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§ 1. introduction

A holomorphic automorphism g of a complex space ¥ is called

o M e il A~

a contraction to a point C€ X if g satis{ies the following three

conditions:

. ey
(ii) 1im g¥(x) = © Sov gnv poinh x &€ &,
V-3 400
(iii) for any smell neighhorhood U of U in R , there exishs
v

an integer VY such that g (U) U for 21

o} prEL=1,

-where g¥ is the y-times composite of g. By [27% the complex space

[ g v

% which admits a coantracting automorphism is holomorphically iso-

morphic to an algebraic subset of ¢F

- N .. .
the algebraic subset of € . Then there exisis a contracting auto-

for some N. We identify % to

. ~ N .. ~ ~
morphisn g of € to the origin O such that gt?E = g ({21, L37).

S . ~ N . : - .
Obviously the action of € on € '~{0} is free and properly discontinu-
3 - 43 + " 1 N ' Laigs - :
ous. Hence the quotient space H= € ~-40Y/<E» is a compact complex

manifold which is called a primary Hoof manifcld. Sometimes we

A, : LN ¢ e . . S . .
indicate by 7 a N-dimensional primary Hopf manifold. The compact

complex space ¥-{0}/<g> is clearly an cnalytic subset of a primary

Hopf manifold. A compact ccmplex manifold X of dimensicn n (nm?2

is called a Hopf monifold if iis universal covering is holomorphicall
isomorphic to ¢ -{0} (Kodairal4l).
The purpose of this paper is to show several properties of

subvarieties of Hopf manifolds..
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* In [ 2], the condition (iii)



69

The following proposition shows that it is sufficient to
congider only subvarieties of  primary Hopf manifolds.

e et P n g S

Propeosition 1. Any Hopf manifold is a submanifold of a

(higher dimensional) primary Hopf manifold.

gzggf. Let X be any Hopf manifold. Then, by definition, there
exists a group G of holomorphic transformations éf @n~{O} such
that X = € -10}/G (n = dim X). It follows from a theorem of Hartogs
that any element of G can be extendéd to a holomorphic transformation
of €. Hence we may assume that each elemenﬁ of G is a holomorpﬁic
transfggation of ¢ which fixes the origin 0 ecl. By the same
argument as in [4] pp 694-695, G contgins a contraction.

For each element xe€G, -we dénote by dx(0) the jacobian matrix
at the origin 0 €.
(det(ax(0))| < L.

Proof. If x€G is a cdntraction, then any e;genvalue o of
‘dx(O) satisfies [di<1 (see [3] for the detail). Hence ldet(é%(o))‘<;1.
Convé%%ly, let x be an element of G satisfying [det(dx(O))[<(]4
Let g be-a contraction gontained in G. Since Cn—{o}/<g) is compact,
the index of the infinite cyclic subgroup.{g} generated by g is
finite in G. Now assume that x is not a contraction. Then x° is
not a contractién for any integers n. Hence 7 # gm for any pair

of integers n and m except n = m = O. This implies that {xIn{g}={1).

-2 -
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This contradicts = the fact that {g} is.of the finite index in
G, g.e.d.
Let U be a éubgroup of G defined by
U={xec: [daet(ax(0))| = 1}.
Obviously U is a ﬂofmal subgroup of G.

Lemma 2. There exists an infinite cyclic subgroup Z of G

such that G is the semi-direct product of Z and U ; G = Z-U.
gzégj. Define‘a group homomorphism § : G—>R by &(x) = V

- log [det(dx(d))( (x€G). Let g, €G be a contraction. Then the

index d of the infinite cyclic group {&(gl)} generated by 1(g1)

in %(G) is finite. Hence d—l i(gl) is a minimum positive. element

of L(G). Let g be an eiément of G such that L(g) = a~* Lgy).

We put Z ={g}. Then it is clear that G = 2+, g.e.d.

Lemma 3. U is a finite normal subgroup of G.

Proof. Clear by Lemma 2.

Now continue the proof of Proposition 1. It is easy to see
that any holomorphic transformation u of ¢ which fixes the origin
is linear, if u is of the finite order. Hence U is a finite subgroup
of GL(n,C). Hence, by H. Cartan [1], T = ¢"/U is a complex spaée
with unique possible singularity at 5, where 0 is the correspgﬁing
point to the origin O«ECn; The generator g of Z induces a contracting
automorphism g of & such that g(0) = O. Hence X = ¥ ~ &5}/{5)
is a submanifold of a primary Hopf manifold as we have seen in thé

introduction. ' ' Q.E.D.
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§ 3. Line bundles defined by divisors

Let M be an'arbitrary compact complex manifold and N be a

divisor of M. The line bundle [N] defined by N is an element of

Hl(M, 0*). There is a natural homomorphism i : Hl(M,yﬂ*) >
Hl(M, 0*) induced by the natural injection ¢*—> 0%, If [N] is

in the image of i, then [N] is called a locally flat line bundie.

In other words, (n] is locally flat if and only if its transition
. functions can be written by constant functions.

Now let & be any contracting automorphism of @N which fixes
the origin 0<£CN: Then, by L. Reich ({61, [7]), we can choose

a system of coordinates of CN

such that g can be written in the
following form:

z

N
N-o
]
N
o
+
20
N
N
N

= o z + P (Z4,00e,2. )
(1) rl+1 rl+1 r1+l rl+1 170 Ty

= Z + ol Z + P (Z gevey2 )
rl+r2 rl+r2—l rl+r2 T +Ty Ti+T, 12Tt r1

]

z = of Lz "+ P (Zqgeee,z )
rl+r2+1 rl+r2+1 rl+r2+1 r1+r2f1 1 | r1+r2

4

Zy = 2z o +¢;‘(NzN + PN(Zl""’Z

e ¢ s,

)s
rl+r2+. +T

F-l
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where 1> (& (> - z|A (>0, f is the number of Jordan blocks of
the linear part, P. (r +--- <o e finite sums
part, 2 (;17 +T <] 1+ +rs+l) are finite sums
. n i .
of monomials zjl-—- z?rs which satisfy
1 S
n m
1 Ts
. oA . =0(l "'O(rs b
(2) J '
my+ s 4 =2 ( a1l mya>0 ).

Let o: CN—{O}—>H = CN-(O’;K%) be the covering projection.
For any analytic subset X in H, the setb f'u—l(X) is an analytic
subset in CN-{O}. ‘If dim X=1, then by a theorem of Remmert-Stein,
% =$-1(X)U§O} is an analytic subset of ¢¥, In what follows, we
indicate by the SCript letters the analytic subsets in (EN corresponding
in the above manner to the analytic subsets of H written by the
Roman letters. An analytic subset is called a variety if it is
irreducible.

Assume that X is an analytic subvariety in H of dim X=2
and that D is an analytic subvariety of codimension lvin X. It is
clear that ¥ and » are both f-invariant in CN, i.e. g(F) =%
Cand g(P) =D.

Lemma 4 ([27). There éxists a2 non-constant holomorphic

function f on % such that g¥f = Af for some constant & ( 0<leoil<1)
and that f’ib.—zb. |

Remark 1. In [27, the word "variety" is used as "analytic
set".

Let X be a non-singular manifold. Consider f of Lemma 4 as a



multiplicative multi-valued holomorphic function on X (X. Xodaira

{47 pp TOl). The divisor Dy = (£) is well-def

g*f = o £ implies that the line bundle [D,]

e

P‘)

: 3 m v
ined., ihe eguavicn

locally flat of which

(6]

the transition functions are some vowers of ¢ol. We summarize these
facts as follows.
Theorem 1. Let X be a submanifold of H and D an effective

divisor on X. Assume that dim X =2. Then there axists

an effective divisor E on X such that Lne line bund“e [D + E] is

locally flat of which the itransgition funciions are some powers of

a2 certain constant «€¢* ( 0 <ixl<1).

Remark 2. The following example shows that there are cases

such that the "additional" effective divisor E of Theorem 1 is

indispensable.
Let (XO, Xys Xy x3) be a standard system of coordinates of
¢*. Fix a complex number « such that 0<<I{X{<1l. Let T be a contracti

holomorphic automorphism of‘C4 defined by

g E (X07 le 27 3) —_ (dﬂoy “le D\"(2’ “XB)
Define g-invariant subvarletles of C by

Ko XXy = X X
and |

#:X3=O

Denote the intersection %(\ff— b‘y,& . Then ,8 = {XO = Xz = O}U
{ X = Xy = O} We put
)21 = 4& XO = X3 = 0 }

and

S e
hnlly



,X2=_§xl= X5 = 0}.

Then S =’,,§’ ~{ote, 8, = "Xl ~K0}/{E> -and 8—2 = /gg ~L0tKE are
subvarieties of a compact complex manifold X = ~{O}/<’§>. It is
clear that [Sl + 82] = [s] is locally flat. We shall prove that either
- [s,] or [8,] is not locally flat. Assume that both [8;] and [s,]

are locally flat. Let ] = {U;\} be a sufficiently fine finite

open 00véring of X. We represent [Sl] as a l—c’ocycle {clhr} S

Zl(’U[, C*). Since dinm HO(X, O[Sl] ) >0, there exists a non-zero
section ¥, which yanishes exactly on 8, . Let ffl)\ = CUFCPIE‘ on

UaN Url. As we can easily see,

AP o A L,
?21 c?g;\ (57\

is a meromorphic l-form on X. Since ?{-Qo% is simply connected,
X
200 = exp {0,
is a holomorphic function on X -{0} such that E¥f, = g,f .
( B, € C*, 0<i@1l< 1) which vanishes exactly on ,81 -{0} witn
multiplicity 1. Since & is normal at O, fl unigquely extends to

a holomorphic function on % Comparing the initial 1i;erm.s of 'g*fl
m
. : . 1
and fl at 0, we see that @1 is some pcfwer of o, i.e. g, =« | (mlzvl).

By the same manner, we construct £, for a non-zero section,gozé

2
0 ' Do
HY (X, 0(82]) such that 'é*fz =a f, (m221). Let f, be a restriction

of a holomorphic function X5 to % -{0}. Then @*f, = xfy. It is
easy to see that f = fl' f2v fal is a non-vanishing holomorphic

' : m, +m,—-1

function on % -f0} such that F*f = & © ° £ (m+my-1%=1). Bub

this does not é6ccur if dim X>1. In fact, using the non-vanishing
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holomofphic function f, we get the following commutative diagram:

—KO} S > ?(-—go}l
lf ' f

: -1

G y dm1+m2 § C*:

—

Then f induces a proper surjective holomorphic mapping f : X —>
C*/<¢m1+m2—l>.‘For any point Te C*/{o™1" m2—l>’ fbl(tj = X¢ is

a compact subvariety in X. Hence E'I(XI) is a complex analytic
subset in C4~(O} whose connected components are compact,where

n

b is the covering map 04—{0}——904—ﬁ0}/<§). This implies that
A'_I(th is a countable union of points. Hence dim X¢ = O.

This contradicts dim X>1. This implies that either CSi] or ES2]
is not locally flat. |

Remark 3. If dim X = 2, then [D] is always»locally’flat (3.

§ 4. Some properties of subvarieties
By Lemma 5 in [ 2], we have easily

Proposition 2. Let Y and Y2 be subvarieties of a (Drlmary)

H
Hopf manifold such that Y C:Y and 0<n

1= dlm Yig:n = dim Y2

Then there exists a sequence of subvarieties WO, Wiseons Wp (p =

n,-n,) in H with following properties:

i) Wy =Y

(i1) W;C v,

v W=,

4, (= Oyeveyp-1), dim W, + 1= din W .
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Proposition 3. Let B = € —-{0V/<E> be a vprimary Hopf maniiold.
Then
. . . N L
(a) any positive dimensional subvariety in H° contains a
curve,

(b) any irreducidle curve in HW is non-singular elliptic,

(c) for any elliptic curve C in H™, there exist an ecigenvaiue

T

~ N . Loy . - m 1
ol of g, a constant $ and certain positive integers m, n with ¥ = @‘

such that C is isomorphic to C*/<Q>.
Proof. (a) Let Y be a n-dimensional subvariety in HN (n>1).
o L
For any integer k (1<k<N), the (N-k)-dimensional subspace -

defined by Zy =0 =2y = 0 is Z-invariant. There exists

-

N

an integer k such that dim (€N—(k~l)f\%%) = 1. Then @((@N—<k'1zﬂqé)—50}é
"is a l-dimensional analytic subset of Y. .

(v) Let C be any irreducible curve in 1Y, Then Cis a 1-
dimensional analytic subset of CN. Let Cb be one of the irreducible
components of'C,; Then, for some positive integer Y gnO acts on

>Cio be

CO ~as a contracting automorphism' of CO' Let A: Cg

the normalization of (30. Then gno naturally induces a contracting'

*

0

of one point 0*. Hence (? —{O oL *~f0* 2>~ ¢*, Thus €* is an infinite
0 ot

* 1
automorphism of CO' By [2], C.=¢. It is clear that A J“(O) consists

c¢yclic unramified covering of C. Therefore C is a non-singular

elliptic curve.

-
(c) Consider the Z~invariant subspaces eN ¥ defined in (a). -
N-k

For k= 0, € is the total space. Fix the integer k (0<k< N-1)



2
s N-k Nkl )~ o=kl L
such that (C¢ and C ¢ ¢ .1t Cne contains a
. Ly N-k-1 . P
point p other than O, then Cneg’ ™" contains an infinite sequen

£ points F(p)—>0 (n = 1,2,...). Hence one of the irrcducible

s Nek~1 . . . s
components of (1,15 contained in € . Since ¥ is transitive

over all the irreducible components of C/ this implies tnat Ci(:

EN”K—L;[;berelore Gr\CL—k—l _{O} Hence f = z,
Contradictiony: :

restriction of z el to € , vanishes nowhere on C,—{O}. Foreover
A.

f satisfies the eguation g¥*f = d&+1f' Hence we getv the following

commutative diagram:

€ -{o} —&—s C-{o}

This induces a covering f : C —_9®*/<dk+i>° Since both C and C*/<&,

are non-singular elliptic curves, f has no branch points by the

Hurwitz's formula. Hence there exist %g@* and positive infegers

m, n such that Cf¥€*/<§> and ¢»+1 = é . ' Q.E.D.

Remark 4. By Propositions 2 and 3 (a), it follows that any

n~dimensional subvariety of a Hopf manifold contains subvarieties

of arbitrary dimensions less than n.

10 -~
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§ 5. Subvarieties of algebraic dimension O
-In general, let M be a compact complex analytic subvariety.
Then the field (}-')'L(Mj of all 'meromorphic functions on M has the finite

transendental degrec a(M) over C. We call a(M) the algebraic dimension

The number dim M - a(}) is called

of M. It is well known that a(ﬁi)_{dim M. the algebraic codimension of M.
]

Theorem 2. Let ¥ be a sgubvariety of dimension k in N-dimensional

primary Hopf manifold K, Assume that a(Y) = 0. Then the number of

(k-1)-dimensional subvarieties in Y is at most N.

Before proving the theorem, we shall make some preparations.
Let o(l,...,q(N be the eigenvalu.es of & ((1)). Put ej = log «.
(0L arg 9;]( 2%, j =1, 2,...,N). Let K be g vector space over the
field of rational numbers § generated bj the elements QKVr:l—; Bl,,..,
0y Choose a basis Ty, Ty,..., G of K so that the following
conditions may be satisfied: | |
(1) T = 2®{T,
(ii) I;T,‘l,...,'tl‘g is a subset of {6 RRREE N}
(iii) for any V21, Ty is llnearly independent to
QT + QT +--- + Q7 4, '
(iv) if "9: tt* 8, and V<p, then 3<k

It is easy to check that we ~can choose .such a basis. We denote

by o(iv the element of (0(1,...,0(N} corresponding to Ty. Note that

TV'—"ei, = log aiy (VY =1, 2,4.., 7§.). If the equation
a a

L b .
O(iy =O‘l "'O(i <§'<l)‘)

holds for some integers Qygeeesd then .

1’

- 11 ~
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2
T, = . ='_a.9.+ ved).
= bi, j}z_l 38 + 2T (pe 2)
f
Since ;;iajéj is wriften by‘a linear combination of Tb, Ti,.., 521’

this is absurd. Therefore diy has no such relations. Hence by (1),

t -
zi —di)’zi (v=1’ 2,.0.’ X)o

Proof of Theorem 2. Ve may assume that Y can't be contained

any primary Hopf manifold of dimension less than N. Let D be a
subvariety of codimension 1 in Y. By Lemma 4, » is contained in
the zero locus of a hon—constant holomorphic function f on ﬂé
such that Z*f = of ( 0 <|dl<1l ). There exist some integers m,

L EERERTON such tha?

. m m
A
W = o T o,
ll lA
Put
m m)
h:;Zilv-o Zi.
: 1 A

Since Y is not contained in'any lower dimengional primary Hopf
manifold, h is not equal to zero on‘%. Hence both f* and h are
eigenfunctions of Z¥ of.which the eigenvalues are the same .
Then h/fm defines a non-zero meromorphic function on Y. By

the assumption a(Y¥) = O, h/fm = constant = ¢ #£ 0. Hence we get
(3) h= cff, |

Let Ziy (P=1,000,N) bé analytic éubsets,of Y corresponding to

{ziv = O}({ié. The equation (3) implies that D is contained in

- 12 -
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A
U Ziy' Since A< N, this proves the theoren. Q.E.D.
y=1

§ 6. C¥-actions

Proposition 4. There exists a holomorphic mapping

?flz CXCN —_— CN

(t, 2) —— §,(2)

which satisfies the following properties:

(i) for every tec, ’Sa’t‘ is a holomorphic automorphism of

CN which fixes the origin,

(11) g’L:Jr.s: Eﬁt°

6

S’

n
(iii) there exists an integer n, such that ¢ = g O,

(iv) every Z-invariant subvarieties in e 3 ?t-—;gyggria_gjg

for all t€C.
Ve say that an analytic subset of CN is ?—-invariant, if it
is ?t—invariant for all t€¢C.

: _E_r_égi. Let o(i ""’di,\ be the eigenvalues of § considered in
1 : S
§ 5. For any eigenvalue o(J of &, there exist some integers mj,' mj y ooy
} 1
m. such that
Ia

MY Ia
...O(i (J:l, 2, eee 3 N)r

m.
3:
O(j A N

11
Put ny = @y« omy and g _ 2. ve aefine

(4) 0(;):—-6)(1) tT, ( t€C, V=1,2,...,A),

and N

(%) o(r}ot = exp ,( 'tnj})él'mj‘)'cv ) '(njk: nom'j'l, j=1,2,...,N).

- 13 =~
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n n

Ao
Let Ry ,...,dNO)

= 1 be any relation among the eigenvalues

of &y where R(ul,...,uN) is a product:of some (possibly negative)

powers of uj (3 =1,2,...,N) , uj being indeterminates. Now let

il &y
R(ul,...,uN) = uy el s Uy gajé Z). Then: for t€¢,
n~t n.t a.n.t a.n.t
0 0 170 N0
(6) R(dl ,cthO(N )—'0(1 "’“N
= eXp (t ZaJ J VT)))
= exp (tj{ (21 a. )G .

y—131333"

Put t.= 1 in (6 ). Then we get

Z ( Z_a 83,0 T = Pl (pe2).

N

Hence we get p 0 and }i a =0 (¥=1,2,...,A). Therefore

35w
n.t n t
0 ;0
(7)) R{&™ ,eeeun0” ) =1
: n
for all t€ €. Put @j = ﬁjo. By (1), the j-th coordinate of the point

gg(z) is given by

n n
(8)  (g5(z)); = ] {z. + 0 (n, zl,.,.,zj_l)} ,
where Q is a polynomial of n,

n
s @ ZysecesZy ge Replace n and gj‘of (%)

< by t and QJOVQ respectively. Then we get a holomorphic automorphism
=@' e 7 '
3 N .
. g% of € deflnedvby

?t(z) = 63 {z. + Qj(t, zl,...,zjll)} .

We shall prove that Y=:{%t}té?C satisfies the desired conditions.

- 14 -



-t
o

The condition (i) and (iii) are clearly satisfied. To prove the con-
y P

dition (ii) is satisfied we put

¢ )

We write @ (z) as
(9)  $.(2) = a%(z + as,2)).

Again we put

~ A ~S

(10)  d(t,s,z) = ¢, (2) = ¢, - ¢ (2).

It is sufficient to prove that d(t,s,z),vanishes identically. By (9),
t+s

1) a(t,s,z) = (z+Q(t+s,z)) ~ AY(A%(z+Q(s,2))+Q(t,A5(2+Q(s,2)))
1

i

2% Sq(tes,z) - A Sa(s,z) - A%a(t,A%(z+q(s,2))).

’ i i,
Let Qj(s,z) = 21; I (s)zllu. 331 be the j-th component of
, S | - |

i 1

Q(s,z), where il""’ij—l satisfy @1 €3~1 = 85 and i2>>Q.

Then, by (7), |
Q;(t,4%(z+Q(s,2)))

i

A qil“'ij (t){@l(z +Ql(s z))} ?J 1( jm 1+Q3 1(s z))}

il

i,
B 2 9 (s, )t e b2y 40y g (8,2)) T

Henée we getb 4
(12)  aba(t,4%(z+Q(s,2))) = A%*Sq(t,z+Q(s,2)).

Combining (11) with (i2), we obtain

- 15 -~
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t+s

a(t,s,z) = A7 °(Q(t+s,2)-Q(s,2)-Q(t,2z+Q(s,2))).

Hence it is sufficient to show that
dl(t,s,z) = Q(t+s,z) - Q(s,z) - Q(t,2+G{s,2))
vanishes identically. Note that every component of dl(t,s,z) is
a polynomial of %, s and z.
Fix any integer t = m. Since dl(m,n,z) vanishes identically

for any n€ Z, the algebraic subset in CN+1

{(s,z')écN"'l : 4y (m, & z) = }

defined by

contains infinitely many N-dimensional subspaces of ®N+l. Hence we

infer that dl(m,s,z) vanishes identically for any integer m. Again,

since dl(m,s,z) = 0 for any me Z, the algebraic
subset in €2 defined by dl(t,s,z) = 0 contains infinitely many
(N+1)-dimensional subspaces of CN+2. Hence we conclude that &

1

vanishes identically on CN+2

. Therefore the condition (ii) is
satisfied.
Next we prove that the condition (i%) is satisfied. We need
the follow1ng
Z- and .
Lemma 5. Let Qé be a ca—lnvarlant analytic subvariety in er.

Let Z be a pure l-codimensional g-invariant analytic subset of Qj.

Then each irreducible component of Z 1§S€F—invariagﬁ.

Proof. By Lemma 4, there exists a holomorphic functién f on
Qé such that g*f = of (0< [«{<1) and that f(ﬁi = 0. Here we shall
the following equation:

(13) @t = 't,

- 16 -
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Once the equation (13) is proved, the lemma is clear. In fact,
each irreducible component of ZX is an' irreducible component of the
Zero loéus of f. S8ince everything continuously varies depending on
t, (13) implies that the ifreducibleAcomponents of X 1is €§—invariant.
We put
M) = {he&g : %*h =dAh ).
Then M(A) is a finite dimensional vector space over € (cf.[2]). Let

Gpreees0y be a basis of M(R). Put 6'§(z) = Ga(zgt(z)) (i =1,2,...,8).

Since Qé is q%—invariant, the-elements 0{,..;,c§ form another basis
of M(K). Hence there exist some constants cij(t) depending on t such

that
s

B ¢ :
. = c..{(t)o..
o3 3%1 13(8) o
We claim that C(t) = (cij(t)) is holomorphically dependent on t.
In fact, we can choose points z
Gi(zl) e Gi(zs)
S = . X

1,,..,zse<‘% such that

O_S‘(Zl) """ G’S(ZS)V
is a non-singular matrix. Then,
t -t A
oy(z) - - - 07(z.)]
(14) . Do lsh = e
otz - otz

Since the left hand side of (14) is holomorphically dependent on ty

- 17 -~
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C(t) is holomorphic.
It is easy to see that {C(t)}téC is a l-parameter subgroup
of GL(s,C), satisfying the equality,
(15)  c(n) = «1 (ne 2).
” Q%;U
Hence there exist a matrix ‘A which has ¥ Jordan canonical form
and a non-singular matrix P such that

c(t) = P‘lexp(tA)P.
-1

By (1), 4 is a diagonal matrix. Put 70, = T; (J = 1,2,...,8).
Then,

. t . R
(16) Ty = (exp tay) T, (3 =1,2,..0,8),

where'al,...,as are the diagonal.components of A Comparing the
initial term’of the both sides of (16), we get

(17) ‘exp taj = exp ZE tnijQ (J = 1,2,.;-,3);

for some integers njﬂ' Letting t = 1, we ge't

R = exp a. = exp 2. n. T, (j=1,2,...,8).
- y=1 %

Hence for any i and j,
2 (ny, = 130Ty = By To»
choosing some -integers L Slnoe T, T

ij 07 1

independent over @, this implies thgt nj§,= niv and Piy = 0.

Hence exp taj = exp ta, for any i and j. Therefore C(t) is a

seees Tp are linearly

scalar matrix:

c(t) = UFI (df = exp taj).

Since féM(o(),f can be expressed as
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m - N.‘L o~ t t -
Then §if = %? ijfé T = a E:OJTE = AT, g.c.d.

Proof of (iv). By Lemma 5 [2], there exists a seguence
? “
{ﬂﬂj :‘j = O,l,...,p} of g;invariant subvarieties of @N such tﬁat
w
.QUO = a given Z-invariant subvarie;§“, fh% C(U%+l, dim'ug + 1=
. P : N
dim QUJ+1 and Qpp = Y (p =N - dim’h%). Since €" is obviously & and
{F-invariant, we infer that W is qg—inVariant by the previous
lemma. : _ ) Q.E.D.
As a corollary, we obtain

, : . . o, . N .
Theorem 3, For any primary Hopf manifold H, there exists
N

another primary Hopf manifold H!

with fellowing properties:

(i) gl is a finite cyclic unramified covering of HN,

N

(ii) H!

has a free C*-action @@= {?t}tec* such that

every positive dimensional gubvariety in H'N is

(p~invariant.
Proof. Let H' = CN—{O}/<§nQ>. Then everythig is clear from

Proposition 4.

Corollary.‘The Euler number of a submanifold givg Hopf manifold
is equal o O. |
Proof. By Theorem 3, every submanifb1d of a Hopf manifold has
a fihite unramified covering which admits a free Sl—action. Hence

the Euler number vanishes. Q.E.D.}
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§ 7. Subvarieties of algebraic codimension 1

Let Y be a n-dimensional (n=2) subvariety of a primary

——m§HN be the covering map. We denote by
o ) ~ . -1,
V' a connected component of w (Y).

Theorem 4. The algebraic dimension of Y

‘H
o
h
1
©
o
O
]
2
!t—-‘

the C¥-zction ¢ on Y' reduces to a pomnlex torus action.

Proof. Assume that a(Y) = n-1. Since a(Y¥') = a(Y) = n-1,
Y' has an (n-l)-dimensional algebraic family of elliptic curve§a

The moduli of curves depens éontinuously on the

parameters. Hence, by Proposition 3, the moduli are constant. Since
every curve in Y is (y—invariant; the C*-action reduces to a
complex torus action on the open dense subset of ¥Y' and therefore
on the whole Y'.

Conversely, assume that @ reduces to a complex torus action VY
on Y'. Then qé' is an affine variety in CN with the €*~action {F
inducéd by @. Moreover the action’?yis compatible with g', where

T %
N gefining H'Y. 1t is

g' is a contracting sutomorphism to O of C
not difficult to check that the C¥-action 4¥-on Qé‘ is algebraic.
(Construct a contracting automorphism on C><@é'xﬁﬁ‘ which leaves
invariant the closure T= of the graph r'of'<P , where r: is an

analytic subset of CxYy'x 4!, Use the result of [2] to show that

T is an algebraic subset of Cx’%'xﬂé'.)‘ﬁence, by Proposition (1.1.3)
in Orlik—Wagreich [5], there is an embedding j : q&‘——ﬁ>8N, for

some N' and a C*-action 'ﬁ' on ¢V such that j(ﬂé') is —$'~invarian;
and that 4;’ induces 4; on,ﬂa'. Moredver, by a suitable choice of

.. Nt ] . ~ ‘R X
coordinates (Zl""’ZN) on € , the action ﬁy' on Ch can be written

- 20 -
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as
~f ql qu
’\{J(Q,(zl,...,zN,))= (e Zygeess P Zye)s |
where the qi's are.positive integers. There exists a constant
such that ﬁ& induces g' on Qé'.'Then Y = q%‘-{o}/<g‘> can be
, ' ~
considered as a submanifold of CN —ﬂO}/cy;).

The following theorem is known.

Theorem (Ueno{8]). Let My be 2 subvariety of a compact complex

variety»Mo. Then

(18) dim My - a(Ml) $; dim Mg ~»a(MO).
Now it is clear that a(€" -{01/J.>) = N'~1. Hence, by (18),
we get a(Y¥') = dim Y' - 1. Since a(Y') < dim Y', we obtain

a(Y') = a(Y) = n-1. Q.E.D.
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Remark 5. Topologically, any submanifold of a Hopf manifold

is diffeomorphic to a fibre bundle over.a l-dimensional circle of

which the transition function has a finite order as an element

1%

the diffeomorphism group of the fibre. This can be seen without

difficulty from Theorem 3.

Remark 6. A compact complex surfaece S is a submanifold of a

Hopf manifold if and only if S is 2 relatively minimal surface of

class VI , VII -elliptic or a Hopf surface.v(See {31 for the proof
of the "if" part.) Let S be a submanifoid‘of a Hdpf manifold.

1t is cle>arbby Proposition 3 that § is relatively minimel. By -
Theorem 1, S is not algebraic. Hence a(S)<1l. Assume that a(S) =:l.
Thén, by Theorem 1, there exists a locally flat iine bundle L on

'S such that the mapping :@L : §—P" defined_by ﬁhe 1ine#r'system
lL{ gives an algebraic reduction of S wh}ch ié defined.everywhere.
2ut-4§=~@L(S). Let’n be thé line Bundle on A associated to a
ﬁyperpléne section of A. Then we haveiﬁiq== L. We note that every
fibre of QL : S—>A is a non—singular éliiptic curve (Propoéition_B)°
We indicate by bi(M) the i-th Betti number of a manifold M. It is
clear that by (A)<b,(S)< b (8) + 2. Assume first that by (4) = b, (s).
Since L is a locally flat iine bundlé on S, L is raised from a |
group represeﬂtation p of H (S, Z) into €*. Let m be a certain
positive integer such that ?m is trivial on the torsion part of
‘Hy(S, ). Then, in view of b, (4) = by (8), there exists a locally

flat line bundle Ton A such that EEE = L0, Hence we get '@f‘g = @E?zm.
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&

1 ) o A . SR .
r:H (4, O*)'——>nl(8, 0%) islinjection, this implies
3

Since @
that the ample line bundle % on A is locally flat. This is absurd.
Hence we get blCd}<Ibl(S). Next assume that bl(S) = blCé) + 2.

By Corollary to Theorem 3, we get bz(S) = 2bl(A) + 2. This implies
that the dual of‘the homology class represepted by a general fibre
is a Betti base of H2(S, Z). This contradicts Theorem 1. Hence we
conclude that bi(S) = by (4) + 1. Therefore b,(8) is odd. Eence S

is either a surface of VIO or VIIo-elliptic. Consider the case

a(s) = 0. By‘the classification theory of surfaces [4], a felatively
minimal surface with no nbn—constant meromorphic funcitions and
vanishing Euler numbef is either avcomplex torus or‘a surface of
VIIO. A complex torus'hasfa positivevalgebraic dimension if it
cohtains a divisor. Hence by Prbpositidn 3 wé infer that S is of
VIio-class. Moreover bl(S) = 1 and b2($)‘= 0. Hence, by iheorem‘34

[4], S is a Hopf surface.
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