64

Some remarks on subvarieties of Hopf manifolds by Masahide Kato

§ 1. Introduction

A holomorphic automorphism g of a complex space $\mathfrak X$ is called a <u>contraction</u> to a point $0 \in \mathfrak X$ if g satisfies the following three conditions:

- (i) g(0) = 0,
- (ii) $\lim_{\nu\to+\infty} g^{\nu}(x) = 0$ for any point $x \in \mathcal{K}$,
- (iii) for any small neighborhood U of 0 in \Re , there exists an integer V_0 such that $g^V(U) \subset U$ for all $V \geq V_0$, where g^V is the V-times composite of g. By [2]; the complex space \Re which admits a contracting automorphism is holomorphically isomorphic to an algebraic subset of \mathbb{C}^N for some N. We identify \Re to the algebraic subset of \mathbb{C}^N . Then there exists a contracting automorphism \Im of \mathbb{C}^N to the origin 0 such that $\Im = g = g \in \mathbb{C}^2$, [3]). Obviously the action of \Im on \mathbb{C}^N -{0} is free and properly discontinuous. Hence the quotient space \mathbb{C}^N -{0}/ \Im is a compact complex manifold which is called a primary Hopf manifold. Sometimes we indicate by \mathbb{C}^N a N-dimensional primary Hopf manifold. The compact complex space \Re -{0}/ \Im 0} is clearly an analytic subset of a primary Hopf manifold. A compact complex manifold \mathbb{C}^N 0 dimension \mathbb{C}^N 0 is called a Hopf manifold if its universal covering is holomorphically isomorphic to \mathbb{C}^N -{0} (Kodaira[4]).

The purpose of this paper is to show several properties of subvarieties of Hopf manifolds.

^{*} In [2], the condition (iii) is forgotten.

§ 2. Hopf manifolds

The following proposition shows that it is sufficient to consider only subvarieties of primary Hopf manifolds.

Proposition 1. Any Hopf manifold is a submanifold of a (higher dimensional) primary Hopf manifold.

<u>Proof.</u> Let X be any Hopf manifold. Then, by definition, there exists a group G of holomorphic transformations of \mathbb{C}^n - $\{0\}$ such that $X = \mathbb{C}^n - \{0\}/G$ ($n = \dim X$). It follows from a theorem of Hartogs that any element of G can be extended to a holomorphic transformation of \mathbb{C}^n . Hence we may assume that each element of G is a holomorphic transfomation of \mathbb{C}^n which fixes the origin $0 \in \mathbb{C}^n$. By the same argument as in [4] pp 694-695, G contains a contraction.

For each element $x \in G$, we denote by dx(0) the jacobian matrix at the origin $0 \in \mathfrak{C}^n$.

Lemma 1. An element $x \in G$ is a contraction if and only if $|\det(dx(0))| < 1$.

Proof. If $x \in G$ is a contraction, then any eigenvalue d of dx(0) satisfies |d| < 1 (see [3] for the detail). Hence $|\det(dx(0))| < 1$. Convexely, let x be an element of G satisfying $|\det(dx(0))| < 1$. Let g be a contraction contained in G. Since $\mathbb{C}^n - \{0\}/\langle g \rangle$ is compact, the index of the infinite cyclic subgroup $\{g\}$ generated by g is finite in G. Now assume that x is not a contraction. Then x^n is not a contraction for any integers n. Hence $x^n \neq g^m$ for any pair of integers n and m except n = m = 0. This implies that $\{x\} \cap \{g\} = \{1\}$.

This contradicts the fact that $\{g\}$ is of the finite index in G, q.e.d.

Let U be a subgroup of G defined by $U = \{ x \in G : |det(dx(0))| = 1 \}.$

Obviously U is a normal subgroup of G.

Lemma 2. There exists an infinite cyclic subgroup Z of G such that G is the semi-direct product of Z and U; $G = Z \cdot U$.

<u>Proof.</u> Define a group homomorphism $\mathbf{l}: \mathbf{G} \longrightarrow \mathbb{R}$ by $\mathbf{l}(\mathbf{x}) = -\log |\det(\mathrm{d}\mathbf{x}(0))|$ ($\mathbf{x} \in \mathbf{G}$). Let $\mathbf{g}_1 \in \mathbf{G}$ be a contraction. Then the index d of the infinite cyclic group $\{\mathbf{l}(\mathbf{g}_1)\}$ generated by $\mathbf{l}(\mathbf{g}_1)$ in $\mathbf{l}(\mathbf{G})$ is finite. Hence \mathbf{d}^{-1} $\mathbf{l}(\mathbf{g}_1)$ is a minimum positive element of $\mathbf{l}(\mathbf{G})$. Let \mathbf{g} be an element of \mathbf{G} such that $\mathbf{l}(\mathbf{g}) = \mathbf{d}^{-1}$ $\mathbf{l}(\mathbf{g}_1)$. We put $\mathbf{l}(\mathbf{g})$. Then it is clear that $\mathbf{l}(\mathbf{g}) = \mathbf{l}(\mathbf{g})$.

Lemma 3. U is a finite normal subgroup of G. Proof. Clear by Lemma 2.

Now continue the proof of Proposition 1. It is easy to see that any holomorphic transformation u of \mathbb{C}^n which fixes the origin is linear, if u is of the finite order. Hence U is a finite subgroup of $GL(n,\mathbb{C})$. Hence, by H. Cartan [1], $\mathfrak{X} = \mathbb{C}^n/\mathbb{U}$ is a complex space with unique possible singularity at $\overline{0}$, where $\overline{0}$ is the corresponding point to the origin $0 \in \mathbb{C}^n$. The generator g of Z induces a contracting automorphism \overline{g} of \mathfrak{X} such that $\overline{g}(\overline{0}) = \overline{0}$. Hence $X = \mathfrak{X} - \{\overline{0}\}/\langle\overline{g}\rangle$ is a submanifold of a primary Hopf manifold as we have seen in the introduction. Q.E.D.

§ 3. Line bundles defined by divisors

Let M be an arbitrary compact complex manifold and N be a divisor of M. The line bundle [N] defined by N is an element of $H^1(M, O^*)$. There is a natural homomorphism $i: H^1(M, C^*) \longrightarrow H^1(M, O^*)$ induced by the natural injection $C^* \longrightarrow O^*$. If [N] is in the image of i, then [N] is called a <u>locally flat</u> line bundle. In other words, [N] is locally flat if and only if its transition functions can be written by constant functions.

Now let \tilde{g} be any contracting automorphism of \mathbb{C}^N which fixes the origin $0 \in \mathbb{C}^N$. Then, by L. Reich ([6], [7]), we can choose a system of coordinates of \mathbb{C}^N such that \tilde{g} can be written in the following form:

$$z_{1}^{1} = \alpha_{1}z_{1}$$

$$z_{2}^{1} = z_{1} + \alpha_{2}z_{2}$$

$$\vdots$$

$$z_{r_{1}}^{1} = z_{r_{1}-1}^{1} + \alpha_{r_{1}}z_{r_{1}}$$

$$z_{r_{1}+1}^{1} = \alpha_{r_{1}+1}z_{r_{1}+1}^{1} + P_{r_{1}+1}(z_{1}, \dots, z_{r_{1}})$$

$$\vdots$$

$$z_{r_{1}+r_{2}}^{1} = z_{r_{1}+r_{2}-1}^{1} + \alpha_{r_{1}+r_{2}}z_{r_{1}+r_{2}}^{1} + P_{r_{1}+r_{2}}(z_{1}, \dots, z_{r_{1}})$$

$$z_{r_{1}+r_{2}+1}^{1} = \alpha_{r_{1}+r_{2}+1}z_{r_{1}+r_{2}+1}^{1} + P_{r_{1}+r_{2}+1}(z_{1}, \dots, z_{r_{1}+r_{2}})$$

$$\vdots$$

$$z_{N}^{1} = z_{N-1}^{1} + \alpha_{N}z_{N}^{1} + P_{N}(z_{1}, \dots, z_{r_{1}+r_{2}+1} \dots + r_{\mu-1}^{\mu-1}),$$

where $1 > |\alpha_1| \ge \cdots \ge |\alpha_N| > 0$, μ is the number of Jordan blocks of the linear part, P_j $(r_1 + \cdots + r_s < j \le r_1 + \cdots + r_{s+1})$ are finite sums of monomials $z_1^{m_1} \cdots z_{r_s}^{m_{r_s}}$ which satisfy

(2)
$$\alpha_{j} = \alpha_{1}^{m_{1}} \cdots \alpha_{r_{s}}^{m_{r_{s}}},$$
 $m_{1} + \cdots + m_{r_{s}} \ge 2 \quad (\text{ all } m_{2} > 0).$

Let $\widetilde{\omega}\colon \mathbb{C}^N-\{0\}\longrightarrow H=\mathbb{C}^N-\{0\}/\langle\widetilde{g}\rangle$ be the covering projection. For any analytic subset X in H, the set $\widetilde{\omega}^{-1}(X)$ is an analytic subset in $\mathbb{C}^N-\{0\}$. If dim $X\geq 1$, then by a theorem of Remmert-Stein, $\mathcal{K}=\widetilde{\omega}^{-1}(X)\cup\{0\}$ is an analytic subset of \mathbb{C}^N . In what follows, we indicate by the script letters the analytic subsets in \mathbb{C}^N corresponding in the above manner to the analytic subsets of H written by the Roman letters. An analytic subset is called a <u>variety</u> if it is irreducible.

Assume that X is an analytic subvariety in H of dim $X \ge 2$ and that D is an analytic subvariety of codimension 1 in X. It is clear that $\mathfrak X$ and $\mathfrak D$ are both $\mathfrak E$ -invariant in $\mathfrak C^N$, i.e. $g(\mathfrak X)=\mathfrak X$ and $g(\mathfrak D)=\mathfrak D$.

Lemma 4 ([2]). There exists a non-constant holomorphic function f on \mathfrak{X} such that g*f = Af for some constant A (0<|A|<1) and that f| \mathcal{F} = 0.

Remark 1. In [2], the word "variety" is used as "analytic set".

Let X be a non-singular manifold. Consider f of Lemma 4 as a

multiplicative multi-valued holomorphic function on X (K. Kodaira [4] pp 701). The divisor $D_1 = (f)$ is well-defined. The equation $g*f = \alpha f$ implies that the line bundle $[D_1]$ is locally flat of which the transition functions are some powers of α . We summarize these facts as follows.

Theorem 1. Let X be a submanifold of H and D an effective divisor on X. Assume that dim $X \ge 2$. Then there exists an effective divisor E on X such that the line bundle [D + E] is locally flat of which the transition functions are some powers of a certain constant $\alpha \in \mathbb{C}^*$ ($0 < |\alpha| < 1$).

Remark 2. The following example shows that there are cases such that the "additional" effective divisor E of Theorem 1 is indispensable.

Let (x_0, x_1, x_2, x_3) be a standard system of coordinates of c^4 . Fix a complex number of such that $0 < (\alpha) < 1$. Let \widetilde{g} be a contracting holomorphic automorphism of c^4 defined by

 $\widetilde{g}: (x_0, x_1, x_2, x_3) \longmapsto (\alpha x_0, \alpha x_1, \alpha x_2, \alpha x_3).$ Define \widetilde{g} -invariant subvarieties of \mathfrak{C}^4 by

$$\mathfrak{X}: x_0 x_1 = x_2 x_3$$

and

$$A: x_3 = 0$$

Denote the intersection $\Re \cap \Re$ by &. Then & = $\{x_0 = x_3 = 0\} \cup \{x_1 = x_3 = 0\}$. We put

$$x_1 = \{ x_0 = x_3 = 0 \}$$

and

 $\mathcal{S}_2 = \{ x_1 = x_3 = 0 \}.$

Then $S = \mathcal{S} - \{0\}/\langle \widetilde{g} \rangle$, $S_1 = \mathcal{S}_1 - \{0\}/\langle \widetilde{g} \rangle$ and $S_2 = \mathcal{S}_2 - \{0\}/\langle \widetilde{g} \rangle$ are subvarieties of a compact complex manifold $X = \mathcal{X} - \{0\}/\langle \widetilde{g} \rangle$. It is clear that $[S_1 + S_2] = [S]$ is locally flat. We shall prove that either $[S_1]$ or $[S_2]$ is not locally flat. Assume that both $[S_1]$ and $[S_2]$ are locally flat. Let $\mathcal{M} = \{U_A\}$ be a sufficiently fine finite open covering of X. We represent $[S_1]$ as a 1-cocycle $\{c_{1\lambda\mu}\} \in Z^1(\mathcal{M}, \mathbb{C}^*)$. Since dim $H^0(X, \mathbb{O}[S_1]) > 0$, there exists a non-zero section \mathcal{G}_1 which vanishes exactly on S_1 . Let $\mathcal{G}_{1\lambda} = c_{1\lambda\mu} \mathcal{G}_{1\mu}$ on $U_{\lambda} \wedge U_{\mu}$. As we can easily see,

 $\eta_1 = \frac{d\phi_{1X}}{\phi_{1X}} = \frac{d\phi_{1\mu}}{\phi_{1\mu}} = \cdots$ is a meromorphic 1-form on X. Since $\mathfrak{X} - \{0\}$ is simply connected, $f_1(x) = \exp \int^x \eta_1$

is a holomorphic function on $\Re -\{0\}$ such that $\Im^*f_1 = \ell_1 f_1$ ($\ell_1 \in \mathbb{C}^*$, $0 < |\ell_1| < 1$) which vanishes exactly on $\& -\{0\}$ with multiplicity 1. Since \Re is normal at 0, f_1 uniquely extends to a holomorphic function on \Re . Comparing the initial terms of \Im^*f_1 and f_1 at 0, we see that ℓ_1 is some power of ℓ_2 , i.e. $\ell_1 = \ell_1 = \ell_2 = \ell_1 = \ell_2 = \ell_2$

holomorphic function f, we get the following commutative diagram:

$$\begin{array}{cccc}
\mathcal{X} & -\{0\} & & & \widetilde{g} & & & \\
\downarrow f & & & \downarrow f \\
\mathbb{C}^* & & & \times & \swarrow^{m_1 + m_2 - 1} & & \mathbb{C}^*.
\end{array}$$

Then f induces a proper surjective holomorphic mapping $\overline{f}: X \longrightarrow \mathbb{C}^*/\langle \alpha^{m_1+m_2-1} \rangle$. For any point $T \in \mathbb{C}^*/\langle \alpha^{m_1+m_2-1} \rangle$, $\overline{f}^{-1}(\tau) = X_{\tau}$ is a compact subvariety in X. Hence $\widetilde{w}^{-1}(X_{\tau})$ is a complex analytic subset in $\mathbb{C}^4 = \{0\}$ whose connected components are compact, where \widetilde{w} is the covering map $\mathbb{C}^4 = \{0\} \longrightarrow \mathbb{C}^4 = \{0\}/\langle \widetilde{g} \rangle$. This implies that $\widetilde{w}^{-1}(X_{\tau})$ is a countable union of points. Hence dim $X_{\tau} = 0$. This contradicts dim X>1. This implies that either $[S_1]$ or $[S_2]$ is not locally flat.

Remark 3. If dim X = 2, then [D] is always locally flat ([3]).

§ 4. Some properties of subvarieties
By Lemma 5 in [2], we have easily

Proposition 2. Let Y_1 and Y_2 be subvarieties of a (primary)

Hopf manifold such that $Y_1 \subset Y_2$ and $0 < n_1 = \dim Y_1 < n_2 = \dim Y_2$.

Then there exists a sequence of subvarieties W_0 , W_1, \ldots, W_p (p = n_2-n_1) in H with following properties:

(i)
$$W_0 = Y_1$$
, $W_p = Y_2$,
(ii) $W_i \subset W_{i+1}$ (i = 0,...,p-1), dim $W_i + 1 = \dim W_{i+1}$.

Proposition 3. Let $H^N = C^N - \{0\}/\langle \widetilde{g} \rangle$ be a primary Hopf manifold. Then

- (a) any positive dimensional subvariety in HN contains a curve,
 - (b) any irreducible curve in H is non-singular elliptic,
- (c) for any elliptic curve C in \mathbb{H}^N , there exist an eigenvalue α of \widetilde{g} , a constant β and certain positive integers m, n with $\alpha^m = \beta^n$ such that C is isomorphic to $\mathbb{C}^*/\langle \beta \rangle$.

<u>Proof.</u> (a) Let Y be a n-dimensional subvariety in H^N ($n \ge 1$). For any integer k ($1 \le k \le N$), the (N-k)-dimensional subspace \mathbb{C}^{N-k} defined by $z_1 = \cdots = z_k = 0$ is \widetilde{g} -invariant. There exists an integer k such that dim ($\mathbb{C}^{N-(k-1)} \cap \mathcal{V}$) = 1. Then $\widetilde{w}((\mathbb{C}^{N-(k-1)} \cap \mathcal{V}) - \{0\})$ is a 1-dimensional analytic subset of Y.

- (b) Let C be any irreducible curve in \mathbb{H}^N . Then \mathbb{C} is a 1-dimensional analytic subset of \mathbb{C}^N . Let C_0 be one of the irreducible components of \mathbb{C} . Then, for some positive integer n_0 , g^{n_0} acts on C_0 as a contracting automorphism of C_0 . Let $\lambda\colon C_0^*\longrightarrow C_0$ be the normalization of C_0 . Then g^{n_0} naturally induces a contracting automorphism of C_0^* . By [2], $C_0^*\simeq \mathbb{C}$. It is clear that $\lambda^{-1}(0)$ consists of one point 0^* . Hence $C_0^-\{0\}\simeq C_0^*-\{0^*\}\simeq \mathbb{C}^*$. Thus \mathbb{C}^* is an infinite cyclic unramified covering of \mathbb{C} . Therefore \mathbb{C} is a non-singular elliptic curve.
- (c) Consider the \mathfrak{F} -invariant subspaces \mathfrak{C}^{N-k} defined in (a). For k=0, \mathfrak{C}^{N-k} is the total space. Fix the integer k $(0 \le k \le N-1)$

such that $\mathcal{C}\subset\mathbb{C}^{N-k}$ and $\mathcal{C}\not\subset\mathbb{C}^{N-k-l}$. If $\mathcal{C}\cap\mathbb{C}^{N-k-l}$ contains a point p other than 0, then $\mathcal{C}\cap\mathbb{C}^{N-k-l}$ contains an infinite sequence of points $\widetilde{g}^n(p)\longrightarrow 0$ $(n=1,2,\ldots)$. Hence one of the irreducible components of \mathcal{C} is contained in \mathbb{C}^{N-k-l} . Since \widetilde{g} is transitive over all the irreducible components of \mathcal{C} , this implies that $\mathcal{C}\subset\mathbb{C}^{N-k-l}$, Therefore $\mathcal{C}\cap\mathbb{C}^{N-k-l}=\{0\}$. Hence $f=z_{k+1}$, the contradiction. restriction of z_{k+1} to \mathbb{C}^{N-k} , vanishes nowhere on $\mathbb{C}-\{0\}$. Moreover f satisfies the equation $g*f=\alpha_{k+1}^{N-k}f$. Hence we get the following commutative diagram:

$$\begin{array}{ccc}
C & -\{0\} & \xrightarrow{\mathcal{E}} & C & -\{0\} \\
\downarrow^{f} & & \downarrow^{f} \\
\mathbb{C}^{*} & \xrightarrow{d_{k+1}} & \mathbb{C}^{*}
\end{array}$$

This induces a covering $\overline{f}: C \longrightarrow \mathbb{C}^*/\langle \alpha_{k+1} \rangle$. Since both C and $\mathbb{C}^*/\langle \alpha_{k+1} \rangle$ are non-singular elliptic curves, \overline{f} has no branch points by the Hurwitz's formula. Hence there exist $\xi \in \mathbb{C}^*$ and positive integers m, n such that $C \simeq \mathbb{C}^*/\langle \xi \rangle$ and $\alpha_{k+1}^m = \beta^n$. Q.E.D.

Remark 4. By Propositions 2 and 3 (a), it follows that any n-dimensional subvariety of a Hopf manifold contains subvarieties of arbitrary dimensions less than n.

§ 5. Subvarieties of algebraic dimension 0

In general, let M be a compact complex analytic subvariety. Then the field $\gamma_h(M)$ of all meromorphic functions on M has the finite transendental degree a(M) over C. We call a(M) the <u>algebraic dimension</u> of M. It is well known that $a(M) \leq \dim M$. The number $\dim M - a(M)$ is called ... the <u>algebraic codimension</u> of M.

Theorem 2. Let Y be a subvariety of dimension k in N-dimensional primary Hopf manifold H^N . Assume that a(Y) = 0. Then the number of (k-1)-dimensional subvarieties in Y is at most N.

Before proving the theorem, we shall make some preparations.

Let $\alpha_1, \ldots, \alpha_N$ be the eigenvalues of \widetilde{g} ((1)). Put $\theta_j = \log \alpha_j$ (0 \leq arg $\theta_j < 2\pi$, $j = 1, 2, \ldots, N$). Let K be a vector space over the field of rational numbers $\mathbb Q$ generated by the elements $2\pi\sqrt{-1}$, θ_1, \ldots , θ_N . Choose a basis $\tau_0, \tau_1, \ldots, \tau_{\lambda}$ of K so that the following conditions may be satisfied:

- (i) $\tau_0 = 2\pi\sqrt{-1}$,
- (ii) $\{ \tau_1, \dots, \tau_{\lambda} \}$ is a subset of $\{ \theta_1, \dots, \theta_{N} \}$,
- (iii) for any $\nu \ge 1$, τ_{ν} is linearly independent to $\mathbb{Q}\tau_0 + \mathbb{Q}\tau_1 + \cdots + \mathbb{Q}\tau_{\nu-1}$,
- (iv) if $T = \theta_j$, $T_\mu = \theta_k$ and $\nu < \mu$, then j < k.

It is easy to check that we can choose such a basis. We denote

by $\alpha_{i_{\nu}}$ the element of $\{\alpha_{1}, \dots, \alpha_{N}\}$ corresponding to τ_{ν} . Note that $\tau_{\nu} = \theta_{i_{\nu}} = \log \alpha_{i_{\nu}} \ (\nu = 1, 2, \dots, \lambda)$. If the equation $\alpha_{i_{\nu}} = \alpha_{i_{\nu}} = \alpha_{i_{\nu}}$

$$\alpha_{i_{y}} = \alpha_{1}^{a_{1}} \cdots \alpha_{1}^{a_{1}} \qquad (1 < i_{y})$$

holds for some integers a_1, \dots, a_1 , then

$$\tau_{y} = \theta_{i,y} = \sum_{j=1}^{n} a_{j}\theta_{j} + p\tau_{0}$$
 $(p \in \mathbb{Z}).$

Since $\sum_{j=1}^{q} a_j \theta_j$ is written by a linear combination of τ_0 , τ_1 ,..., τ_{l} ,

this is absurd. Therefore $\alpha_{i,j}$ has no such relations. Hence by (1),

$$z_{i}^{!} = \alpha_{i_{\gamma}} z_{i}$$
 $(\gamma) = 1, 2, ..., \lambda).$

<u>Proof of Theorem 2.</u> We may assume that Y can't be contained any primary Hopf manifold of dimension less than N. Let D be a subvariety of codimension 1 in Y. By Lemma 4, \mathcal{D} is contained in the zero locus of a non-constant holomorphic function f on \mathcal{V} such that $\mathcal{C}^*f = \mathsf{d}f$ ($0 < |\mathsf{d}| < 1$). There exist some integers m, m_1, \ldots, m_{λ} such that

$$\alpha^{m} = \alpha_{i_{1}}^{m_{1}} \cdots \alpha_{i_{\lambda}}^{m_{\lambda}}.$$

Put

$$h = z_{i_1}^{m_1} \cdots z_{i_{\lambda}}^{m_{\lambda}}.$$

Since Y is not contained in any lower dimensional primary Hopf manifold, h is not equal to zero on \mathcal{Y} . Hence both f^m and h are eigenfunctions of \tilde{g}^* of which the eigenvalues are the same α^m . Then h/f^m defines a non-zero meromorphic function on Y. By the assumption a(Y) = 0, $h/f^m = constant = c \neq 0$. Hence we get (3) $h = cf^m$.

Let $Z_{i_{\gamma}}$ ($\gamma=1,\ldots,\lambda$) be analytic subsets of Y corresponding to $\{z_{i_{\gamma}}=0\}\cap\gamma$. The equation (3) implies that D is contained in

 $\bigcup_{\gamma=1}^{\lambda} Z_{i_{\gamma}}. \text{ Since } \lambda \leq N, \text{ this proves the theorem.}$

Q.E.D.

§ 6. C*-actions

Proposition 4. There exists a holomorphic mapping

$$\widetilde{\varphi}: \ \mathbb{C} \times \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$$

$$(\mathsf{t}, \mathsf{z}) \longrightarrow \widetilde{\varphi}_{\mathsf{t}}(\mathsf{z})$$

which satisfies the following properties:

- (i) for every $t \in \mathbb{C}$, $\widetilde{\varphi}_t$ is a holomorphic automorphism of \mathbb{C}^N which fixes the origin,
- (ii) $\widetilde{\varphi}_{t+s} = \widetilde{\varphi}_t \cdot \widetilde{\varphi}_s$,
- (iii) there exists an integer n_0 such that $\widetilde{\mathcal{Y}}_1 = \widetilde{g}^{n_0}$,
- (iv) every \widetilde{g} -invariant subvarieties in \mathbf{c}^N is $\widetilde{\varphi}_t$ -invariant for all $t \in \mathbb{C}$.

We say that an analytic subset of \mathfrak{C}^N is $\widetilde{\varphi}-\underline{invariant}$, if it is $\widetilde{\varphi}_t-\underline{invariant}$ for all $t\in \mathfrak{C}$.

Proof. Let $\alpha_{i_1}, \ldots, \alpha_{i_{\lambda}}$ be the eigenvalues of \widetilde{g} considered in § 5. For any eigenvalue α_{j} of \widetilde{g} , there exist some integers $m_{j}, m_{j_{\lambda}}, \ldots, m_{j_{\lambda}}$ such that

$$\alpha_{j}^{m_{j}} = \alpha_{i_{1}}^{m_{j_{1}}} \cdots \alpha_{i_{\lambda}}^{m_{j_{\lambda}}}$$
 (j = 1, 2, ..., N).

Put $n_0 = m_1 \cdots m_N$ and $g_0 = g^{n_0}$. We define

$$(4) \quad \alpha_{i_{\nu}}^{t} = \exp t \tau_{\nu} \qquad (t \in \mathfrak{C}, \nu = 1, 2, ..., \lambda),$$

and

(5)
$$\alpha_{j}^{\text{not}} = \exp \left(\operatorname{tn}_{j} \sum_{\nu=1}^{\lambda} m_{j\nu} \tau_{\nu} \right) \quad (n_{j} = n_{0} m_{j}^{-1}, j = 1, 2, ..., N).$$

Let $R(u_1^{n_0}, \ldots, u_N^{n_0}) = 1$ be any relation among the eigenvalues of g_0 , where $R(u_1, \ldots, u_N)$ is a product of some (possibly negative) powers of u_j ($j=1,2,\ldots,N$), u_j being indeterminates. Now let

 $R(u_1,...,u_N) = u_1^{a_1}...u_N^{a_N}$ $(a_j \in \mathbf{Z}).$ Then, for $t \in \mathbb{C}$,

(6)
$$R(\alpha_{1}^{n_{0}t}, \dots, \alpha_{N}^{n_{0}t}) = \alpha_{1}^{a_{1}n_{0}t} \dots \alpha_{N}^{a_{N}n_{0}t}$$

$$= \exp\left(t \sum_{j=1}^{N} a_{j}^{n_{j}} \sum_{\nu=1}^{N} m_{j,\nu} \tau_{\nu}\right)$$

$$= \exp\left(t \sum_{j=1}^{N} \left(\sum_{j=1}^{N} a_{j}^{n_{j}} \sum_{\nu=1}^{N} m_{j,\nu}\right) \tau_{\nu}\right).$$

Put t = 1 in (6). Then we get

$$\sum_{\gamma=1}^{\lambda} \left(\sum_{j=1}^{N} a_{j} n_{j} m_{j\gamma} \right) \tau_{\gamma} = p \tau_{0} \qquad (p \in \mathbb{Z}).$$

Hence we get p = 0 and $\sum_{j=1}^{N} a_j n_j m_{j\nu} = 0$ ($\nu = 1, 2, ..., \lambda$). Therefore

(7)
$$R(\alpha_1^{n_0t}, \dots, \alpha_N^{n_0t}) = 1$$

for all $t \in \mathbb{C}$. Put $\theta_j = \alpha_j^{n_0}$. By (1), the j-th coordinate of the point $g_0^n(z)$ is given by

(8)
$$(g_0^n(z))_j = g_j^n \{z_j + Q_j(n, z_1, ..., z_{j-1})\}$$

where Q_j is a polynomial of n, z_1, \ldots, z_{j-1} . Replace n and β_j^n of (8) by t and α_j^n , respectively. Then we get a holomorphic automorphism $\widehat{\mathcal{G}}_t$ of \mathfrak{C}^N defined by

$$(\hat{\varphi}_{t}(z))_{j} = \ell_{j}^{t} \{z_{j} + Q_{j}(t, z_{1}, ..., z_{j-1})\}.$$

We shall prove that $\tilde{\varphi} = \{ \tilde{\varphi}_t \}_{t \in \mathbb{C}}$ satisfies the desired conditions.

The condition (i) and (iii) are clearly satisfied. To prove the condition (ii) is satisfied we put

$$z = \begin{pmatrix} z_1 \\ \vdots \\ z_N \end{pmatrix}, \quad Q(t,z) = \begin{pmatrix} Q_1(t,z) \\ \vdots \\ Q_N(t,z) \end{pmatrix} \quad \text{and } A^t = \begin{pmatrix} \beta_1^t & 0 \\ \vdots & \ddots & \vdots \\ 0 & \beta_N^t \end{pmatrix}.$$

We write $\widetilde{arphi}_{
m t}({
m z})$ as

$$(9) \quad \overset{\sim}{\varphi}_{t}(z) = A^{t}(z + Q(t,z)).$$

Again we put

(10)
$$d(t,s,z) = \widetilde{\varphi}_{t+s}(z) - \widetilde{\varphi}_t \cdot \widetilde{\varphi}_s(z)$$
.

It is sufficient to prove that d(t,s,z) vanishes identically. By (9),

$$d(t,s,z) = A^{t+s}(z+Q(t+s,z)) - A^{t}(A^{s}(z+Q(s,z))+Q(t,A^{s}(z+Q(s,z)))$$

$$= A^{t+s}Q(t+s,z) - A^{t+s}Q(s,z) - A^{t}Q(t,A^{s}(z+Q(s,z))).$$

Let
$$Q_j(s,z) = \sum_{j=1}^{q} q_{i_1 \cdots i_{j-1}}(s) z_1^{i_1 \cdots z_{j-1}}$$
 be the j-th component of

Q(s,z), where
$$i_1, \ldots, i_{j-1}$$
 satisfy $\beta_1^{i_1} \cdots \beta_{j-1}^{i_{j-1}} = \beta_j$ and $i_l > 0$.

Then, by (7),

$$Q_j(t,A^s(z+Q(s,z)))$$

$$= \sum_{j=1}^{q} q_{j-1}(t) \left\{ g_{1}^{s}(z_{1}+Q_{1}(s,z)) \right\}^{i_{1}} \dots \left\{ g_{j-1}^{s}(z_{j-1}+Q_{j-1}(s,z)) \right\}^{i_{j-1}}$$

$$= g_{j}^{s} \sum_{j=1}^{q} q_{j-1}(t) (z_{1}+Q_{1}(s,z))^{i_{1}} \dots (z_{j-1}+Q_{j-1}(s,z))^{i_{j-1}}.$$

Hence we get

(12)
$$A^{t}Q(t,A^{s}(z+Q(s,z))) = A^{t+s}Q(t,z+Q(s,z)).$$

Combining (11) with (12), we obtain

 $d(t,s,z) = A^{t+s}(Q(t+s,z)-Q(s,z)-Q(t,z+Q(s,z))).$

Hence it is sufficient to show that

 $d_1(t,s,z) = Q(t+s,z) - Q(s,z) - Q(t,z+Q(s,z))$ vanishes identically. Note that every component of $d_1(t,s,z)$ is a polynomial of t, s and z.

Fix any integer t = m. Since $d_1(m,n,z)$ vanishes identically for any $n\in Z$, the algebraic subset in c^{N+1} defined by

$$\{(s,z) \in \mathbb{C}^{N+1} : d_1(m, x, z) = 0\}$$

contains infinitely many N-dimensional subspaces of \mathbb{C}^{N+1} . Hence we infer that $d_1(m,s,z)$ vanishes identically for any integer m. Again, since $d_1(m,s,z)=0$ for any $m\in \mathbb{Z}$, the algebraic subset in \mathbb{C}^{N+2} defined by $d_1(t,s,z)=0$ contains infinitely many (N+1)-dimensional subspaces of \mathbb{C}^{N+2} . Hence we conclude that d_1 vanishes identically on \mathbb{C}^{N+2} . Therefore the condition (ii) is satisfied.

Next we prove that the condition (iv) is satisfied. We need the following

Lemma 5. Let γ be a $\gamma \tilde{\gamma}$ -invariant analytic subvariety in ϵ^N .

Let Z be a pure 1-codimensional \tilde{g} -invariant analytic subset of γ .

Then each irreducible component of Z is $\tilde{\gamma}$ -invariant.

<u>Proof.</u> By Lemma 4, there exists a holomorphic function f on γ such that $\tilde{g}*f = \alpha f$ (0<|\alpha|<1) and that $f_{\chi} = 0$. Here we shall prove the following equation:

(13)
$$\widetilde{\varphi}_{t}^{*f} = \alpha^{t}f.$$

Once the equation (13) is proved, the lemma is clear. In fact, each irreducible component of $\mathbb Z$ is an irreducible component of the zero locus of f. Since everything continuously varies depending on t, (13) implies that the irreducible components of $\mathbb Z$ is $\widehat{\varphi}$ -invariant. We put

$$M(\alpha) = \{ h \in \mathcal{O}_{\gamma} : \mathfrak{F}^*h = \alpha h \}.$$

Then M(α) is a finite dimensional vector space over $\hat{\mathbf{c}}$ (cf.[2]). Let σ_1,\ldots,σ_s be a basis of M(α). Put $\sigma_i^t(z)=\sigma_i(\widetilde{\boldsymbol{\gamma}}_t(z))$ ($i=1,2,\ldots,s$). Since $\widetilde{\boldsymbol{\gamma}}_t$ -invariant, the elements $\sigma_1^t,\ldots,\sigma_s^t$ form another basis of M(α). Hence there exist some constants $c_{ij}(t)$ depending on t such that

$$\sigma_{i}^{t} = \sum_{j=1}^{s} c_{ij}(t) \sigma_{j}.$$

We claim that $C(t) = (c_{ij}(t))$ is holomorphically dependent on t. In fact, we can choose points $z_1, \ldots, z_s \in \mathcal{V}$ such that

$$S = \begin{pmatrix} \sigma_1(z_1) & \cdots & \sigma_1(z_s) \\ \vdots & & \vdots \\ \sigma_s(z_1) & \cdots & \sigma_s(z_s) \end{pmatrix}$$

is a non-singular matrix. Then,

(14)
$$\begin{pmatrix} \sigma_1^{\mathbf{t}}(\mathbf{z}_1) & \cdots & \sigma_1^{\mathbf{t}}(\mathbf{z}_s) \\ \vdots & & \vdots \\ \sigma_s^{\mathbf{t}}(\mathbf{z}_1) & \cdots & \sigma_s^{\mathbf{t}}(\mathbf{z}_s) \end{pmatrix} s^{-1} = C(\mathbf{t}).$$

Since the left hand side of (14) is holomorphically dependent on t,

C(t) is holomorphic.

It is easy to see that $\big\{\mathtt{C}(\mathtt{t})\big\}_{\mathtt{t}\in\mathbb{C}}$ is a 1-parameter subgroup of GL(s,C), satisfying the equality,

(15)
$$C(n) = \alpha^n I$$
 $(n \in \mathbb{Z}).$

Hence there exist a matrix A which has a Jordan canonical form and a non-singular matrix P such that

$$C(t) = P^{-1} \exp(tA)P.$$

By (15), A is a diagonal matrix. Put $P^{-1}\sigma_{j} = \tau_{j}$ (j = 1,2,...,s). Then,

(16)
$$\tau_j^t = (\exp ta_j) \tau_j$$
 $(j = 1, 2, ..., s),$

where a_1, \ldots, a_s are the diagonal components of A. Comparing the initial term of the both sides of (16), we get

(17)
$$\exp \tan_{j} = \exp \sum_{\nu=1}^{\lambda} \tan_{j\nu} \tau_{\nu}$$
 (j = 1,2,...,s),

for some integers n_{ij} . Letting t = 1, we get

Hence for any i and j,

$$\sum_{\nu=1}^{\lambda} (n_{j\nu} - n_{i\nu}) \tau_{\nu} = p_{ij} \tau_{0},$$

choosing some integers p_{ij} . Since τ_0 , τ_1 ,..., τ_{λ} are linearly independent over \mathbf{Q} , this implies that $\mathbf{n}_{j\nu} = \mathbf{n}_{i\nu}$ and $\mathbf{p}_{ij} = \mathbf{0}$. Hence exp $ta_j = \exp ta_i$ for any i and j. Therefore C(t) is a scalar matrix:

$$C(t) = \alpha^t I$$
 $(\alpha^t = \exp ta_j)$.

Since $f \in M(x)$, f can be expressed as

$$f = c_1 \tau_1 + \dots + c_s \tau_s \qquad (c_j \in \mathbb{C}).$$
 Then $\widetilde{\phi}_t^* f = \sum_j c_j \, \widetilde{\phi}_t^* \, \tau_j = \alpha^t \sum_j c_j \tau_j = \alpha^t f$, q.e.d.

Proof of (iv). By Lemma 5 [2], there exists a sequence $\{ \mathcal{W}_j : j = 0, 1, \ldots, p \} \text{ of } \widetilde{g}\text{-invariant subvarieties of } \mathbb{C}^N \text{ such that } \mathcal{W}_0 = \text{a given } \widetilde{g}\text{-invariant subvariety}, \ \mathcal{W}_j \subset \mathcal{W}_{j+1}, \ \dim \mathcal{W}_j + 1 = \dim \mathcal{W}_{j+1} \text{ and } \mathcal{W}_p = \mathbb{C}^N \quad (p = N - \dim \mathcal{W}_0). \text{ Since } \mathbb{C}^N \text{ is obviously } \widetilde{g}\text{- and } \widetilde{\varphi}\text{-invariant, we infer that } \mathcal{W} \text{ is } \widetilde{\varphi}\text{-invariant by the previous lemma.}$

As a corollary, we obtain

Theorem 3. For any primary Hopf manifold H^N, there exists another primary Hopf manifold H'N with following properties:

- (i) H' is a finite cyclic unramified covering of HN,
- (ii) H' has a free C*-action $\varphi = \{\varphi_{\tau}\}_{\tau \in \mathbb{C}^*}$ such that every positive dimensional subvariety in H' is φ -invariant.

<u>Proof.</u> Let $H' = \mathbb{C}^N - \{0\}/\langle \tilde{g}^{n_0} \rangle$. Then everythig is clear from Proposition 4.

Corollary. The Euler number of a submanifold of a Hopf manifold is equal to 0.

<u>Proof.</u> By Theorem 3, every submanifold of a Hopf manifold has a finite unramified covering which admits a free S¹-action. Hence the Euler number vanishes.

Q.E.D.

§ 7. Subvarieties of algebraic codimension 1

Let Y be a n-dimensional (n \geq 2) subvariety of a primary Hopf manifold H^N . Take another primary Hopf manifold H^N of Theorem 3. Let $\omega: H^N \longrightarrow H^N$ be the covering map. We denote by Y' a connected component of $\omega^{-1}(Y)$.

Theorem 4. The algebraic dimension of Y is n-1 if and only if the C*-action φ on Y' reduces to a complex torus action.

<u>Proof.</u> Assume that a(Y) = n-1. Since a(Y') = a(Y) = n-1, Y' has an (n-1)-dimensional algebraic family of elliptic curves.

The moduli of curves depens continuously on the parameters. Hence, by Proposition 3, the moduli are constant. Since every curve in Y is φ -invariant, the C*-action reduces to a complex torus action on the open dense subset of Y' and therefore on the whole Y'.

Conversely, assume that $\mathcal G$ reduces to a complex torus action $\mathcal V$ on Y'. Then $\mathcal V'$ is an affine variety in $\mathbb C^N$ with the $\mathbb C^*$ -action $\widetilde \mathcal V$ induced by $\widetilde \mathcal G$. Moreover the action $\widetilde \mathcal V$ is compatible with $\mathbb G'$, where $\mathbb G'$ is a contracting automorphism to 0 of $\mathbb C^N$ defining $\mathbb H^{1N}$. It is not difficult to check that the $\mathbb C^*$ -action $\widetilde \mathcal V$ on $\mathcal V'$ is algebraic. (Construct a contracting automorphism on $\mathbb C \times \mathcal V' \times \mathcal V'$ which leaves invariant the closure $\widetilde V$ of the graph $\widetilde V$ of $\widetilde V$, where $\widetilde V$ is an analytic subset of $\mathbb C \times \mathcal V' \times \mathcal V'$. Use the result of [2] to show that $\widetilde V$ is an algebraic subset of $\mathbb C \times \mathcal V' \times \mathcal V'$.) Hence, by Proposition (1.1.3) in Orlik-Wagreich [5], there is an embedding $\mathbb G$: $\mathbb V' \longrightarrow \mathbb C^N'$ for some $\mathbb N'$ and a $\mathbb C^*$ -action $\widetilde V'$ on $\mathbb C^N'$ such that $\mathbb G'$ is $\widetilde V'$ -invariant and that $\widetilde V'$ induces $\widetilde V$ on $\mathcal V'$. Moreover, by a suitable choice of coordinates $\mathbb C_1, \dots, \mathbb C_N$) on $\mathbb C^N'$, the action $\widetilde V'$ on $\mathbb C^N'$ can be written

as

$$\widetilde{\psi}'(\varrho,(z_1,...,z_N,)) = (\varrho^{q_1}z_1,...,\varrho^{q_N}z_N,),$$

where the q_i 's are positive integers. There exists a constant α such that $\widetilde{\psi}_{\alpha}$ ' induces g' on α '. Then $Y' = \alpha' - \{0\}/\langle g' \rangle$ can be considered as a submanifold of $\mathfrak{C}^{N'} - \{0\}/\langle \widetilde{\gamma}_{\alpha}' \rangle$.

The following theorem is known.

Theorem (Ueno [8]). Let M_1 be a subvariety of a compact complex variety M_0 . Then

(18) $\dim M_1 - a(M_1) \leq \dim M_0 - a(M_0)$.

Now it is clear that $a(\mathbb{C}^{\mathbb{N}'}-\{0\}/\langle \widetilde{\psi}_a' \rangle)=\mathbb{N}'-1$. Hence, by (18), we get $a(Y')\geq \dim Y'-1$. Since $a(Y')<\dim Y'$, we obtain a(Y')=a(Y)=n-1. Q.E.D.

Remark 5. Topologically, any submanifold of a Hopf manifold is diffeomorphic to a fibre bundle over a 1-dimensional circle of which the transition function has a finite order as an element of the diffeomorphism group of the fibre. This can be seen without difficulty from Theorem 3.

Remark 6. A compact complex surface S is a submanifold of a Hopf manifold if and only if S is a relatively minimal surface of class VI, VII -elliptic or a Hopf surface. (See [3] for the proof of the "if" part.) Let S be a submanifold of a Hopf manifold. It is clear by Proposition 3 that S is relatively minimal. By Theorem 1, S is not algebraic. Hence $a(S) \le 1$. Assume that a(S) = 1. Then, by Theorem 1, there exists a locally flat line bundle L on S such that the mapping Φ_T : S $\longrightarrow \mathbb{P}^n$ defined by the linear system |L| gives an algebraic reduction of S which is defined everywhere. Put $\Delta = \Phi_{T}(S)$. Let η be the line bundle on Δ associated to a hyperplane section of Δ . Then we have $\overline{\Psi}_L^* \eta = L$. We note that every fibre of $\Phi_{\text{T}}: S \longrightarrow \Delta$ is a non-singular elliptic curve (Proposition 3). We indicate by b; (M) the i-th Betti number of a manifold M. It is clear that $b_1(\Delta) \le b_1(S) \le b_1(\Delta) + 2$. Assume first that $b_1(\Delta) = b_1(S)$. Since L is a locally flat line bundle on S, L is raised from a group representation ρ of $H_1(S, Z)$ into C*. Let m be a certain positive integer such that ϱ^{m} is trivial on the torsion part of $H_1(S, Z)$. Then, in view of $b_1(\Delta) = b_1(S)$, there exists a locally flat line bundle ξ on Δ such that $\Phi_L^*\xi=L^m$. Hence we get $\Phi_L^*\xi=\Phi_L^*\eta^m$.

Since $\mathfrak{T}_L^*: H^1(\Delta, 0^*) \longrightarrow H^1(S, 0^*)$ is injection, this implies that the ample line bundle γ on Δ is locally flat. This is absurd. Hence we get $b_1(\Delta) < b_1(S)$. Next assume that $b_1(S) = b_1(\Delta) + 2$. By Corollary to Theorem 3, we get $b_2(S) = 2b_1(\Delta) + 2$. This implies that the dual of the homology class represented by a general fibre is a Betti base of $H^2(S, \mathbb{Z})$. This contradicts Theorem 1. Hence we conclude that $b_1(S) = b_1(\Delta) + 1$. Therefore $b_1(S)$ is odd. Hence S is either a surface of VI_0 or VII_0 -elliptic. Consider the case a(S) = 0. By the classification theory of surfaces [4], a relatively minimal surface with no non-constant meromorphic functions and vanishing Euler number is either a complex torus or a surface of VII_0 . A complex torus has a positive algebraic dimension if it contains a divisor. Hence by Proposition 3 we infer that S is of VII_0 -class. Moreover $b_1(S) = 1$ and $b_2(S) = 0$. Hence, by Theorem 34 [4], S is a Hopf surface.

Masahide Kato
Department of Mathematics
Faculty of Science
Rikkyo University
Toshima-ku, Tokyo, Japan

References

- 1. Cartan, H.: Quotient d'un espace analytique par un groupe d'automorphismes. In "Algebraic geometry and topology", pp.90-102. Princeton Univ. Press 1964.
- 2. Kato, Ma.: A generalization of Bieberbach's example. Proc. Jap. Acad. 50 (1974) pp.329-333.
- 3. —— : Complex structures on $S^1 \times S^5$ (to appear).
- 4. Kodaira, K.: On the structure of compact complex analytic surfaces, II, IV. Amer. J. Math. <u>88</u> (1966) pp.682-721, <u>90</u> (1968) pp.1048-1066.
- 5. Orlik, P. and Wagreich, P.: Isolated singularities of algebraic surfaces with C* action. Ann. of Math. 93 (1971) pp. 205-228.
- 6. Reich, L.: Das Typenproblem bei formal-biholomorphen Abbildungen mit anziehendem Fixpunkt. Math. Ann. 179 (1969) pp.227-250.
- 7. —— : Normalformen biholomorpher Abbildungen mit anziehendem Fixpunkt. Math. Ann. <u>180</u> (1969) pp.233-255.
- 8. Ueno, K.: Classification of algebraic varieties and compact complex spaces (to appear).