - 2E$ is not 1-connected; i.e., there exist effective divisors D_1 and D_2 such that $D_1 \sim D_2 \sim K_S - E$, $D_1 + D_2 \in |2K_S - 2E|$. $\widehat{\Phi}$ (D_1) is a line so dim $|3K_S - E - D_1| \geq 2$. Let $N \in |3K_S - E - D_1|$. $N \sim 2K_S$. Choosing N generically, we may assume that $\widehat{\Phi}$ (N) is an irreducible plane curve of degree 3. Note that, since $\widehat{\Phi}|_{D_1}$ and $\widehat{\Phi}|_{N}$ is both double coverings, $\widehat{\Phi}^*(\widehat{\Phi}(D_1)) = D_1$, $\widehat{\Phi}^*(\widehat{\Phi}(N)) = N$.

46

an invertible sheaf whose degree = 3. So we have

$$\mathcal{O}_{N}\left(\mathcal{D}_{I}\right)=\widetilde{\Phi}^{*}\mathcal{O}_{\Phi(N)}\left(\widetilde{\Phi}(\mathcal{D}_{I})\right)$$

This implies that deg $\mathcal{O}_{N}(\mathcal{D}_{i})=6$. But we have

$$ND_1 = 2K_X (K_X - E) = 2.$$

This is a contradiction.

Q.E.D.

REFERENCES

- [1] M. Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math., 84(1962),485-496.
- [2] —, On isolated rational singularities of surfaces, Amer. J. Math., 88(1966), 129-136.
- [3] E. Bombieri, Canonical models of surfaces of general type,
 Publ. Math. I.H.E.S., 42(1973),
- [4] E. Horikawa, Deformations of quintic surfaces, to appear.
- [5] D. Mumford, The canonical ring of an algebraic surface,
 Ann. of Math. 76(1962), 612-615.
- [6] C.P. Ramanujam, Remarks on the Kodaira vanishing theorem, to appear.
- [7] T. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Nat. Acad. Sci. U.S.A., 55 (1966), 1624-1627.
- [8] O. Zariski, The theorem of Riemann-Roch for high multiplicities of an effective divisor on an algebraic surface, Ann. of Math., 76 (1962), 550-612.

Yoichi MIYAOKA,

Department of Mathematics,

Faculty of Science, University of Tokyo

Hongo, Tokyo, Japan.