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0.Introduction. 1In 1954 F. Hirzebruch [8] obtained an
interesting formula which makes it possible to determine the
alternating sum Zq(—i)qdim Hq(V,Qp(Lk)) for aﬁy complete
intersection V of hypersurfaces in a complex projective space
and for any k € 2 where L ié the analytic line bundle over
V  induced by hyperplanesection. He further determined
dim Hq(V,Qp5 by using'some vanishing theorem. In the author's
knowledge, however, the general dim Hq(V,Qp(Lk)) seem not to
have been determined yet. In this note we shall give a formula
which determines directly dim Hq(V,Qp(Lk)) in case d<q<dim v,
by using the theory of isolated singularity. (See Theorem 2.3.1,
Corollary 2.3.1.) ,

Part I is concerned with the general theory of isolated
singularity and 1s of preparatory nature. The readers wﬁo have
known the standard of the theory (e.g. Greuel [4]) may bypass it
after they become familiér with the terminology and notations.
Part IT begins with the study of C¥-actions over isolated

singularities. The main theme there is to compute the characters
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of the representations of C€¥ over various cohomology groups
attached to the singularities, We apply it to the cones associated
with algebraic manifolds and prove the required formula finally.

The almost all results obtained in this paper have already

been announced in [11], [12].

Part I: General Theory

1.1.Preliminaries. We shall often denote by (X,x) the pair
of an analytic space X with a point x € X such that X ~_x
is smooth and pﬁre dimensional. We call such a pair an isolated
singularity (even in case X 1is smooth). For an analytic space
X, Q§ denotes the sheaf of analytic p-~forms on X; but we write
often Gk for Qg. Suppose (X,x) 1is given and let 1 be the
inclusion X \ x €5 X. Then, for a sheaf G over X, the sheaves
RY141%6 (gq>0), z%?g(G) are concentrated into the point x, so we
shall often identify them with their stalks over X. Whether these
' notations mean sheaves or stalks should be understood from the

context. Now let us begin with the Serre type duality for (X,x).

Lemma 1.1.1. Let (X,x)} t be as above and set n = dim X.

-q-1 -p
Then qu*l*ﬂi, R4 TI*I*QQ P are frinite dimensional (over C)

and are naturally dual each other provided 0 < q < n-1.

We can prove this easily by using Serre [14] and Andreotti-
Grauert [1]. TFor the explicit pairing which gives the duality,

see Section 2.1. Note that it can also be proved that there is a
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natural pairing between (1*1*Q§)X and Rn—li*l*QQ—p which is
compatible with the structures of the complexes» 1*1*Q£,
Rn_11*1*9£ and induces the duality between Hp(I*l*Q%) and
RPP (R, 1%0))

The next lemma is concerning the coherency of local cohomology.

Lemma 1.1.2. Let G be a coherent O0x—Module such that

e q :
SIX‘\x is locally frey.‘ Then %X(G) is coherent for g<dim X.

Proof. Siu [15].

We shall now introduce a condition for an isolated singularity

which’will turn out to be convenient later.

Definition. We say (X,x) satisfies condition (L) if

%g(ﬂg) =0 for p,q such that p+q < dim X.

Lemma 1.1.3. (Partial Poincare Lemma) If (X,x) satisfies

the condition (L), then ;%?i(c)=0, Hp(Qi X)=O for O<p<dim X,
3

where Qi denotes the Poincare complex of X, and its

X,x
stalk over x.

This can be proved as follows: Consider the E2—term of the ,
' D,q_ Qg * ‘ .
spectral sequence "EZZ,ngﬁ(J% (QX)). These‘are zero excgpt
0 0 0/~ . ' ‘
'Eg’ ﬁﬂ?&(@), ’E2’q=H (QX’X) (gq>0). But, since there is a complete
neighborhood system at x consisting of contractible ones only,

it can be shown by Bloom-Herrera [2] that Hr~1(9i X)='ES,’I'—1 -—>
. . 3
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_r 'E?’Oﬁﬁ?i(C) is zero-map for every r>0 (See the proof

of Lemma 1.2.2 appearing later). Comparing this with El—terms
ngPsd~Pd P ; ’
El’ {Z?X(QX) of the other spectral sequence having the same

limit, we obtain the conclusion of the lemma.

Definition. Let f be an analytic function on X such that
f(x)=0, and that dfz, which is not the germ but the value at x
of the differential form 4f, is not zero for any z € }(\x;

Then (f_l(O),x) is a new isolated singularity, and is called the

hypersurfacesection of (X,x) defined by f.

The hypersurfacesection is a usefull device for the study of
complete intersections since they are obtained from nonQSingular
ones by iterated hypersurfacesections. See‘Hamm [5].

Now the method to prove Lgmma 1.1.3 shows also

Lemma 1.1.4. Let (X,x) satisfy the condition (L) and

f e F(X(,O'X) be such that dfz#o for every =z eX\x. Then the

sequence O > sz% af Q}l( —af, ... df Q?(im X is exact,

where Q§ —af, 9§+1 denotes the exterior muptiplication by df.

Another usefull wayvto formulate this lemma is the exactness

of the sequences

(1.1.1) 0 —>aft 40, b 5 P, o p ¢ dim X

where we have put as in Brieskorn [3]

p-1

oP _ ob -
b = b / ar.eP

f
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Lemma 1.1.5. Let (X,x), £ be as in Lemma 1.1.4. Then,

(X,x) satisfles the condition (L) ~if and only if P (eR)=0

for any p,q such that p+g<dim X.

Proof. Suppose (X,x) satisfies (L). Using the long .exact
sequence of the local cohomology associated with (1.1.1) we obtain
monomorphisms gﬁ?g‘l(n?+1) C;Z%?%(Q?) for p,q such that p+q

< dim X. Combining these, we have monomorphisms 2&?2(9?)» >

54?§+Q+1EQE1)=0 when p+q < dim X. This proves the '"only if" part.
Next, we note that ;7?2(Q§)=0 (p< dim X) implies the exactness
of (1.1.1). Thus the long exact sequence used above, again proves
the "if" part. 7

We end this section by indicating briefly the topological
meaning of the cohomology groups Hp(Q;’X). (Note the exterior
differentiation d naturally induces the maps' Q? —g—% Q?+l
by which the éomplex Q£ is defined.) Let (X,x), f be as in
Lemma 1.1.4 and let f(x)=0. Let further (Y,y) Dbe the hyper-

surfacesection by £, that is, Y=f 1(0), y=x. Then we can always

assume by Milnor [10]

a) (X,x) 4is a closed analytic set in some open ball with
- . N
center x=0 in € : (29, Z5, -+ , Zy).

b) The restricted functions rIX'\x’ rly.\y have no critical

. N 2
point, where r(z) = Zi=llzi| .

Theorem A. Under the above assumptions, there is a neighbor-
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"hood S of 0 in € such that (i) £ : £71(S) \Y ——> SN0

— S

is a € fibre bundle (i) RPf*(Q;)IS are coherent O,-Modules

(1ii) there is a natural isomorphism

Hp(ﬂé,x)'g RPry(2.),-

To Milnor [10], Hamm [5], the (i) is due. The assertion (ii)
can be proved as follows: Take a smaller open ball B' and set
X' = X A B. Then the argument of Brieskorn [3] shows the
restriction map r(f'l(T),Q') —s T () n X',Q.) is quasi-
isomorphic for any open subset of T provided S is sufficiently
small. But this map is also quasi-nuclear P(T,Os)—homomorphism;
in the sense of Kiehl—Verdiér [9]. From the fundamental theorem
of [9] it follows immediately (ii). The quasi-isomorphicity above
proves (iii) also.
| Note that thilis method can prove the finite-dimensionality
of Hp(Qi,x) of Bloom-Herrera [2]: (To prove this, one may
only replace f by the map (X,x) ——> (point,point) in the above
argument.)

l.2. Conservation of (L) under hypersurfacesection and some
consequences of (L). Throughout this section we fix (X,x) and
f e T'(X,0,) such that (Y,y) = (f—l(O),x) is a hypersurface-

section of (X,x).

Lemma 1.2.1. If (X,x) satisfies the condition (L), then

(Y,y) also satisfies the condition (L).



Proof. By Lemma 1.1.5, 7P%(0P)=0 when ©p+q < dim X. But
rool x e ‘

5%22(Q§)=0 (p<dim X) implies the exactnéss of the sequence

(1.2.1)0————)9?3‘?)9? — o) —> 0 p < dim X

where Qg should be regarded as sheaves over X. Thus we obtain

the long exact sequence

, ~PAqPy __ QP ~p QoD
1Y) — HieR) — U —

. . Q/oPy = :
from which it follows gﬁfy(ny) 0 when ©p+q < dim Y .

Remark. Using Lemma 1.1.1, Lemma 1.1.2 and Nakayama's lemma,
we can supply the argument above to prove the stronger statement
(X,x) satisfies (L) if and only if (Y,y) satisfies (L) and

. 0, N4_ 52 1,40 s ’
dim O3 (2)=din [?fy(szy) (n=dim Y)

Corollary 1.2.1. If (X,x) 1is a complete intersection,

then it satisfies the condition (L).

As indicated before, this follows from Lemma 1.2.1 and Hamm
[51.
Consider the complex E%XR ») which is the torsion part of
_ x 'y

QX and set

Hes e 0, »
0 = 0y / Ho0y) -

.._'7 -
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We shall now prove the following sharper version of the Poincaré

lemma:

Lemma 1.2.2. If (X,x) 'satisfies the condition (L), then

HP("Q;)=0 for 0<p<dim X.

To proﬁe this,[2] seems to be not adequate. We have
therefore to rely on the earlier works of Herfera [61,[T]. When
a semi-analytic set M 1is given in a real analytic manifold ﬁ,
we define the sheaf‘ eﬁ as the quotient of the sheaf of G
" p-forms over -M by the subshéaf of p-forms inducing the null

form on the non-singular part of M. There is a natural onto

homomorphism Hp(F(M, 8;))-———> HP (M, ©).

Proof of Lemma 1.2.2. Take a contractible neighborhood U

of x and consider the commutative diagram

H (I (U, e)) —> B (r(U\x, ey))

l l

P (U, ©) —— HP(U\x, C) .

This proves the composition Hp(P(U, 86)) —_— ‘HP(P(U'\X, e&))
—_— Hp(U‘\x, €) 1is zero. Note that there is a natural map
"Q& —_— eé which induces the map HP(P(U, "QG)) —_—

HP(r (U, ey)). Composing this with the map above, we obtain

the natural map HP(r(U, "Q&)) — HP(U \x, €), or passing to

the 1imit, the natural map Hp("Qi x) _— Rpl*cu which is zero.
3 . ¢ )
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But this zero map can be factorized as follows: gP (g )0

X,x'
Hp(1*1*9£) —E£5 RP1,€ (1:X\x ©X), where e is injective for
pidim X as the édge homomorphism of spectral sequence Rq}*1*9§
= Rp+q1*c because of the condition (L), and further n 1is
also injective for p<dimX éince "Q§ —_— 1*1*Q§ is isomorphism
when p<dim X-1 and monomorphism when p=dim X-1. This proves
HP("Q.)=0 for Osp<dim X.

From now on we suppose that (X,x) - satisfies the condition
(L),{and we put n=dim X-1, that is, n=dim Y. By Lemma 1.1.5

~/POr Dy APl Py : ;
0€?x(9f)?%?x(9f)—0 for p<n. We thus have the isomorphisms

(1.2.2) Q? = 1*1*0? p <n.

When p=n,£ﬂ?g(ﬂ?)=0,but Sﬁ?i(gg)¢o; so we have only the exact

sequence

n
f

n

(1.2.3) 0 —> Q0

—> 151%Q ___‘9'3Q?1(Qn) — 0
¥ x\'f

Now we denote by 'Q; the complex

(In general Q? (p>n) are not zero, so 'Q; does not coincide

with Qf

.) Then (1.2.2), (1.2.3) imply that

(1.2.1) HP ((rer*ep) ) o HP('ag ) P <n



g/
and further that the sequence

(1.2.5) 0 —> H('Q. ) —> HN(1,0%2.) ) —> F 1(a]) —» 0

b

is exact. Since P (p>n) are finite-dimensional, the cokernel
f,x

of Hp(Q% X) [ Hp('Q; X) is always finite-dimensional, which,
3 3

in view of Theorem A, shows that each Hp('Qg x) is finitely
3
generated O, .-module. Thus (1.2.3), (1.2.4) and Lemma 1.1.2

c,0
imply

Lemma 1.2.3. For all p, Hp((l*l*ﬂé)x) are finitely
generated Ob,o-modules. |

Let G/f denote for short the quotient sheaf G/fG for an
Ok—Module G, and let us compute 1*1*Qg/f . First note there are
isomorphisms 1*1*9?/fA2 Q?/§ 2 Qg (p<n) by (1.2.2). Next

consider the exact sequence 0 ——> 1*1*9? - I*I*Q? —

1 1*QY _— R 1 1*Qf , where the last tern is isomorphic to
R11*1*Q§+1 since 1*Qf g 1*Q§+1 . But this last space is,

according to Lemma 1.1.1, the dual of Rn—11*1*ﬂg =2&?;(Q§)

which is zero because (X,x) satisfies (L). We have thus proved

0 1 d n-1
(1.2.6) 141 Qf/f m {0 — QY TN QY e, G o QY
ad %ol
—> 151%Q, —> 0} .

This gives now rise to the exact sequence of complexes

- 10 -
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it . * -
0 — "2y — 151 Qp/f —~—>5%?y(ﬂy) —> 0

where the last term should be considéred to be a complex concen-
trated in the degrée n place. From this sequence and Lemma

1.2.2 it follows that

(1.2.7) Hp((l*t*ﬂé/f)x) =0 0<p<n

and that the sequence

(1.2.8) 0 —> H("ay ) —> H((1,1%Q./F) ) qgtglm@ —> 0
R X y

is exact.

Now consider the long exact sequehcé

s Bt ) D P (%)) ) HP((141%00/0) )—> - -

By (1.2.7), Lemma 1.2.3 and Nakayama's lemma, we have that

HP((141%Q, ), ) =0 for p<n, B ((1g1%0./6) DeH ((141%02) )/f,

and that Hn((1*1*9;)x) 1s torsion free O j-moudle. Consider
R 4

. 1, ,n-1
Y_ejgy(ny )—> @

where the last complex should be considered to concentrate in the

the exact sequence 0—> 1*1*9;/f——9 141%Q

degree (n-1) place. (Note that (Y,y) also satisfies (L)
according to Lemma 1.2.1.) By the long exact sequence assoclated

with this, we obtain the exact sequence
) hYR o 1'1—1 F'S . ,. V 1 n_l
(1.2.9)° 0—> H ((1‘*1 2g) ) —> nymY )

— HU((,1%0) )/ ;»Hn((l*lmé)y——» 0.

- 11 -
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From the ecaxt sequence 0 —> "Q — 5 1*1*Q§ y -——’E%?;(Qg) —>
. 3
0 1t follows also the exact sequence

2

(1.2.10) 0 —> H’“"l((1*1*9;{)y) — Hn“l(;{?;(g;)) —> (g )
—_ Hn((l*l*ﬂé)y) — Hn(ygg(ﬂé)) —> 0

To sum up all proved so far, we obtain

Theorem 1.2.1. Let (X,x), £, (Y,y), 'Q%, "Q; be as above

- and assume that (X,x) satisfies the condition (L). Then

p.‘ ==p *. - n *‘,__ .;
H ('Qf,x) 0=H" ( (141 Qf)x) (p<n=dim Y), and H™((141 Qo)x) is

torsion free Ob O—module; moreover the exact sequences (1.2.5),
3

(1.2.9), (1.2.10) are valid.

Remark. The exact sequence (1.2.10) is always valid if
(Y,y) satisfies the condition (L), even in case there is not an

(X,x) of which (Y,y) is a hypersurfacesection.

Remark. By Theorem A and (1.2.5), the Milnor number "W of
(Y,y) 1s equal to the rank of Hn((1*1*9%)x) over Ob o DProvided

n=dim Y22. Since this module is torsion free, it follows from (1.2.9)
= 1,,n~-1 nv x0° _ n-1 %0°
u dimjﬁy(QY ) + dim H((1,1 y)y) - dim H M (101 2g) )

Further, in case n23, 0 — EQ?l(Qn—l) — 54?2(Qn ) —-—%Z?E(Qn-l)
—> 34?2 1)-——9 0 1is exact, so dimj/f>l Qn 1) may be replaced
dim RL1 1*9? 1 - Thus the formula (&) of [11] is valid for any

isolated singularity which is g3 ‘complete intersection.

- 12 -
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Remark. Let (X,x), (Y,y) be as in Theorem 2.2.1 and assume

X 1is smooth. 1In this case there are isomorphisms which are, in

a way, canonical:

H oy o Hogap o 2 PP

e -

J"E;’m‘;) v AP

e

n-1,.1
vy ey

Y,y
- - Ny PPN R n-1 P —q s mut *0° .
0 (ii) H( QY,y) 0:+{1iii) dim H ((1g1 QY)y) dimH "( (141 QY)y),

)

Furtheremore the following conditions are equivalent: (1) H™N(Q

according to Saito [13] these are equivalent to the quasi-

“homogenith of (Y,y).

- 13 -



Part II. (C%*-actions over isolated singularity

N>

2.1. Gysin sequence. Let C€* = C~0. A C*-action over

an isolated singularity (X,x) is a family T(c), cé& C* of analytic
homemorphisms of X onto itself satisfying that T(e)x = x,
T(c)T(c') = T(ce') (c, c'ec*)‘, and that T : XxC¥3(z,c)>T(e)zeX
is analytic. Throughout Part II we will requir the following to

be satisfie@:

Assumption The constants are the only invariant elements

under the action T.'

22 Ox,x

The meaning of this is the following: Let §& be the generating
vector field of.this action and Lg its Lie derivative. Then the
assumption implies that LE induces automorphsimé qn Q§,x for
p > 0. (More precisely, if O#w e Q%,x (p > O) and if T(c)*uw
= "w (e € C¥), then such an m 1is either always positive, or
always negative. Note that in the positive.case, T can be extended

~to C-action.) If we dénote the interior multiplication of §&

by 1i(£€), then L, = 1(€)d + di(&). From this identity we obtain
13 » ‘

Lemm

)
o

.1.1. Under the above assumption, the complexes Qi,

|

vsa?g(ﬂi), "Qy are all acyclic, and the sequence -
o> R 1B gp-1 1B L 1(E)

[+ ]

is exact, where . denotes the inclusion xlc,X, and o the

1
average map Qg NERS +-J T(exp(27if))¥f 40 € € = (1x)*¢x.
? 0

- 14 -
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Consider the two spectral sequences Ei’q(x,x) 'Ei’q(x,x)
whose El—terms are Rq1x1*(Q§),%?g+l(Q§) respectively, where
V: X\x<;X. The limit of EP°%(X,x) is RPT¥i,€, while that
of 'E?’?(X,x) is‘?€§3q+l(c). It is evident that the natural maps
Eg’q(x;x) > 'Eg’q(x,xj are isomorphisms when q > 0. Since
HP("@;) = 0 (p > 0) by Lemma 2.1.1, it holds also E5”°(X,x)

> 'Eg’o(x,x) by the exact sequence (1.2.10) and the remark following

Theorem 1.2.1 provided (X,x) satisfies the condition (L).

Corollary 2.1.1. If (X,x) admits a C*-action and if it

satisfies the condition (L), then the natural maps Eg’q(x,x);é

'Eg’q(x,x) are isomorphisms except for the case p = q = O.

If we set 0f = 1(5)95‘? (p > 0) and ngl = (1,)4C, then

we have the short exact sequences 0 - QE > 95 > Q§_I'+ 0 (p 2 0).

From these, we obtain the long exéct sequences of Gysin type

0 FoaR) +FpAaB) A0 aRh IR
(2.1.1) 5 ‘ , 5
e AR FLER) L@ - e
These play key role in the study of this sectioﬁ. Befofe“proceeding,
we have té give a more explicit description to the connectiﬁgv
homomorphism 6. Since 1(5) is an anti-derivation, ﬂ; = gﬂg
is the sheaf of graded algebra (by exterior multiplication), so

A = Z Ap,q’ where AP°9 = Rq1*1*Q§, is a bigraded algebra by the

jorye
cup-multiplication. Thus 1e_A0’G, §le Al’l. We set ch(g) = 61

and call it the Chern class of £ (or of the action T). Note that

- p,q P,a _~/pa+l oPy 4 _
B Zp,qB , where B 9%& (QE)’ is a bigraded A-module such

- 15- -
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that the natural map A - B 1is a A-homomorphism. Now it is easy

to prove
+
Lemma 2.1.2 The connecting homomorphism &: P-4 Bp 1,941
is nothing but the multiplication of ch(g) (up to sign).

Here we shall give a precise formulation of the Serre duality

given in Lemma 1.1.1. Regard the canonical generator vy of

R2n-11*z (¥ 2) as an element of Rzn_lI;C and define ¢!
n-1 Q —C by e€'(a)y = €¢(a) where n = dim X, € is the

2n-1

R 11%Q

n=-1

" edgehomomorphism of R 1*1*9n onto R

X 14€C. Let o € qu*t*Qg

B e Rn—l-q1*1*9§~p and set
<a,B> = €' (avB)

where y denote the cup-multiplication. This pairing givesvthe'

~duality stated in Lemma 1.1.2.

Now note 1*92 = 0, so that 1*Q§ ¥ 1*92_1. Thus we obtain

g

see then that the‘value e'on(ch(g)n’l) is not zero. For, using

the isomorphism n:A(n—l)’(n—l) = Rn—ll*t*ﬂn_l ¥ Rn_ll*l*QQ. We

a suitable embedding of X into its .Zariski tangent at x, we
can construct a real valued function ¢ on X\x such that 133y
is positive definite, LE(W) = /=1, and that w—l(c) is compact

for ceR. It can be shown then

eton(en(e)™h) = AT sy s (ean) T,
v “(c) - :
where the right hand side is obviously not zero. In view of Lemma

2.1.2, this fact proves
- 16 -~
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Lemma 2.1.3. The iterated connecting homomorphism

Lo Pop-1 pt+e,,p+t2~1 . . .
$ .EQ?X(Qg ) »Zﬁex (QE ) is not gzero if p+& < dim X.

From now on we assume that (X,x) satisfies the condition (L).
Then FI(aP) = 0 ir prg<n = dim X, and further, by Lemma 1.1.1,
:%f%(ﬂg) = 0 if p+g>n+l, g<n. 1In view of the sequence (2.1.1),

these imply

Lemma 2.1.4. The connecting homomorphism & ﬁ%?%(ﬂg_l) >

3%?g+l(ﬂg)l,1§_ (1) 4isomorphism in case p+q <n-1 or in case

p+@>n+l, q<n-~1l, (ii) injective in case p+q = n-1, (iii) surjective

in case p+q = n+l, gq<n-1.

Trivially :ﬁfg(ggl) =0 if q # 0. We know also 77 %(Qg—l)
534?2(92) =0 for 2 <q <n-1. Lemma 2.1.4, combined with these,

proves

Lemma 2.1.5. ;fg(ﬁg) =0 if p+q<n, q-p # -1 or if p+g>n,

q<p+l. Let p = [n/2]-1, v = -[-n/2]. Then there are isomorphisms

n

(2.1.2) ¢ S}/fg(ngl) ;TT/LO];;(Q%) s ... ‘j@)‘f’l(n‘g)

@23 Y FHLa T e .

Observe that the iterated connecting homomorphism .

v-u utl, py v+l, v e s o u+l, juy
8 .zﬁex (Qg) +gﬂ?x (Qg) is injective since di@ﬁ?x (QE) 1

by (2.1.2) and since this & M 1is not zero by Lemma 2.1.3. We

shall discuss the consequence from this fact and the vanishing of

_17_
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%g(ﬂg) in Lemma 2.1.5. For this purpose, we separate the case
n = 2m and the case n = 2m+l. a) case n = 2m. By the first
satement of Lemma 2.1.5 and the sequence (2.1.1) we obtain iso-
morphisms }ié’%(nﬁ*’% 3%3(92) in case p+q = n, 0 < g <m and
%%(QE) :;;/-g?((ﬂg). in case p+q = n, 0 < g < m. Since ﬁ?(ﬂm—l)
§j€§+l(ﬂrg)‘ is injective as observed above, we have also by (2.1.1)
the isomorphism %ﬁ(ﬁg} ﬁ%i(ﬂ%). Combining these, we obtain
isomorphism %%(Qg):l) 2%2(0)’%) induced by i(g):9§+l > Q)ré for
p,ci such that p+q = n, 0 < g < m. But the restriction 0 <g<m
can be replaced by 0 < g <n accordihg to the Serre duality of
Lemma 1.1.1. b) Case n = 2m + 1. The isomorphisms
3{3(9?:1) i }e%(ﬂ)’é), for p,q such that. p+q = n, 0<g<mtl,
can immedialely be obtained as in:the previous case. To prove
5‘{?4'1(5’2?'1) :3[824'1({%[{1),. consider the following two exac;t sequences

which are some parts of (2.1.1)

0 _»:%gr)rcﬁl(ﬂr)n;l) +#1;1+1(ng) g#f{HZ(Q%Hl)
| N
0 PR AL AT

. 2 ~/pm, sm-1 m+2 , om+1 .
Since 6 .;ifx(szg ) -)3%))( (Qg ) 1is injective as was observed
~fpm+l, sm+1l ~fpm+l, m m+1, . m, .- .
above, the composed map (/fx () ‘*jfx (Qg) "yfx (QX) is
also injectiye. But by the duality of Lemma 1.1.1 3{€I£+1(Q§g+l),
~/pmtl , m : . s ~/pm+l, -m+1
JLDX (QX) h?.ve the same dimension. Thus this map (/fx (QX ) »
}C?ﬁl(Qg) is also iso}norphism. Again by the Serre duality we have

QoaPtly 3 ~pPA P = : .
?@X(QX ) +?€X(QX) for p+tq =n, 0 < g < n.

To sum up,
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Theorem 2.1.1. Assume that (X,x) satisfies the condition

. en e 1NnNterlor mul lp’ lcation 1 M > ingauces e
(L). Then the interi ltiplicati 1(E) Q§+1 o®  ind th

isomorphism Eﬁ?i(ﬂ§+l) +—7?§(Q§) for 0 < p < dim X where

q = dim X - p. Further ;gg(szg) = 0 if p+q # dim X, g-p # 1,
. V-u, u+l A v+l v A . .
0 <q< dim X, and 3§ f%?x (QE) ~7C 5 (Qg) is isomorphic,

where u,v are as in Lemma 2.1.5.

Finally we remark this theorem prdvides us a clear inzgight
into the structure of Eg?q(x,x). Because of the condition (L)
we have Eg’q(x,x) =0 if p+q # n-1, p+q # n, p+q # 0, p+q # 2n-1
where n = dim X. (For the vanishing of Eg’q(X,x)r when q = O-
or q = n-1, see Lemma 1.1.3 and the remark following Lemmé 1.1.1.)
Obviously E%’O(X,x) = Eg’n_l(x,x) ¥ ¢. If p+q = n-1, Corollary
2.1.1 implies then, E5>%(X,x) Ker(jﬁ"‘l(sz%) Q%Dg*l(ng*l)),
EB*e9(x,x) Cok (A I (aB) —‘—’»jfg"l(szg”)). In view of the identity

LE~= i(g)d+di(&), Theorem 2.1.1 now proves

e

(2.1.4)  E5°9(X,x) .Kergﬁg+l({&§)'iﬁ§+l(5§))
(2.1.5) ED*19(x,x) & cox @GP (RH) E—E-»,?fgﬂ(ﬂiﬂ))

) |
(F Rer (AT (RH) Spatl(RHy)).

whére ptg = n-1l. Note also these two groups are isomorphic under

the map induced by i(i):9§+l > Q&.
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i.é. Characteristic functions. In this section we also

suppose that (X,x), T are as in Section 2.1, that (X,x)
'satisfies the condition (L), and that the action T fulfills
the assumption mentioned at the beginning of Section 2.1. If V
is a certain‘cohomology group attached to (X,x), we denote by
T(c)*|V the automorphism of V induced by the map T(c).

(But, in case it 1is _obviously understcodvfrom the context what
this V 1is, we simply write T(c)*¥ for T(c)¥*|V.) According

to this convention we set
x§ (t) = Trace (T(t)*|Fa(ay™))

where 0<q<n = dim X. That is, ~x%(t), 0<q<n are the characters
of the representation of (€¥ over Eﬁ?%(ﬂ;‘q). When regarded as
functions in t, they are rational and have poies only at t = 0.

In view of the duality of Lemma 1.1.1, we have

o |
xd (6) = X *eth 2zagn-1,

so it will be reasonable to set
. _ | . _
Xy (8) = xx (670, xgtt (6) = x§ D).
We set now

+ | ‘
xx(s:8) = Ioly § () 59

and call it the characteristic function of the action T.
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Note the isomorphism zﬁ?g(ng+l) —Jlajgi(ﬂﬁ) (ptq = n, 0<g<n)

of Theorem 2.1.1 is C¥-equivariant. Thus
’ -q+
X§<t) = Trace (T(t)*L%?i(Q§,9 13)  o0<qen.
This identity will be frequently used in the following discussion.

Now we shall study how the characteristic function changes

when one makes a hypersurfacesection which is compatible with

C*-action. Let f be analytic function on X such that dfzf

0 for =zeX\x, T(c)"?f‘ = cdf (ceC*) where d 1is a positive
integer. (The assumption d>0 implies that, if 0#m659§ (p>0)
and if T(c)*w= cmw, then m>0, as was remarked at the beginning
of Section 2.1. Thus, in particular, xg(t) is a polynomial in
t without constant tefm. This kind of remarks will often be
applied below.) As in Part I, we denote by (Y,y) the hyper-
surfacesection defined by f; that is, Y = f—l(o), y=x. Since

T induces naturally a C¥-action on (Y,y), we can define the
characters xg(t), x%(t),..., xg(t), and the charaéteristic
function xY(s,t) of the induced action, which we shall denote
also by T. The sheaves n? being defined as in Part I, we set

further

x%(t) Trace (T(t)*ly%g(ﬂ?-q))» - 029<n

Xp(t) = ¢

+ - -
XpHe) = £
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Note that, just as we deduced 34?%(9?) = 0 (p+a<n) from

3%?3(Q§) = 0 (p+tg<n) in the proof of Lemma 1.1.5, so we can
deduce}{??{(ﬂ%) = 0 (p+g>n; g<n) from%%(ﬂ}%) = 0 (p+tq>n+l, g<n).
Thus, from the short exact sequence 0 - Q?”q—l af Qﬁ—q - Q?“q - 0,
it follows the commutative diagram with exact rows:

o U — T I ) Iy g
T(c)* . T(c)*l- cd T(c)*l T(c)*l

-

0 — RL S S ——p ¥ 5 *® > 0

wherre the bottom row is identical with the top row. .From this

and the Serre duality we obtain for 0<q<n
d_q+l +1 N
(2.2.1) £ (8) = x3(6) = x§He) - x3ce).

Here we have uséd the isomorphism in Theorem 2.1.1 of course.
Using the exact sequence 0 -+ Q?-q > Q?_q > Qg_q + 0 and

reasoning similarly, we obtain also
(2.2.2) (£9-1) Xz(t) = x%“l(t) - Xy ()

for 0<q<n. 1In view of the identities xg+l(t) = t-dxg(t—l),
x§+l(t) = xg(t-l), x?(t) = xg(t-l),'wevcan reformulate (2.2.1),

(2.2.2) as follows

(2.2.1)1 2%xple,8) = xQ(6)) = slxpls,6) - s™F §79 071y,

n+l_ 0O

= (xx(s,t) - xg(t)) = s(xy(s,t) - s xx(tf%))

- 22 -
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(2.2.2)" (£9-1) (xo(5,8) - x

= s(xg(s,8) - s™YET)) = (xy(s,t) = x(£))

-

Zn+l q(t) Sq.

where we have set xf(s,t) = lg=0 Xf

From these,

we can easily obtain

Theorem 2.2.1 The notation and the assumption being

as above, it holds

(2.2.3)  xp(t) = x(t) + x3(t)
(2.2.8)  s(xg(s,8) = s - t%(xy(s,t) = 39 (1))
= D) xyls,8) = e - SMhGET).
Proof. Setting s=1 in (2.2.1)', (2.2.2)' we have
Xp() - x§{t) - xg(8) = 2™ = G e™h ~ xdeh.

But xg(t), xg(t) are polynomials without constant term just as
x3(t) 1s a polynomial without constant term. Thus (2.2.3) is
proved. The formula (2.2.4) follows easily from (2.2.1)', (2.2.2)"
and (2.2.3).

Since xg(t)_= Xx(o,t), by (2.2.4) one can know xY(s,t),
- when he knows xg(t), Xx(s,t); further to know Xg(t) it suffices
to know Xg(t) in view of (2.2.3). This will be of particular

importance when one wants to compute the characteristic functions
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for quasi—hcmogeneous'complete intersections.

Now we shall study scme intereSting consequences from Theorem
2.2.1. Let £ be a d-th root of unity. Setting t = ¢ in
(2.2.4), we obtain

xg(s,8) = 098 - ™0 1)/ (1-s).

Since the left hand side is,a/polynomial in s, we have

(2-2.5) xg(C) = x%(;) = eee 2= xg(c) = xg(c"l) (Cd = l).

This means that the automorphisms of SQ?Q(Qn_q"l), 0<q<n-1

induced by <P =T(exp(2wi/d)) have all the same characteristic
polynomial. On the other haﬁd, the exact sequence (1.2.9)

(with n replaced by. n-1) shows that 4 induces the automorphisms _
having the same characteristic polynomial over 34?1 Qn—z) and

H ((1,1%Q; ) <)/f. Since H? ((1 1%0° ) ) is a torsion free (Tw 0=
module and since the cokernels of the inclusions' H? (Qf x) “y

H (Qf x)calfﬂ(i*t Qf) ) are all finite-dimensional, this polynomial
coincides with the characteristic polynomial of the monodromy of

the Milnor fibering given in Theorem A of §1.1. Thus we have proved

Qgggﬁ_gﬁgﬁl, The characteristic polynomials of the auto-

morphisms ofag?q(gn-q-l) (02g<n-1) induced bx T(exp(2ﬂi/d))

are identical with that of the monodromx,of the Milnor fibering

defined by f. In particular
(2.2.6) dim HH(x\Y, €) (=aim H(X\Y,€))
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e

m=0 Xg (exp(2wim/4d)).

The last formula can be proved by the Wang sequence applied
to the fibering. (See Milhor [10].)
' We>cén now prove the degeneracy of Eg’q(Y,y) Eg’q(x,x).
By Lemma 1.1.1 together with the remark following that and by

(2.1.4%), (2.1.5), the sums dim Eg’q(x,x), )

Xp+q=n—1 p+g=n-2

dim Eg’q(Y,y) are equal to the constant terms xX(l,t) -

+ v
xg(t)_— e ey, Xy(1,t) - xg(t) - Xy(t) in their laurent
expansions at t=0 respectively. Set s=1 1in (2.2.4) and

observe the resulting identity:
x9(e) + (837184 X671
= (g (L, 8)=xg(8)-xg (671 (xg (1,8)-x§(6) -3 (+™) ) .

Since xo(t) is a polynomial without constant term, we obtain
Y .

by comparing the constant terms of both sides

v Py : : ‘=b,a
z‘p*’q:ﬂ-"l d'im' E'Z’ (X’x) + zp+q=n_2 dim Eg’ (Y,y)

=q~1 zi;é xg(exp(2ﬂi m/d))

= dim HH(x\Y,€).
From this it follows the inequality dim Hngl(X\x, c) +

dim H%2(Y\y, €) < dim H*(X\Y, €). But the opposite inequality

ds obvious from the standard exact sequence
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(2.2.7) 0 » 1B Hxx, €) » BLx\y, €) » B2 (v, ¢)

> H"(x\x, €) » H'(X\Y, €) » H" I (v\y, ¢) » 0.

Thus dim E5*%(X,x) = dim L (x\x, ¢€),

zp+q=n-—l

m .y m H \y . ese prove
aim ED°%(¥,y) = aim K""%(V\y, €). Th

zp+q=n—2

Theorem 2.2.1. The E,-terms Eg’q(x,x), Eg’q(Y,y)

are degnerate. The exact sequence (2.2.7) splits into two exact

Seguencesl”
0 » B (x\x, €) » B L(x\y, €) » " 2(Y\y, €) > 0

0+ HMX\x, €) » HY(X\Y, €) » B I(v\y, €¢) + 0

- 26 -
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2.3. Explicit calculation of characteristic function.

In this sectien we shall briefly discuss the isolated
singularities admitting C¥-action and being complete intér—
sections, and compute some of the characteristic functions
defined for them. First we shall fix a C¥-action T on

CN:(zl,z2,o--,z Let Gys Opytte, O be positive integers

N)' N
and set for gz = (Zl’zz"°"zN) and ceC¥

]

1
T(c)z = (c Zys © "Zpsttt, C zN).

A polynomial f in 2z 1is said to be quasi-homogeneous (with
respect to T) if T(c)¥*f = cdf (ce €¥) for some integer
'd > 0. The integer d 1is:'called the quasi-degree of f.

Ifr sufficiently general (fl,f "’fr) (r £ N) are given,

22"

then X = {z éCN;fi(z)=O; 1£i<r} is the complete

(fl’f2" . "fr)
intersection of the hypersurfaces fi(z) = 0 and has singu-

larity at most at 2z = 0. More precisely, given a system
§ = (dl,dZ,--~,dr), wé define inductively the set V(8§) of

r-tupleS of quasi-homogeneous polynomials (f --,fr) of

l:f2s *

quasi-degree dl’-d . dr respectively, by the require—

2,
ment that (fl,f2,---,fr)€iv(6) if and only if '(f2,--w,fr)

6'V(d2,---,dr) and X is a hypersurfacesection

(£15T5,000510)

of X by ¢ Ordering the coefficients of

(f2,f3s"',fr) 1°
f;»1 £ 1 <r in some fixed manner, we can regard V(§) as
a Zariski open subset of a complex euclidean space. Now we
shall also fix 6 = (di’d2""’dr) and let 1t denote a
general element of V(&8). Thus XT denotes the eet

if 1 = (fl,f

X(fl’f2""’fr) 5s+++5f,). By Lemma 1.2.1

each (XT, 0) satisfies the condition (L). By some
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it can be shown that the Milnor number

1)

elementary argument,

of (X_, 0) 1is a constant u(8). We thus have by Lemma 2.2.1
aim 2£2(a2 ) = u(s)
0

where n = N -r. Setting t =1 in (2.2.3) we obtain

Lemma 2.3.1. Let 1 = N )e‘v(s) and set

(£1:%55
+ +
n = N-r. Then the dimension of Q?+10 = " 1/(21 =of;® "t

+zl ldfiAQ ) does not depend on T, where QP is the stalk

oP over 0 of the p-forms on CN.

Now we can easily prove the stability of the characteristic
function XX (s,t) (defined for the given action T). For

seeesf)) evV(s)

this purpose we set for T = (fl,f2

RS o n+l r n
Qp = Iy-pfy® 7+ }349f; 40

and we set further for all integers m

Q(m) = {wen ; T(c)*w

fl

cMwlc e C*)}

it

Q. (m) = {weQ_; T(c)*u = cMu(cec*)}.

Q(m), QT(m) are all finite—dimensional and QT(m) . depends
continuously on 1. Thus dim(ﬂ(m)/QT(m)) is upper semi-
continuous. But . »dim(Q(m)/QT(m)) 1s constant by Lemma
2.3.1. Thus each dim(Q@(m)/Q_(m)) 1tself is constant. In

other words, the charaéter of C* over Q? lb does not

1’
depend on 1. In view of (2.2.3) and (2.2.4) this proves

through the induction on r,

1) This is supplied in the last half of the appendlx
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Lemma 2.3.2. The characteristic function of (XT, 0)

with respect to the action T does not depend on special

choice of T e€V(§).

Here we shall denote this characteristic function by
xs(s,t) though it is determined not only by & but also by
(al,az,-~-,aN). Let us now determine xa(s,t) under the

following assumption:

Assumption. Each di is divisible by Qps Opstccy Gy

This restriction means that there is in the family (XT,O), T
€ V(8) a complete intersection of the Brieskorn varieties:
Let (aij) be a given (r, N)-matrix ' whose all r-minors

are not zero. Set

d,/a,
0 . 3773 = vee
£, (2) zjaijzJ | i=1,2, s

0

Then certainly t° = (fg, £0

23
formulas (2.2.3) and (2.2.4), in order to compute xa(s,t)

---,fg)e V(8). According to the

it is sufficient to determine the character of C* over the

space

0

+ + +
Qnol = gl 1/(zr £0qntl ;A

n
iR Q7),
£2,0 23

r
+ 23=1df
so we have first to makevthe structure of this space as clear
as possible. For this purpose we denote by F
%, ard,..., ar) are not
(That is, the set where the coordinate

1 the analytiec

set where the values of the forms df

L)

linearly independent.
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functions of the form dfg'A"' Adfg (With respect to an
arbitrary trivialization of QlN) vanish. This is obviously
. C

the union of the (%-1)-dimensional coordinate linear

N

varieties of C€'.) Set now

Priy = gP /71 pl
a” (1) QEN/ZJ=1 3 9

" Then Qp(i) is locally free outside F,. Note that F.c F

i 1="2
€--"cF, and Fi\Fi 1 is non-singular. Thus we have
Je% \F (Qp(i 1)| ) =0 for q # N-i+l. In particular,
i1~ N NFy 1 : :

the natural map g2 (2P(1-1)) » #3 (2P(1-1)) 1s isomorphic
' i

for q < N¥1+1. Usin; this fact we shall prove by the induc-
tion on 1 that ch (Qp(i)) = 0 when p+q < N-i+l. Suppose
kg (@P(-1)) =0 when p+q < N-i+2. Then the isomorphism
proveé above shows JC%.(Qp(i—i)) = 0 in case p+g < N-i+l.
Note there is a naturallexact sequence Qp_l(i)'+ QP (1-1) »
p(i) + 0 where the first_map is monomorbhic outside Fi’
Hence we obtain the long exact sequende

0 -+ K‘er(Qp;l(i) > szp(i-i)) - Jeg @P~1(1))
| | 1

- ;egimp(i-m = Jegi(np(i)) + Je;i(np‘l(i)) > e

Thus we obtain monomorphisms JC% (@P (1)) C—i%g+l(np—l(i))'
i i
when p+q < N-1i. Combining these, we have completed the

0
ar
induction. 1In particualr the map -1 — 4, gN-1+1

(1)

is always m'OnomQrphic, and thus we obtain monomorphism

(1~1)
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araarda
N _ N
Qn l/(2§=%df§,\9n) [

+
the image of which obviously coincides with that of o 1

0

dflA dfr_l . dzl/\ oo ',\dZN N
—> Q. Through the isomorphism © N Q
' c ,O

we obtain the isomorphism ot 1/(2r 1dfj,\9 ) 3 A where A

(d YA
is the ideal of © generated by the elements 1II "
CN 0 JeI J

3
where I ranges over all sets consisting of r - 1 elements

-1)

of {1,2,---,N}. We thus obtain finally the isomorphism

n: Qngl > A/(ZJ ngA + A')
£-;,0
l)

~ _ ~ (d /aj—l)

where A' 1s the ideal of GEN,O generated by HjeJ 3

with J ranging over all sets of r-elements of {1,2,.-:,N}.
Although m is not C¥*-equivariant, there is the relation

neT(c)¥* = cn%(c)*on whicﬂ, in view of (2.2.3), implies that

xa(o t) + xa,(o t), where §6' = (d,,d,,**+,d ), is equal to

the character of €* over A/(ZJ~2 jA + A') times (n-jgd ‘ZZJL)_
But this 1ast group is explicit enough to accomplish the

computation of the character over it. The result is, however,
rather complicated, and fof its formulation we still need

the following notation: Let u = (ul,u2,°°',uN) be inde-

terminates and define'inductively the polynomials Pi(u;zl,
22""’21)’ with rational functions in U as coefficients,

by the identities:

Loy 2N oL
P (uszq) = My, (z-u;)/u;
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. it
+
Pl 1(u521922:""zi+1)

i, 1., ce
) ZlP (u,z2,z3,---,zi+l)—z2P (u’zl’ZB’ ’Zi+l)

Z—Z

271

Theorem 2.3.1. The notation being as above, 1t holds

1 - -
Kg(s:8) = It Yo, (6)-s""%a (™} +
t -5 A d
J i
my_. (-t ) d; 4 -
v gyrolisl (Q,_s ()=t I g (57}

3=1"; q.
j+1,.71
Hi=l(t -s)

where Q;(t), 1 <1< r are given by

a o d d d

Q (t) = pheg 1oa,...8 Mgy ¢ 1 e

-'l’t —l’v...’t i

-1).

Remark. The'argument used to obtain the isomorphism n
is essentially due to Greuel [4]. See the proof of "De

Rham Lemma" which is formulated in a much more general way.

1.=a2=.o-=aY=1. In

this case the divisibility assumption given above is trivially

Let us now discuss the case a

satisfied and the quasi-homogeneity means the usual homogeneity,
so each T = (fl,fz,-'-,fr)|eV(6)r defines the algebraic
manifold VT which is the complete ihterection of hyber—
surfaces f‘1 = 0, regarding (21’22’°"’ZN) as the homogeneous
coordinates of PN-l(Q). XT is then the cone C(VT)' over

VVT; in other words, X \0 is identified with L1 minus the

zero section where L is the line bundle over VT induced

by the hyperplanesection of PN_l(C). Thus there is the
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canonical projection ﬂ:Xf\O > VT. Evidently we have natural

isomorphism
20P 2 D
OrX\O @ QVT QQIX\O'

(The sheaves Qg are to be defined as in Sectionvz.l.) Since

the fiber of ﬁ:XT\O - VT is Stein, it follows

ne -

th*l*ﬂp

q p
£ H*(X\O, QE)

e -

ez HIV, 9P(LFY)

where 1:XT\O L»XT and the last sum is infinite sum convérg-
ing with respect to some suitable topology when q =0 or

q = n-1. (Note the sum is finite if 0 < q < n-1 according
to the vanishing theorem of Kodaira.) Using fhe Gysin.seQuence

(2.1.1) and Theorem 2.1.1, we have for 0 < g < n-1

t¥ dim Hq(VT,Qp(Lk)).

q+l = -
XX} (t) 6q,n-q—1 * Zkez

Moreover, by the exact sequence Qg > 1*1*32 > é‘(Qg) + 0

and by the fact that, 1foswe @Y | and if T(c)*w = ¥u (cecH),
_ s
then k 2 p+l (Recall @ = 1(£)2P™), we can show that

ka(t)»- Ticgt™ dim HO(VT,nnfl(Lk))

is a polynomial divisible by t™. We can as well prove the
vanishings Hq(VT,Qp(Lk)) =0 (ptq # n-1, k # 0) and _

Hq(VT, Qp) = 0 (p+q f'n—l, p #4q) by (2.1.1) and-Theorem

2.1.1. Now let the polynomials Ri(zl,zz,-‘-,zi) 1=1,2,. -
be defined inductively by

RY(z;) = (z,-1)™F
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gritl
(215255 52147)

i
lei(z2,z3,~--,zi+l) - 22R (zl,z3,-
Z2:'-Z:L

ceaZig)

Then it follows from Theorem 2.3.1

Corollarg 2.3.1. Let V be the complete intersection

+
of r-hypersurfaces of degree 4, dss s dr in P 1(C)

and L the line bundle over V induced by the hyperplane

section. Then Hq(V,Qp(Lk)) =0 if pt+q # nfl, k #0 or

if p+q # n-1, p # q. Further it holds the congruence

0 1 !
XC (V) (t) + SXG (V) (t)

n- 2 q+1 \ k- q n_q_i Tk
* lg= (=84, n-q-1*lkeat aim H (V.0 @™
a a a
E — . Rr(t = ... rfl)
9 t-1 "’ t-1
t T-s - 4
i d
r'l i =10 ) g g 3t t -1
telga T, e =
ng=l(t -s)
mod s”

where the right hand should be interpreted as power series in

s whose coefficients are rational functions in t. More

over x%(v)(t) Zk<ntk dim H (V,Qn'l(Lk)) is a polynomial

divisible by t%

This corollary, combined with Hirzebruch [8], determines
all of the dimensions of HQ(V,Qp(Lk)).
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Appendix

The purpose of this appendix is to prove the duality
stated in Lemma 1.1.1 and the statement mentioned at the top
of p.28. Let M be a complex manifold of dimension n, V
~an analytic vector bundle over M and V¥ its dual. We
" denote by A(p’q)(V) ‘(resp.. Qép’Q)(v*)) the space of V-
valued C° (p,gq)~forms on. . M (resp. the space of V¥*-
valued distribution (p,q)-forms on M with compact support).
Between A(p’q)(V) and @én-p,n—q)(v*) there is a natural
‘pairing which, through the Dolbeault isomorphism, giveé rise

to a pairing
HIM,0P (V) x HDTI(M,a" P (V#)) 3 (a,8) + <a,B> €€

where we have denoted by QS(V), QS(V*) the sheaves of
analytic s-forms on X with values in V, V¥ respectively.
The problem is to examine whether this < , > define the

actual duality or not. Our object is the following

‘Theorem A.l. Assume that there is a smooth proper map

¥ of M onto an open interval (a,b) (possibly a = -=

or b = ») such that d4d% vanishes nowhere in M and that

the complex Hessian iagy 1s positive definite everywhere.

Then the palring < , > defines the duallity between .Hq(M,

e?(v)) and H, 3(M,@"P(V#)) for any aq g n-2.

Proof, Step I. By Andreotti-Grauert [1], HI(M,oP(V))

T
is finite dimensional for 0 < g < n-1, so A(p’q)(V) 5

a9 vy pnas closed image for q < n-2. (This is also
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trué q > n-2 by Malgrange, Bull. Soc. Math. France 85 (1957),
p.236.) Hence, by Serre [14], the pairing < , > defines

the duality between Hq(M,Qp(V)) and Hg—q(M,Qn-p(V*)) for

q < n-3. Unfortunately the general theory of [14] seems to

be not adequate to prove the duality for q = n-2. But we

can at least prove the following statement: It holds always

the inequality dim H™ 2(M,0P(V)) < dim B2 (M,@"7P(V*)) where

the equality holds if and only if the duality‘for q = n-2

holds. For, let meeA(p’n_z)(V) be a d-closed form such
that <w,y> = 0 for every d-closed e ,G()én_p’z)(v*). Then,
by Hahn-Banach Theorem, w “lies in the ciosure of the image
or 4Psn=3)(yy 3 4 (Pan=2)(yy . Byt tnis image 1s certainely
closed as indicated above. This shows that <a,f> = 0 for
all g en (M,@"P(V*)) implies o = 0. We have thus proved
-the'ngquired assertion.v

_&gg II. It remains to prove the opposite inequality
dim H“' (M, ﬂp(V)) > dim H (M an'p(v*))., To show this, it
suffices to prove the isomorphisms Hq(M f?) Q+1(M -g),
0 < q@ < n-1 for any locally free OM-Module @ For,
if these isomorphisms are true, then g2 (M, Qp(V))

HDL (M, 0P (v)), HE(M,@" P(v#)) ¥ mh(M,@"P(V*)). Therefore,
it suffices to prove dim H (M,nnfpgvﬂ)) < aim HY 7 (M,0P (M)
Bﬁt‘this_is Just the 1nequa11ty‘obtained’in_Steb'i in case
n = 3 when p, V ‘are'replaced.bﬁ n-p, V¥, In case n,;_u;
1 £ n-3, s0, again‘by what was proved in Step I, we obtain

the equality dim HY(M,@™P(V*)) = daim 8™ 1 (m,2P (V).

We have thus reduced the‘roof of Theofem A.1 to the
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isomorphisms Hq(M,-Q) X H2+1(M,{;), 0 < g < n-1, which,

I

combined again with Theorem A.l, prove Lemma 1.1.1. We start

with the following consequence of Andreotti-Grauert [1].

_— R e e e —_—

Lemma A.1. Let ¢:M > (a,b) be as in Theorem A.l1. Let

further ﬁ? be a locally free QJM-Module. Then, for c €

(a,b), the restriction maps

HAM,4) » B P ((a,0)),4)  (a # Q)
B0, 4) » K9 N((e,5)),4)  (a # n-1)

are lsomorphisms.

Let now 4 be as in this lemma. Take a fine resolution
4’ of 4 andset I (M, 4) = Lim rigtece,0)), 4",
: c7h
;P_(M,-Q.) = 1lim T(qu((a,C)), fi.). Then the restriction
cya .
maps»vr(M,f;°) - P+(M,—%f) give rise to the exact sequence

0T (M, 4") »r(M, 4) »T, (M, 4 )OT_(M,4") > 0 where
PC(M,-gf) denotes the complex of sections with compact

support. From this it follows theylong exact sequence

(a.1) oo > BIM,4) > HY(M, ) > HI(M,4) @ HI(M,4) > ---
. c .’ ’ ) 4 T - E}

where we have put Hq(M g) = lim Hq(so ((c',b)),g.),

c)b '
HiM, ¢) - Ly #i(¢"2((a,¢)), §). Combined with Lemma A.1,

this implies

n g+
Lemma A.2. HI(M,4) ¥ H3''(M,4) 1f q # o0, ana ul(w,

f;) Y Hg+l(M,f;)' if q # n-1. In particular HQ(M,{?)

e
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H2+1(M,f%) if 0 < q < n-1.

Let now (X,x) be an isolated singularity and suppose

X is imbedded into CN:(zl,z2,---,zN) so that x = 0 and
. : . _ N 2

r{y\x has no critical point where r(z) = zi=l|zil . Then,

setting M = X x, P = and applying Theorem A.l and

Tl
Lemmas A.1 and A.2, we obtain L'emma 1.1.1 .

To prove the facﬁ remarked aftér Lemma 1.1.1, we first
note that the refriction map HI(M,27) » HJ(M,@") 1s quasi-
isomorphism. For, by Lemma A.1l, H3(M,0") » HE(M,Q.) (q # 0),
1dm,0") » #9(M,2") (q # n-1) are actually isomorphisms.
Morover, ED*? = #P(ul(m,0")), ,ED°Y = WP(HI(M,2")) are

regarded E.~-terms of the three spectral sequences which

2
converge to the same limit.(The facts that ¢ :M + (a,b) is

‘proper and that d'tp vanish nowhere, lmply that the inclusions
cp—l((a,C)), 50-],'((c,b)) (s M are homotopy equivalences).

"

Therefore, HP(HY(M,0")) = HP(ud(M,27)). Next,

and observe that HO(X\x,2') =

set M= X\x, Q= r"X\x
%*0° D 20 P :
(1*-1. 2y), and that H' ((1g1%*Qy) ) are finite dimensionaj.
when n 2 2. (Note HP(Ry ) are finite-dimensional, and
s A1

the kernel and the cokernel of Q).(,x > (1*1'*52;()x are finite
dimensional) Note that HO(M,QP) are Fréchet, that the
complex HO(M,Q°) has’“ finite-dimensional cohomblogy ahd that
HOM,a%) and HD(M,0"7P) are dual each other. Thus, argueing
as in [14], we conclude that Hp(HO(M,Q')) 2 Hp((1*1*9).()x)'
and H'P(Hj(M,2")) ¥ EY P (Pt (,00)) 2 H P (R™ ga*e)y)

are mutually dual, which was to be proved.
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In the rest of this appendix we shall prove the statement
mentioned at the top of p.28, that is, that the Milnor number of

(X 0), T€V(S) does not depend on 1. Let the action T over

T°
N:(Zl""’z;) be as in Section 2.3 and recall that V(&)

(8§ is a system (dl’dZ"“’dr) of quasi-degrees with respeét to
T) 'is a Zariski open subset of some complex euclidean space.

In this space we take a linear system of coordinotes T = (Tl,
T2,...,Tp). We shall further_define the polynoﬁials' Fi,~i =1,
2,...,v of 11,12,...,tp, zl,zz,...,zN' as follows: Recalling
ﬁhat éach T€V(S) is a system of quasi-homogeneous éolynomials
fl(z),fz(z),...,fr(z) of quasi-degree d 2;""dr respectively,
we set Fi(T,z) =ffi(z), 1<i<r. ‘Setting X = {zem 3 Fi(t,z) =
Fi+1(r,z) = _,, = Fr(T,z)} for TEV(S), we obtain a series of

1solated singularities (X_,0) = (XI,0) 6 (x2,0) & ... (x5,0) &
1+1

(¢¥,0), where each (Xi,o) 1s a hypersurfacesection of (X 7;0).

, - . , a }
Let Ay58550 0050y be such that T(c)(zl’ZZ""’ZN) = (¢ lzl,
a Oy ,

2_ N . ;
c “Z55...,0 ZN) and define 81’62”f”BN so that aiBi . are

equal to the smallest common multiple m of ai,az,...;aN. Ifr

ZBi

we set r(z) = ZNzi[zﬂ , we know by Milnor [10] (Corollary 2.8),

for any T€ V($), there is €>0 such:that ez} 43
. X2 n{zec ,r(z)<e}\0
l<i<e have no critical points. But the formula r(T(e)z) = {dzmr(z)

implies that r(z)] N have no critical points. (Note that for

X°N\0 :
ze-Xi' we can find & eC*¥ such that "I‘(c)z’e X‘:TLn{z-;r(z)'<e}.). This

fact means that, for (1,z) such that ze:xi\o, the following
2(r-1+1)+1 real linear forms in t = (ty,t5,...,ty) € C" are

linearly independent over R:

a8 (6) = Re[IN_ (v,9F, (1,2)/92, + T,0F, (1,2)/9%,)], iksr

- 39 -



127

B %) (6) = Im[JY_| (¢,0F (1,2)/02, + §

i

9P, (1,2)/32,)], isk<r

C(T:z)(t)

1]

N — —
Li=q(ty9r(2)/3z, + §,9r(2)/3z,)

(The linear independence of the first 2(r-i+l) forms in the
restatement of that (Xi, 0) 1is an isolated singularity.) From

this it follows

Lemma A.3. One can find (real) ¢® vector fields Zi
(1=1,2,...,p) over V(&) x (C¥N0) such that Z,ty = 8445
Zyr(z) = 0, Z;Fy = 0mod. Fy, Fyopueees FF Fr,, Fp,
where we have let g = O mod. hy, hy,:.., hg mean that g lies

in the ideal generated by hy, hy,..., h, in the ring of c”

functlons.

Proof. We express the required Z; 1in the form Re[a/ari—,

Zz =1 lS(T z) 8/az ] where iE(T z) are ¢® functions in
V(8) x (¢¥N\0). Then ZiF =0 1is equivalent to AéT Z)(til(T z),
(2(T 3Z)seses t N(T z)) = 3e[aFk(r,g)/Bri f aFk(TQZ)/aTi]’

B (by) (122), ty,(0,2) 50y tyy(52)) = In[oF, (1,2) /01, +
9F, (1,2)/97T ], and further Z. r(z) =0  is. equivalent to

“ 2 (t31(152)5 by5(128)50nns tiN(T,z)) = 0. Since 2(r-1+1)+lc
2N (vrg<N), by what was remarked before the lemma, in some neighbor-

hood of ('co, Z ) such that : 06 XJ N0, we can find the solution |
To o
is(T z), 1<i<p, 1<s<N of these equations for J<k<r. Suppose now

zexﬂl\ﬂ
Then we can find vector fields Zi “in a neighborhood of (1,2)
1Tk = O3y i

such that Z!1 Zir(z) = 0, 2jF, vanish identically for
J < k. By shrinking the neighborhood if necessary, we also see
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that the vector fields Zi satisfy Z_iFk = 0 mod. Fk”"’ Fr’
?k,..,, F& for k < j, since Fj 'is among F,,..., F  and

z;gxi implies Fj(r,z) # 0. We have thus shown the local existence
of the required vector fields. The global existence is proved

now by using the partition of unity.

Using this lemma, we shall show

Theorem A.2. Set S_= {ze»CN- r(z) =€} and Mi(é) =

——— € L]

xi nS, for 1gicr, teV(s), and e > 0. For any t', t"eV(§)

there is a diffeomorphism of S = onto itself which maps »Mi‘(e)

gﬁgg Mi"(e).

Proof It suffices to prove when 1t', ™" are sufficiently
near. Let U be an open subset of V(8) which is convex in the
linear‘ space containing V(6) and let T' = (Ti,ré,Q.., Té);
= (1,75, THEU. We set 7 = I9 (<} - D)z, Since
Z2r(z) = 0, Z 1is tangent to the surfaces U x S_. Since the
projection U X\EE > U 1is proper, the definition domain of exp tZ
is just the product of S_ and the definition domain of
exp t(Xg=l(rg-ti)a/&ri), for every to€ R. Thus exp Z induces
a diffeomorphism of {t'} x S, onto {r"} x 8_. We regard this
‘ és a diffeomorphism ‘y'.of S; onﬁo SE through the projection
U x sg > S, Then the conditon ZF; = 0 mod. Fs,...,Fr, Fj,...,"ﬁr-
implies & maps each M{,(e) onto Mi"(e). '

Recall that the Milnor number of (Xi, 0) 1is a topological

i+1
T

invariant of M (s)\Mi(s) (Milnof [lo](Remark 8.6) combined
with Hamm [ 5 ]). ‘Hence Theorem A.2 proves that the Milnor number

“of (XT, 0) 4is a constant, which was to be proved.
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