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De Rham cohomologles and stratifications .

Complex analytic de Rham cohomology III.

Nobuo Sasakura.

Tokyo Metropolitan University.

The importance of the idea of stratifying varletles
in the study>0f élgebraic and analytic varietles is well
known. The investigation of stratification of vagieties

—wouldAinvoive baslcally the following steps*:

(1) To stratify varities so that each stratum as well
as the relations among the strata ,e.g., incldence relation
,e..5 are of simple (or typical) forms.

(2) To obtain results of desired nature for each
stratum or each serles of strata,etc. 4ith respect to a.-
fixed stratification for given varietles.

(3) To plece together results from the step (2) in
‘order to obtain results of a desired sort for given varieti-
~es -and subvarletles,...,

The steps‘{(l),(Z)}-and (3) might reasonably called ,

respectively, locallzation steps (for given global problems)

'(*) See R.Thom [8] , H.Whitney [9]. The author learned
the theories of stratificaﬁions in connection with his
proposed approach to Complex analytic de Rham cohomology.
(ce. [41,053.)

]z
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and globallzation steps ( to be applied to local results).

In [5],07] we investigated certain quantitative proper-
-tles of real analytic varieties. Results of (5! are used
in our study of the complex analytic de Rham cohomology.

Our investigations in [7) are carried out using steps (1),
(2) and (3). Exact sequences of Mayer- Vietoris type are
used repeatedly in our globalizatlion steps.The basié of our
argdapents used in the globalization stebs i; algebraic in

nature.

The main purpose of the present note 1s to introduce

the notlon of cochain complex with incldence relations

(C.C.I,) for a prestratified snace. (See n.l. and n.2.
below.) The argumentS vysed in the study of C.C.I.-are gene-
_ralizations, as well as abstractions , of those in [71.

When C.C.I.’s are related to de Rham cohomologles of certain
types, the arguements applicable to c.c.I. s in general
clarify relations between(iocal’ and (global’gata in the de
Rham cohomologies in question. Actually the author’s hope

in introducing the notion of C.C.I. is to clarify relat’ons’
between &ocal, and %lobal’ data in de Rham cohomologles of

various types.

[4 5 [ B}
(¥) The <terms 1local and global in this note should
be understood in the sense-explained at the beginning of

this note.

/3
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The cotents of this note are preliminary In nature.
However, the arguments applicable to C.C.I. in general are
indispensable in [5] and have certain theoretically pleasa-

-nt aspects.

o

n.l. Prestratifications. Let X be a topological space.

. ¥ Tt
By a prestratification (S)of X we mean a collection(s)= !.rsx}xe’[\'
of subsets S,’s of X satisfying the following conditions.

(1.1); X is the disjoint union of S,’s in@® : X =Sy,

(l.l)2 For each stratum Sx‘5@9 , the dimension : dim %%55
Z+ is given.

(1.1)3 Frontier condition : For each'stratum SN?E%
fron(S, ) =75, - S, 1s the disloint union of lower dimensic
-onal strata of(@-.

To substantlally simplify notations in later arguments
we assume that

(l.l)u S ié a finite set.**

A pair (XJ@) consisting of a topolcglcal space and its

~,

prestratification(S'will be called a prestratified space.

Let (X,Q§) be a prestratified space. For (¢®), let |(T)!dencte the

N

(¥) For definitions of stratifications and prestratifi-

-catlons , see J.Mather [2], R.Thom[8] . Our definition of

prestratifications is ,for technical reasons, not the same
as in [2],[81.

(*%) For the case where6§ 1s locally finite

14

N
.
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support of@ :\CB&= US\ s S‘,\é@ . Moreover, for @-':@4@ s }@‘ﬂ

m
VL)
N

o
denotes the closure of']c\l in]T. We 1ist certain notations

used below. For@C S , define @C,@ by

) — ,
{QC(\ .. ml“t T i’or closed} s \_‘:1\"\”
C\m {f@ : l(S) = }' * Tl

Moreover, let Tb denofe the col’ection of series of strata
1n((p: |

T "{S"\ ey = Sy KLrevelS : 8 i .o

©) Aeeoa,” h X ,Af@(~ =1 SN

/ o1 t
In the above Sxf SAZ,.. means that S/\c f’ron(SA ) seee For,,@

C@and a series ..»)\ 5o ..,\ s S éQ let@n(s ”"’A ) den-
-t t
-ote the intersection@ { &) - S, <s}, For <@ define T},
t

C
by

1!
/OC {@ (SA ,"9) Oc-. s skj@ J = l,oo,t}
Then one easlly derives the following fact
(1.2) If Qeoc , then ('T‘e@ zm\;i VC@OCC©C . Moreover,
\ , v
1f@1@ e@csatisfy the re_ation@ @ s then@L @2 S
Here Tl T, 1f , for any S;‘J.L:\ (L = 1,2), S a;s/\e,sliy
n.2. Cochain complex with incidence relation X{C.C.I)i~
Let’ . be ,& noetherian ring , and let (X,@} be
a prestratified space Moreover, let O(@) be a collection

(*) For Sé@, the length 1(S) can be defined in an

obvious manner (see [6]).

|5

"\
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of assignments(\ ®) 89,8 NG )1‘ of the following forms: C:Is):
!

T, —0m),0®): Das— D and § (&) :Ded, ,_:.‘d (@) . Here

@E'ﬁ‘) £ and ¢ (’*) are @-cochain complexes. The collectlon

@J('S')={\@(3) ,‘E(‘S),@(S);as above is called a cochain complex

with ineidence relations ammgg_mtx,mc C.I. attached to

(X @)) if C/(@) is equipped with isomorphisms 1(3), if('I‘)l (T)Z) i(@)
and homomorphisms h ("‘ ), h (”\) of the following forms.

(1.3); 1(S): o-;c(s)—»@:ts%-; 0, Se@ )

(1.3), 1,8 0=gEUr,)—g (@)ec’ (@2>-—>o 84 D)

Vo ey T
and T, T, — fse

t LIS
(1.3);  1(0)): 02> ﬁ(s)\v i g
@ (SX ,..,)\ wltﬁ Tegcand S}\ﬂ\ﬁ Moreover, Sg C\}

)-—90 where(U

-
=

3
B
e

NErl
h. (‘J- ("T‘\ )
'(1‘3)3 0'?‘5@ ml) > (T @[@m mmﬁ
® m+l® (;. (S}\m_l)\—? 0, where ‘I"éwc and (9 - *Tm+l”O .
. (@ N ‘ h, (0))
(1.3), O‘->\§(U‘+1)_.~L——m——_~7£\ﬁ )@fi-) ) «\1‘~ Am“)} 2bm
Absl L41
Py U S Y =M
s luse .~
amiQM_l mk—l  " . ’/\t) Moreover, S,‘m+lé‘im+l"'*§n'
- e+ :

Postulated conditions of the exlistence of 1lsomorphlsms
' !

in (1.3)1, {(1.3)2,(1.3)3&1@@ homomorphisms in (1.3)3,(1.3‘)3{

will be called ‘Tgentification condition?; fI’Jisjoin‘c condition

(*) Isomorphisms and homomorphisms are those of R-

cochain complexes.

b
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4 *r H
and Incldence condition (Mayer- Vietoris condlition ) respec-—

~-tively. The collection of isomorphisms 1(S),... and homomo-
-rphisms h, ’s will be denoted by @(O(S))). When we emphasize
the role of@(@(@)), we say tha*‘()(s) *s@@(@)\ c.C.I. .
Let @(@) and @(@@)) be as above . Then isomorphisms 1(S),.

]

.+ +.and homomorphlsms hk s of cochalin complexes 1lnduce corre-
5 ‘s

_ , ¥
~sponding isomorphisms 1 (S) ,...and homomorphisms h’k s of

cohomology groups naturally. The collection of 2 (S),...and

¥ - *
h, s will be denoted by(X) (C(S))

Equivalencgs between C.C.I.’s. Let (X,@) be a prestra-
-1, - 1
=tified space, and let g’(\gj) be»‘}g@‘(ﬁ}))—c.c.l. (1 = 1,2).
' * % v¥
Moreover, letd ,6 andé be families of @-homomorphisms'
’ * % % .17 ¥ 0
of the following forms: g ={(} () : H © ~(@)—H (@ 2(@\),
* ¥ * 1 * .o . r %
res, ¥, 6= (£ @ @ @@ 8e®)) ana’
% Ty '
= {6 (@) : H (B l(@'\)a” ( (@) ,(Ué@oc L, ’T‘hen we can

define the notion of commutativity f‘{g 6 8' }*with
@(@i(@)) in an ohvious manner ([61). We say that @(@)(1 =
#* * AR * ,* RAR 3
1,2) are{d’ , 6 ,-6 }— equivalent 1f (*)«o s \_ ,Q }’
commute with @@i(@} (1 = 1,2) and if (ii) the homomorphism
LI T

‘@ /(\g) is an isomorphism for any @e@o.

Now , in our investigatlons, “here are reasons for
regarding @ ((‘) (\6@ as (globa_ data and /T}(/, ,Tbéw as

(local data. The following lemma shows that certain propert-

L7
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-les of global data are derived from those of local data.

g~ L R . RERPS 1
Lemma 1, _Let (’J“(S) =1C T(S),B (3, & ”(’S‘)}‘be R (@)

--'IC.C.I.'(_S. = 0,1,2) of a prestratified space (XJ@).

—~
(1) 1Ir H ( (UY) +s a finitely penerated ’R-—module for

each @e/s\,,, them H (C‘O(G)) is so for each’”’épﬁ.

-~

.‘
(IT) Let T (8) (i = 1,2 ‘A\ G w-ecmva ent . Then

P ' - L ¥ % otk
d\ (T)Y1is an @*— 1somorphism for each Tel.. Here h {‘)’ ¢G

-~

are families of @-—hbmomorohisms of the form§ givén in the be-

-ginning of n.2.

For the proof of Lemma 1, see [6].

n.3. An exact sequence of Vayer- Vietoris type. Let K

be an algebrailcally closed field of any characteristic. In

n.3. every variety in question is assumed to be a reduced.
K~variety . Let An, V and D be ah affine space of d‘mmﬂs*or\
n, a variety in A and a divisor in A, resp‘ective’y, such

that for each Ilrreducible component VJ of V., Vjc‘;D and VMD
xP. We denote by W the variety in A characterized by |W|= iV‘s,\‘DK

Now leH/O »V’{Iw and C\D @\(h) denote respectively “he ring

]<j..,x ] and the 1deals of V,W,and 2. The completions
/N ™
lim /r“ and ]%_m LO\,,N, are denoted by.CV and @A respectlvely,

.o . . =1 W
We denote the localizations Olh ~ and @A[

-

h"lj by 07¥D] and

\f "_,w-' ~ I A
@[*D] respectively. Moreover, aet and-”f}‘v\’v * be respe -~

\'_*

-ctivg/gs} the como‘et*ons cefined by l m '9'-//4’0”6“’ j:“, and
H (*D} I'*D'l In) In the above we vega*’c@, as conta:’.rﬁc’.

inLO_[*D] and@\[*D] in a natural fashion. For the graded

| 8
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. “i . ~ )
ringﬁ},of K-differential forms over A, 1et@ﬁv,§L ,SL“ V=W

respectively‘denoteegaﬁﬁﬁy,...,JS?@fAW’V~w. Then we have

U] Lemma 2. For the rings,fbv,... fﬂvv' , the exact sequence
(;T’W OA ~v R O@v-w N W ATH (e V—A’()Iéx s 0
;-95& ’Jh‘@f:u >£?.\
holds. In (I) the continuous homomorphisms/% Yeul
: - ki R I S (A
N q
are_determined naturally from tonologies ofgiy;..ﬁiy V'M

For the proof of Lemma 2 , see [e6l. The exact sequence {I)

Ay ana 1T QYY) to

relates cohomology groups H (ﬁy) H
the cohomology group H éi_). For a palr (V;W)‘of smooth varietiles
(defined over the complex number field C), the idea of _reiating
the cohomology groups of W,V-W and N(W)—wkfo that of V may be

regarded as one of the basic 1deas in the classical (analytic)’

theories of residues.(Cf. J.Leray[2], P.A.Griffith{1],..) . The

sequence (I) might be regarded as a generalizat*on in an alge-

=braic direction of the ldea explained above. Moreover, Lemma 2

enables us to attach the algebraic de Rham C. C.*J_\to the pre-

-

-stratified space (V1§=(W,V-W)) in a natural manner. To—— _ 3 /.

—

Remarks about results untouched here., In this note, we
have spent several pages explaining ideas used in defining
[ 5 o
C.C.I. s, For arguements on C.C.I. s untouched here, see

X 3
[6]. In particular , [6] contains examples of C.C.I. s such.

(*#) N(W) is a suitable neighbourhood of W in V.

L9
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o0
as the singular , the C - de Rham , and the P.G.(polynomial

! . 3
growth) de Rham[C.C.I. s,as well as an application of the

sequence (I).
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1. Cochalin complexes with incidence relations.

1.1. Prestratified spaces. Let V be a topological sp-
-ace and S a subset of V. For a subset V' of V such that
SV, we denote by‘gv' the closure of S in V . When it ié
clear from contexts that we are taking the closure of S in
V' we write Sv' simply as S.

Now we define the notion of a prestrapification of a
topological sggs in the following manner®

Definition 1.1. Let V be a topological space. A prestra-
=tification S of V is a collection as foliows: _

(1.1), A family §)={s, sAeApof subsets Sys of V (call-
-ed strata of SS;

(1.1)2 A family D ={§im§xq\ of integer valued functions
dimxfs (called dimention functions on Sis).

Pamilies S and D are required to satisfy the following
conditions.

(1.2)l S is locally finite.

(1.2)2 V 1is expressed as the disjoint union of all the

strata in S.

(#) For the generel notions of stratificatioﬁs and pre-
-stratifications, see J.Mather t J, R.Thom [ ] and H.Whitney
[ ]. Our definition of prestratification is not the same as
thelrs by technical reasons. Our definition 1s convenient to
treat prestratifications of topological spaces(like ¢”-mani-
-folds, real and complex analytic varieties, algebraic varie-

;ties,etc.) at the same time.

z|
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(1.2)3 Dimension condition: For each %fzs, the dimens-

-ion function dim>53&) is bounded on SA .

kl.2)u Frontier condition: For each SAE:S, the frontier:
=—— : .ﬁ't\-?_:

fron SA SA %l is expressed as the disjoint union: fron SA

= s S, . - . M '

'VSHJ, ES 30@& SQ%#’ oreover, Tor any sﬂc_fron SA’

max., dim (P max., dim (P, ). Here P &S a Pesy,
p, At ) Lmaxep A, (B HETY B HETA

A
to S and write it usually as dimP SAU Moreover, we call
A

We call dimAFPA) the dimension of S, at ?kwith resnect

2 f < cx Y -
maxdeim%‘SX the dimension o SA with respect to S.and wri

-te it as dim SA,When there is no fear of confusions, we

call the dimension of SA.Q$ EX (the dimension of %9 with re-

-spect to S simply the dimension of Sk at QA ( the dimension
of 3\).

In the sequel of this papar, we glways assume that a

prestratification S of & topological space satisfiles the
following condition.

(1.3) There exists a positive number n, such that

0

dim S §§r1 for each stratum s);of's

A
Remark ¢ Let S = (S,D) be a prestratification of a top-

0

-ological space V. When there is no fear of confusions, we
write the prestratification S as 8. Also we call a stratum

%& of S as a stratum %X of S . Of course these simplified
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notations coincide with the standard notations (cf. J.Mather
L 1)
Let V be a topological space, and let S = (3,D) be a

prestratification of V. Let S be strata~ of S. We

A A
€ fron S, . For a sequence SxZ....£S
1 A AT A

of strata of S , we use gn abbriviated notation: $Aiy-

write SAI< 31\2’ if s)\
.J_lt'

Moreover, let §§ss and l(SX) the positive number characteri-

~zed as follows: There exists a sequencéKPf the form: Sk "'{A"

- ' 4 )
But there does not exsist a sequence of the form: S I g ot

'&\“" 1 5\‘5\‘(-7-

Here-S8, = 8. and f/z 1(§k) This integpr 1(S) will be called
Al A

the length of S, in S. Note that f(s)\)g dim 8 - dim 8§+ 1” .
Furthermore, iet Ti(i = 1,2) be subsets of S. We say that
T and T are independent if, for any SA e T ( 1=1,2),

SAl 4y di Skl. We use the symbol TIV’T to mean that T,,T, are:

: depems
Let V be a topological space and 8 = (§5,D) ! & prestra-

~tification of V. Moreover, let Vl be an open set of V. Defi-

-ne a collection S, of subsets of vy by 34 -2 nv } .. Here
1 Ag 11X

strata SA‘ exhaust all the strata of S such that SAA v %=¢
: 1

(*) dim S = max. dim S .
X )N

23
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Moreovér, define a collection D

1
=={§iml } . Here diml is the restriction of dim
M oAy A A

of integer functions by Dl

to S
RN

-

1

Vl in an obvious manner. We call this prestratification 81

the restrictlon of S to Vl'

Then it 1s clear that S, = (Sl,Dl) is a prestratification of

A pair (V,S) of a topological space V and a prestratifi-

~catlon S of V will be called a prestratified space. Let

=V,

be a continwous map. We say that f is comgatible with,Si(i=1,1)

(Vi,Si)(i=l,2) be prestratified spaces, and let f: V

1f, for each gtratum SA of 8 f(SA ) is a stratum of S A
. 1 y 3 -

1° 2°

continuous map f: V ~>V,, which 1s compatible with S{(1=l,25

1
.-will be called a map from the »restratified space (Vl,S ) to

(V2,82) PN SR R

N .
gid/and cO-sets of_prestratificationf Let (V,S) be a pre-~

-stratified space. We wrlte S explicitly as S = (S,D). For a
subset T €S, let|T| denote the supportry S/\ s S,\é'f, of T. No-
J J u
-te that, for a subset T<CS,[Tlis closed if and only if
m :
(1.3)l for any Sfé" fron chﬁl
Moreover, for a subset TS,
“— E) '
- = {‘

(1.3), ITI-ITI=UsS, , where S, 's are strata of S such

that gﬁcfron SA with a stratum %{sT and %ﬁ;T.

Furthermore, let T be a subset of S. Assume thatTE§-ET\

(%) The letters C and O are taken from the initials of the

words ‘closed’ and ‘order’,

24
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¥¢, Then|T| - ITI 1s closed if and only if
. f S (T|-IT,, fron SAT =f.
(1 3)3 or any #’such that Sﬂé’xl I'Tl, n S, ¢
Now we shall introduce certain notatlons convenient for
later arguments: Let (V,S) be a prestratified space, where S
= (3,D). Let SC denote the collection {TCS‘,FI'.‘—{T‘=¢’OI‘ clo-
-sed}. We call this set S, the C-set of S. Moreover, we call
the collection . } ‘ - of sequehces of strata in:8 the 0-.
{S®1’ W By, A =

set of S and write 1t as S Furthermore, we define the CO-

01N

= -
set SCO of S to be the subset of the product "SCX Zi":(sO chara-
Ny + K-
- . K]
cterized as follows: (T’m’s'\l’“’)\t)é SCxZ xso;?i.s in co if

and only-if 8, «T(J=1,..,t). Now let TeSC,and let meZ+.

A I/w :{&‘”

‘We denote by T tljxe subset{SAéT; T(a}gm}of T. Here 1.(S)
is the length of S’\in T.(Note that T defines a prestratifica-
-tion of|T|of the form (T, DT)’ where D, is the restriction

of D to T.) Moreover, let Te SC’ and let 8, be a sequ-

300y
1 t
-ence of strata of T. Then we denote by T(S, ey ) the sub-
1 t “
-set {Sp-, S;\t‘< Sy}of T.  Note that T(S)\l) = T(le"‘\g)‘?“.

= T(SL".’)_._).

Now the following are derived easily from the above

definitions. )
('.L.Ll)l Let T,,T,& SC such that TIVTZ' Then TlU_ T,e Sg-
(1.14)2 Let Tesc. Then subsets T, T(SI\)é SC’ where

méZ+ and S)\e‘l‘. Moreover, the C-set TC of ‘che— prestratifi-

25"
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~-cation (T,DT) of T is contained in SC'
Let (T,m,S)\l,..,/\t)éSCO‘: Then T_ and Tm(sll"”}vc)esc

by (1.&)2. We define a map h Soo—> S¢ Y Ny (Tom, Sy ,..At)
A- 1

co’ ~co

X 17

= Tm(SXl,..,kt). When there is no fear of confusions, we wr-

*
-ite (T,m .. ) as T (Sy ,.. .

( s 93)\1, ’}'t m( )\]_’ :/\t)

Remark: Yhen a prestratification S of a topological
space V is obtained from certain geometric considerations, °

the C-set SC of S has clear geometrié meanings. Moreover, if
_ v R
we want to investigate the C-set SC in details, the O- and

CO-sets S, and S, 2PPear in a natural fashion. (Cf.[ 1,0 1.
- R’ -Kt

Also see the end of § 2.) Furthermore, there are reasons to

regard objects .related to S, anéd obJects related to So,resp-
—r—

C
-ectively, as global and local objects( in the senses expla-

-ined in the introduction) in investigations of S. (Cf.T 7],

[ ]) Objects related to SC can be, then, regarded as objec-

0
*(l/
-ts connecting local and global data in the above senses.
1.2. Cochain complex with incidence relations (C.C.I.J.
Let R be a noetherian ring. In this subsection §1.2.,

we fix R once and for all. Our arguments in §1.2. will be do-

(¥) Note that the map hCO isjnot injJective. However,
o oy

the symbol Tm(le,..,At) contains three symbols T’m’SAl"'%A+

v

which characterize the element (T,m,S; ,.. )S,.~. There-
Aq ’At co

-fore our use of the symbol Tm(sk ,..,At) for (T’m’SA1"”At)

1
will not be harmful.

24
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-ne for thils fixed ring R. We mean, in this subsection§ 1.2,
by a cochain complex C an R-cochain complex of the form: C= chn
where Cn = 0 for n<0 or n>n, with a sultable Nge.

Now we shall introduce the following

Definition 1.2. Let (V,S) be a prestratified space, whe-

-re S = (S,D). A cochain complex C with incidence relations

attached to S is a pair (C,K) as follows:®

(1.5)l C i1s a collection of cochaln complexes of the
following _form: c ={C(x),XéSC,SO or SCO}‘ Here C(X) I1s a
cochain complex and Sgse+s are the C-set of S,...

(1.5)2‘K is a collection of homomorphisms of the follow-
-ing f&bms:

(1'5)2.1 K(S>\): C.({S/\}) — C(SA)" s’\es. Here we regard lSA’T and S in

the -image C(S)respectively as elements of 8, and S,.

T, €S, such that T,V T,

(1.5); , K(X): C(X)—=> ©C(S,; ), where X; %s an

con Bl

3
element of S,y of the form (T,l,SA seay ) and S/\J_ s exhaust
1 t t+1
all the strata in Tl(s’\j_’“’)‘t)'
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- _{Kl(T,m) C(T_, ) —> C(T )& {#C(S m+1)}
K, (T,m): C(T)®{® C(S )% —A@cw (8 1pp))s
X A

where (T,m)é:SCxZ such that Tm+l n %? Moreover, §1m+l

-ust all the elements in T +1—T :
. _ - : |
(KX C(X ) ——>C(XBec(S) L))
(1-5)3 1 Aesy

(Ko (X)) C(X)) (4‘%@0(3/\1,.., m+l)§____,@c(y (S ey,
t+1 £+l
where X = Tm(skl""At)"xm+l= Tm+l(SAl""At) such that X .,

exha-

.

_Xm-$¢ . Moreover, S ., exhaust &11 the atrata In X . - X,
t+1

The data C and K are required to satisfy the following
exact sequences:

(1.6); 0oy KB o 05y o,

(1. 6)‘ O——»C(TIUTZ) K(T1’*9)

—> C(T)BC(T,)—»0.

(1.6), 0—s0(x,)—KX) ,@C(Sl )—> 0.

‘ t+1
(1.6), 0—> 0T, D o e fe ocs Y lTm

< 0<s)\m+1)-90.

' Ky (X))
(1.6 +
)3 0—sC(x )2 oy n) 0@ C(S) Heees oL
i (1() | 1 ’\t—H_ !
— 2 "o nS me1))

t+1

28
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In the above exact sequences,,the symbols S,Tl,T2,...,X1

seessS S ... have the same meanings as in (1.5).

m+1? m+l°?
A t+1
The condltions of the valldity of the exact sequences

(1.6)1,(1.6)2’2' and (1.6)3’3' imposed on the pair (C,K) will

Ty

be, respectively, called the identity, the disjoint and the

incidence (or the Mayer-Vietoris) conditions.

Let (V,S) be a prestratified space, and let C =(C,K) be
a cochain complex with incidence relations.attached to S. We

call C simply a C.C.I. attched to''S.

Remark on the terminology of C.C.I. Let (V,S) be a pres-—

-tratified space, and let C = (C,K) be a C.C.I. attached to
S. We write S and C explicitly as S = (S,D) and C ={@(X))X<E’
SC’SO or SCO . Note thatiour notion of C.C.I. is based on

the gcollection C of cochain complexes and that C 1tself has

not been endowed:? structure of a cochain complex. Now we fo-

-rm a direct sum @ C(X), Xe S or S,,. The diréct:sumlﬁ

c*50 °F Sco »
= ® C(X) 1s a cochain complex in a natiral manner;It.is easy

to form a collectionfﬁf of homomorphlsms in terms of‘E so th-
—atlkhcorresponds to K. Also 1t is easy to state conditions
corresponding to (1.6) in terms od the pailr (C ;ﬁg). The abo-
~-ve brief explanation would suffice to assure théféxistence
of an equlvalent form of the notion of C.C.I.based on the

N
cochain complex C , and would also justify our use of the



18,

C.C.I. (cochain complex with inci<ence relations) for the no-

-tion introduced in Definition 1.2.
Remark. Typical examples of C.C.IJs will be given in

on J
$2, §3 and Appendix I: The singular and the C -de Rham C.C.I.S

introduced in§ 2 would increase understandings of the notion
2
of C.C.I.s in general. On the otherhand, arguments concerned

with the P.G.-C"-de Rham C.C.I. in §3 and those conéerned wi-

-th residue theories in Appendix I would make clear our moti-

~vations for the introduction of the notion-of C.C.I.

Notions and notations related to C.C.I,. We will intro-

-duce certaln notions and notations related té the notion of
C.C.I:

(I) Let (V,S) be a prestratified space, where S = (S,D).
Moreover, let C = (C,K) be a C.C.I. attached to S. We write .
C explicitly as C ={C(X), Xe SC,S{or SCU }

(I)l The cochain complex C(X) of C for X: Let XGESC’SOr

or SCO{ We call C(X) the cochain complex of C for X.

(1)2.The D-set SD of S, the cochain complex C(Y) of C

for Y and the homomorphism X(Y) of X for YéESni
To introduce terminologies similar to those in (I)l, it

1s convenlent to introduce the D-set S_ of S to-be the

D

30
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collection as follows: (1) sfss. (11) (Ty Ta)égsa(sc such th-

-at T1V T2° (1ii) Elements X;s in SC, where Xl is of the form:

Xy = Ty(S, seesy ) (AV) (T,mesxz’. (1v) (T,m,m+1>escxz+xz"'_
1 t ' +
= . , ,mtl) e S, X
(v) X Tm(S)\l, it)ésco,& (v) (X ,mtl) e 09 yA

A e
An element in SD will be ususlly denoted by Y. Now we

define, for YE&S the cochain complex C(Y) of C for Y and

D!
the homomorphism K(¥) of K for Y as follows:

(1) 1£¥ =5, c(¥) = c{s}), K(¥) = K(S).
(i1) If Y = (1,,T,), C(Y¥) = C(TUT,), X(Y) = K(tpl,’T2>.

(T11) 1£ Y = X;, C(Y) = C(X,), K(¥)= K(X,).

l’
AN 1£ Y = (T,m), C(T,m) = C(Tm),K(T,‘m):fxl(n:,'m).

(I’ 1£ ¥ = (T.mm1), C(T,m,m+1l) = C(T,) &{® C(sgn+l>},K<Y>=K2(r,m)}

(v) If ¥ = X, COY) = C(X D K(Y) = B(X)

o~ .

(' 10 Y = (X_,m1), C(¥) = o(x) B8 c(s RIRTICER
In the abeves, S,(Tl,Tz),...,(Xm,m+l).have the same mégﬁ}ngs '
as in the definition of SD.(Also see the exact sequences in

(1.6)). Moreover, for X = Tm(SA ,..,At) in (v),(v)f,"we den-

1
-o@e Tm+l(SAl""At) by X 4q-

The above definitlons are somewhat lengthy. However,
arguments in later will be simplified by using\ ‘,the above
anddel

definitions.

3/

{L
. |
Ko (),



183

(1)3 The restriction of C.C.I: Let Te S.. Then, in view

C
\ ]
of (1.4), the cochain complex C(X ) is defined for any X &

. 1] 1
TC’ T, or TCO' We write the ccllection {C(X ), X éETC,T

or
OS 0
» A — .
TCO\,/aS CT and call it the restriction of C to T.Moreover,

1
let Y <5TD. Then, in view of (1.4), K(Y) is defined. We write

t
the collection{k(¥'),v'e€ 1 } as K, and call 1t_the restricti

=on of X to T. Then the pair CT== (CT,KT) is a C.C.I. attach—

-ed to the prestratificatoon (T,DT) of T in an obvious manney

( DT is the restriction of the collection D.of dimension fun-

-ctions to T). We call Cp the restriction of C to T.

-

Remark. Let (V,S) be a prestratifiei—space. Moreover,let
C ={C(X), X€ESC,SO\or SCO}-be a collection of cochain comple-

> ) - —
-xes C(X) s. In this case we also call C(X) the cochain com-

-plex of C for X. Furthermore, let Y be an element in the D-

-get SD' Then we can define & cochain complex C(Y) in an en-
-tirely same manner as in the case of a C.C.I. ‘(Gf. (1)~

1
(v) 1in (1)2.) We call this cochain complex C(Y) the cochain

complex of C for Y,

(IT) Sub C.C.I* Tet (V,3) be a prestratified space, and
let C = (C,K) be a C.C.I. attached to S. We write C explicit—

. ] 1
-1y as C ={c(x), X&8,,5, or S Moreover, let C = (C ,K)

bl
0 co
!
be an another C.C.I. attached to S. We say that C is a sub— .

—C.C.I. of C if

>2
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]
(1.7)l for any X SC,SO or SCO’ C (X) is a subcochain
complex of C(X),
and 1f '
]
(1.7)2 for any Y SD’ K (Y) is the restriction of X(Y)

Y
to C (Y).

" "
Next let C =C (X), X SC’SO or S be a collectoon o

co
" s "
cochain complexes C (X) s. We assume that C (X) is a subcoch

i,
S. or S... For each Y S.,C(Y) denoles

-ain complex of C(X) for each X 'SC, 0 co

tfie cochain complex of ¢ for Y. Let K(Y) be the homomorphism of_w7
K for Y. We say that K(Y) preserves C"(Y) if the following
inclusions are valid according to the nature of Y. '
k(s)(e asplc sy, ke ,m) (e (1, T ec(r) @ cir)
perens KOmD) (T (xpef ¢ (s L OPCc® e (x (s 0.

+1 t+1
(Cf. (1.6)). In the aboves S,Tl,Tz,.. have the same meanongs
as in the definition of SD.
”
We say that X preservegs C if, for each Y&S,., XK(Y) pre-

114
~-serves C (Y).

5
() Equivalence of C.C.I. s% Let (V,S) be a prestratif-

' ’
-lied space. Moreover, let Ci= (C.,,K.) (i=1,2) be C.C.I. &

attached to S. We write Ci,Ki(i=l,2) explicitly as Ci=:
= ) Ry 1.7
{Ci(X), »XcSC,SO or SCOJ' and LK.i(”), YéSD . For each YéSD,

33
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* ¥
we denote by K (Y) the homomorphism (defined on H (Ci(Y)))

induced from X, (Y). ,
(m), Let& @{o{(x), XeSg,S, or Sl =1dx), xesy,8,
"2 ¥
or SCO}) be a collection of homomorphisms d(x): H ((Cl(X))——)
H*(Cz(X))(&(X): Cl(X) ?02(){)). For any Yé—SD, we can
(o ® homomorphismd\(Y)(d(Y) on ‘-I*(C (Y))(C,(Y)) by oper—

-ating homomorphisms *nd(d) or’i summands of H (C (Y))(c (Y))

Moreover, let ¢ be a direct summands of cochain complexes

'FC‘):"\‘

in C. Then we can . also a homomorphismdo—(&fv) on H (&)
(¥) by operating homomorphisms ind(@b on summands %C)
(C), If T 1s of the form C(Y) or Cy(X), thend\c=d(ci(y)) or
'@\*»c= (C(X)), ...

*
Now we say that@\ (Q}Q commutes with K, and K, if for

1 == "2

any Y SD,
(1.8)" ALk = ‘NN
(1.8) dg(y)K1 (1) = K, (D).
Here '(\J'(Y) is the cochain complex appearing in the right side
of the exact sequence in (1.6), in which the cochain complex
Cl(Y) appears: Namely, according to L = S ’(.Tl’Tg)""’Xm"

(x_,m+1), T(¥) = ¢ (), o(1, @c\_g),...,cl(xm)@{ml(sAl,..,)\m)}
1.

,@c(xm(s ma1))s Where S,T;,T5,...,X (X ,m+l) have '?he same
t+1

3¢
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meanings asiin (1.6).
% (¥
(1II), Let d ={& (X); X&S$,,S5 or S, 1{ be a collecti~
. % * *
-on of homomorphisms& (X):H (Cl(X))—9 H (02\(}()). We say that
%
Cy= (Cy,K,)(1=1,2) areq. -equivalent if

(1. -9)4 C)\ commutes with K,,X,,
and
" .
(1.9)2 for each X€ES5,, S (X) 1s bijective.
We say that Ci= (Ci,Ki)(i=1,2) are equivalent 1f they are

#* _ *. .
6\ ~equivalent with a suitable collectiona\ of homomorphism

as above.

(IID), Letd\ B\ (x)(& :&(x)), X€ 84,8,0r s,,o, be a
collection of homomorphisms & (X): ;(Cl(X)},—b’H (CZ(X)'):

(d\(X)' Cy (X)—;C (X)). Moreover, let TE€S.. We denote by

C.
x_(C )(1 1 »2) the restrictlions of C -(C K ) to T
and byd (6\ ) the restrictions of@\ (@) to the collection

of 412 the elements in TC,T or T

0 co’

l_and K2

thenc)\* (& ) commutes with K. _ and K Also it is clear
T T 1T 2T° -

* . R
that if E1=(C1,Ki)(i=l,2) are& -equivalent, then CiT=(CiT’

‘ % ;
Now it 1s clear that if& (d) commutes with X

*
Ki’l‘i‘ are Q qp-equivalent. |
A lemma connecting local and global datae Let (V,S) be

a prestratified space. Moreovér, let Ci=(Ci,Ki)(i=Q,l,2) be

35
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’ % *
c.c.I.’s attached to S. Furthermore, let(), ={dl (X), X€ 8,8,

¥ *
or S }be a collection of homomorphisms & (X):H (Cl(X))—\;

co
H*(Cz(X)). Now we prove a lemma whlch shows that certain pro-
-perties of -

the cohomology gruups H*(Ci(X)),Xé Sc are derived from those
of H*(ci(X)), X€S,(1=0,1,2).

* .
Lemma 1.1. Let (V,S),Ci(i=0,l,2) and O\ be as above.

We assume that S i1s a finite set.

. ,
(1.10)l if H (CG(X)) is a finitely generated R-module

, *
for each X<S., then H (CO(X)) 1s so for each X< SC'

*

. . .
(1.10) If Cc,=(C,,T,)(1=1,2) are -equivalent, then
: 2 === "1 1*°1 v

Q0 :E (e (x)) —> B (0, (x))
is bijective for each X €S

c

% *
We remarked that H (Ci(X)), X€S, and H (Ci(X)),XéS

C 0
(1=0,1;2) can be regarded as global and local objects.(Cf.
él-l-) The above lemma shows that certain properties of
‘global data are derived from those of local data( éy‘un?der-—
~standing the words local and global as explalned In the in-
~troductiom.)’, '

Proof of Lemma l.l. We first show the following facts

under the assumptions in Lemma 1.1:

24
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) t
(1.10) Let meZ'. Then for any element X: in Spgof e
v
form: X = T (8 ,..,At),
X :
(1.10)l H (CO(Xm)) is a finitely generated R-module,

! %
(1.10), Q. (X)) is bijective.

The above two facts will be shown'by the induction on m?7

IfT m= 1, then the disjoint condition for Ci(i=0,l,2) suffic

1
1.2°
for m m. Then the Mayer-Vietoris condition for Ci(i=0,l,2)

] .
-es to assure (1.18) We assume that (l.lo)l 5 are true
>
. ]
as well as the flve lemma suffices to assure (1.10)l 2Afor
3
m+l.
To show the original assertion (1.10)1 55 let Sc(m)
3

"denote the subset of S, consisting of those elements Xé?SC

C
of the form X = T, with a suitable T&Sy. We will show the
assertions (1.10)l P for Sc(m) inductively onm. If m = 1,
3>
then the identity and the disjoint conditions suffices# to
assuk¥e (1.10) . Assume that (1.10) are true for m< m.
1,2 1,2 N
Then the Mayer-Vietorls condition and the five lemma suffice

to assure the assertions in (1.10) for any X< S.(m+1).
1,2 c

This finishes the proof of Lemma 1.1.



2. The singular C.C.I. and the C°~de Rham C.C.I.

In this section we first define the notion of ¢ -thicke~
-ning for a prestratified space. We then define two C.C.I.’s
,the singular and the C®-de Rhem C.C.I.’s, for a prestratifi-
-ed space endowed with a C®™-thickening.

In this section all the strata in question are C°~ man-

=fold and for a point Py on a startum S,in question, aimgSy
1s the dimension of Sxat PA(as a C“imanifoLd). We use syﬁ%ols
S = {Sl,vsng}}éxpressing collections of C™-manifolds for
prestratifications} - ’

Afguments In this sectlion require finiteness conditions
on prestratifications in question. We assume that evéry pres-

~tratification S in question is a finite set.

§2.1.'C“Lthickenings of prestratiflied spaces. Let M be

PRV
N o PRV 2 RN o
VIS 1

a C®-manifold and V a subset of M. We call an open nelghbour—

*
~hood N(V) in M a F-thickening of V in M if

* % *
(2.1) the natural isomorphism 1 :H (N(V),R)=>H (V,R)
induced from the inclusion 1:V<&aN(V) 1is bijective.
When there is no fear of confusions, we call a C“ithick~

-ening N(V) of V in M a (”-thickening N(V) of V..

Now let (V,S) be a p?estratified space,where V 1s a sub-

-set of a C*-manifold M. Moreover, let N = {N(SQ, gf-s} be

(¥) In this section we discuss explusively cohomological
aspects of neighbourhoods. For homotopical aspects of neighb-
—-ourhoods of_strata, see the general theory in R.Thom[ J.

See also [ J,[ ] for homotopical versions Zn our contexts.

>&
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a collection of open neighbourhoods N(SA),s ot S;\’s in M. Fox
an element T in the C-set S, of S (cf.§1) we write the uniom

UN(SX), SET, as s N(T). Also for an element SA sy g €54 and

O
an element Tm(S l’””\ )es O\, we write (W(SA ) and {ﬂN(Sx}m"’\
t

e i . -

N(T_ ) as respectively N(S, , ) and N(T (S .. )). urt- -
(T NERREN SRR )
~hermore, let TeS, and NLI@ subset of M. We write *he inter- ¥

A I /v‘t‘?{) NS, j

-section NN T as NT' We call the collection-{?\l(sa) SAeT} the

contraction of N to T and write it as NT. We use the above

symbols N(T),N(S; ,.., ),N(T (S) ,..,, Y)s.... throughout
1A 1 £
this paper.

After the above preparations we introduce the notion of
C -thickening for a prestratified space &&Mﬁ manner
Definition 2.1. Let M be a C”-manifold,»and V a subset
of M. Moreover, let S = {SA ,)\q}} be a prestratification of V.
A collection N ={N(8,), gfs}of c¥- thickenings of S5 e
fn M will be called a C ~thickening of S in M 1f ‘the follow—

~1ng conditions are satisfied.
(2.2); If N(§)NN(S),) #¢, then §< 8, or %5 S.
(2.2), If N(5,)0 S;%¥$ , then S Sy

the natural

0?
;“-\
homomorphism i (X): H (N(X),R)#}H (N(X) sR) induced from

(2. 2‘)3 For any TeS and for any XeT

the inclusion: 1(X): N(X)TC, N(X) is biljective.

(2‘2)14 For any Xe SC,S or S N(X) is a paracompact

0 co’

c™-manifold.

3)
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If there is no fear of confusions, we call a ¢ -thick-

o0
-ening N of S in M a C -thickening N of S.
§2.2. The singular C.C.I. and the C'—de Rham C.C.I.

Let M be a Cw—manifold and V a subset of M. Moreover,
let S ={S>‘,X<—A} be a prestratification of V and N ={N(SX);A€A}
B® a C™~thickening of S in M. We shall define two C.C.I. s
,called the singular and the C%-dé.Rham C.C.I.,s, for the
pair (8,N).in the following manner:

(1) Let X be an element in one of three: sets:SC,So or
: 9.

S We denote by A(N(X))'and R(N(X)) respectively the co-

co’
[ A My R " »
-chain complexes of the singular cochalns over R and the

c”-differential f‘orms! We write the collections {A(N(X));

X€8y,8, or Sco}‘and X)), X& 84,5, and Sco}respective—

-ly as A(S,N) andSﬁ,(S,N.), We call these collections respec~

—tively the singular and the c”-de Rham collections attached
to the pair (S,N).

(11) Here we define two collections, denoted by
K(A(S,N)),K(EXS,N)), of homomorphisms for the pailr (S,N) so-
that (A(S,N),K(A(S,N))) as well as (SUS,N),K((S,N)) become

C.C.I. s attached to S} We define homomorphisms sfor Y& 8y,

K
according to the nature of Ye&S To simplify notations,

o
we use the symbol 0 .for both A andf2in (11),~ (ii)3beiowx

o
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(11), Let S,& S. Then it is clear thatT(N(sD ) =0 (N(SY),
(In the right side of this equality, we should regard S,as an
element in So.) We define Kal;sx)\to be the identity map i(D;g&)
L IL(NGSY) )—TN(S, ).
(11)2’1 Let Tl’TZ be elements in SC such that T1VT2. By
(2.2), N(IEQTZ) coincides with the disjoint union:N(Tl)UN(Tz)
Therefore, the inclusion i(T ,Tz):D(N(T1>t$N(T'2))->n N(T,UT,) in-

~duces the natural isomorphlsm

1(@3Ty,T): 0 —I(N(TUT,) ) uLN(T >)@§v<fr ))«—% 0 .

We write this isomorphism as K(@;T 15T5) - ‘
(11)2,2 Let Xl= Tl(Skl,..,xt)qss . We write Xl explic=
-1tly as X, ={ s ;} . Then by (2.2), N(X;) coincides with the
St+l
disjoint unioniUN(S 1 ) . The inclusion i(Xl}: UN(S 1 ) >
t+l t+1

N(Xl) induces naturally the isomorphism

i(ﬂ;Xl) 0-—=>(N1X)))— @u(N(s_y ))—>0.
_ t+1
We write this isomorphism i(U;Xl) as K(G;Xl).

+
(11)3’1 Let(T,noeSCxZ . We write Tm+l' Tm explicitly
as.{S m+%‘ Then we have the following relations:

by |
N(T_) %?UN(S I e
B¥ (TS 1)
. A

From the above relations, we obtain the short exact
sequence (Mayer-Vietoris seqlience):

0—aon(r, ) — 2 E3™ opor, >>@\®G(N<s/\ A}

_B®Tm @n (v (s

7

))—> 0.

m+1l

i/
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We write hi(D;T,m) as K,@©,;7T,m) (i=1,2).

(i*)% 5 Finally let Y = T (S 33 Y)ES .~ We write

A . cO

) as X 4p and Xoey = Xm asd S m+l}' Then by an
4—+'L

argument pararell to that in (i 310 we obtain the following

m+l(Sl |

f‘

exact sequence?

h .
0—stv(x, ,,)) 173 D(}I(Xmm{@‘]@(sxl”‘jﬁwl))}
'J+l

h2(D§Xm) Y @(m (s ""Am+ll»-—> 0.

£+l .
We write hiﬁl;xm) as Ki(u;xm)( A=1,97.

.

.We write the collection of hdmomorphisms constructed in
(11)3~ (11), as K(I(S,N)) ana K(SS,N)) according to whetheT
0= A;orﬁa. Also to make clear the dependence of homomorphis—
-ms K(U;Yg’s on the palr (S,N), we will write K(A'Y) and
K(EXY) as éCA(S,N);Y) and X(SU(S,N); Y).

(111) From the arguments in (i) and (i1), it is clear
that the pairs A(S,N) = (A(S,N),K(A(S,N)))and SUS,N) =
>
QA S,N),K(S,N)) are C.C.I. s attached to the prestratificati-

2
-on S. We call these C.C.I. s respectively the singular and

3
the C'-de Rham C.C.T. s attached to the pair (S,N).

(1v) Let TGESC, and let NT be the cotraction of N to T.

We shall define a C.C.I., called the contraction of A(S,N)

to T in the following manner: (a) Let X C_TC,LO or TCO' Then

¥2
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) '
we write the cochain complex A (N(X ) ) of the singular coch-
) 1
~ains (overfliR) as A(N $X). We write the collection J&N SX )

\
X& SC’SO or Sco}as A(N ) and call 1t the Qontraction of

A(S,N) to T. (b)Corresponding to considerations in (ii)lf\/(ii)g&
take a stratum s,{eT', & pair (T T, Ve T,XT, such that T VT,
ses e X (S/\ ,..,,\ )élco,.... Also corresponding to nei-
..ghbourhoodstN(%\) N(T}_UT'),.. N(X )s... 1n the considerations
in (1121,(11)2’1,...(11)3’2 we take 2 = N(S)\)T’

] ]
N(TIUTZ),T”" ,N(Xm)T,. .. We then restrict hcmomorphisms |

1

K(A(S,N) Sl) K@A(S,N), 'r ,T ),....,K(A(S,N) x ),... toA(Nm,SA)
A(NT,TlUT ),....,A(NT,X ),... We write the resulting homomor-

-phisms as K(A(NT) S’\) K(A(N ) Tl’T ), ..,K(A(N )5 X ), ..

We write the collection of these homomorphisms K(A(N ) Y)f S,
Y = s ,(fr ,T Yseeee, a8 K(A(N )). Then it 1s clear that the
pair A(Ny) ={A(NT),K(A(NT))} is a C.C.I. attached to the pre~
—stratification T of ITl, We call this C.C.I. the contraction

of A(S,N) to T.

$ 2.3. Equivalences between the singular and the C”-de Rh-

»
-am C.C.I.s,etc.

Let M be a CP~manifold and V a subset of M. Moreever,
let S be a prestratification of V and N a C”-thi'ékening of V
in M. Let A(S,N) and {&(s N) denote respectively the singular

and the C®-de Rham C.C.I.s. Now take an element X(—,—SC,SO or

4z
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SCO' Then, by the theorem of de Rham( [ 7), there exists a
canonical isomorphism

R Fa Ny s wac YY),

We write the collection )\;(X),X €Sp58y or S, }.as d\*. 4
Then it is clear that@\* commutes with K*(A(S,N)) and K*(Q,(S,NJ)
,wheré~eK*’s as above are collectlons of homomorphilsms K*(Y)"S
induced from K(Y)’s, YeSD. Theréefdére we obfain the followi
-ing |

Proposition 21 Let the notations be as in the beginné

-ing of §2.3." Then the singular C€.C.I. A(S,N) and the C”—de

Rham C.C.I.aare equivalent (in a natural marner).

(8,10
Next let TES,. we denote by A(S,N)T andA(NT) respectd

-ively the restriction and the contraction of‘A(S,N) to T.

4 '
Take an element X & TC"TO or T Then the inclusilon i{X ):

co’
N(X')Tc,N(X') induces a homomorphism i*(x'): H*(A(S,N);I;;X)
MH*CA(NT;X)) naturally. We write the collection{ﬂ(x'),

X' e TosTy OF Tg, }as I*, It 1s clear that If cdmmut‘_es with
collections K*(A(S,N),_)_,T and K*(A(NT)) of homomorphiSmsrof
cohomology groups(obtained from K’s). This fact, togethef wi-
~-th (2.2)3,"aleads to the,following

Proposition 2,2. Being notations as above, the restric-

-tion A(S,N)T and the contraction A(NJI,) of the singular C.C.I.

A(S,N) to TeS. are equivalent.

44
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Now we conclude this section by the following

Lemma 2.1. Let M be a C“Lmanifold and V a subset of M.

Moreover, let (S,N) be a pair consisting of a prestratifica-

-tion S of V and a Co=thickening of S in M. Then for any T &

S,, we have a nattlral isomorphism:
A

(2.3)  “H (SA(s,NME) = H (ITER).

Here ST(S,N) is the C™-de Rham C.C.I. attached to (S,N).

Proof. Besides the C.C.I.SL(S,N), let A{S,N) denote the
singular C.C.I. attached to (S,N). Then, from Proposition 2.Z.

and Lemma 1.1, we have a natfiral isomorphisii

H (A(S,N) 3T == 8 (ANT).

Clearly, H*(A(S,N)T;T)z:' H*(A(S,N);T)) and H*(A(NT;T))
C:H*(EQR)Q. On the otherhand, we know from ffoposition 2.4
that
B (Q(S,M)35T) o H (A(S,NT)).

From the above observations, (2.3) follows immeédiately.

RS a v

ys
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§ 3. P.G.-adequate prestratificationafno(_ P& - W C” e ha C.CT .

In this section we assume that each stratum ih

question isTequidimensional real manifold.

§3.1. Definitions. (1) Let R%(x)(resp. C™(z) ) be
a real (resp. complex) euclidean space of dimension n.
We assume that R"C ¢" and that Rezi=xi;
i - 1 ~ 2 n ~ e s . 3
Pl-(z ) and P.=(z) in C 1let d(Pl’ P,) denote the natural

i=1,..,n. For points

distance Zj:l{lzg' —z?! 2}1/2 . ‘Moreover,for a point PeC™

and a subsetXc (", define d('f’,z) to be inf'é;

point ’13' and r=0 ,g(?:r) stands for a disc with the center

3d(P,Q). For a

g . n o n
P and the radius r. If P&R ,thend (P;r) =A(P;r){\R . For

> I n -
two subsets Zl ,Z;2=<,£in C” anéd a couple (§)= (81,52) of

R o~ ~
positive numbers,define an.open neighbourhood NS(ZIZ\I2) of
3
7 = . .. . P
Na(lj_,zz) .. (Pl ;% d(Pl,Zz) ) ,where P,
A fad
ézl-Zg °
S > -
a4

1r Z,, & AR, then define N (%,,% ) = Ns(Kl,Zg)ﬂRn
In the above definitions we assumed that & 2=7‘> . In the .
later‘arguements it is convenlent to use simllar symbols
for the case whereg,)m% . Let (§) be a couple of the form:
(§) = (§,0). Then we define W) = N (Z,$) by N &) =
U A¢r.
PeZ' ("Sl)‘

(¥) P.G. = polynomial growth.

4
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Remark. In the sequel of the present paper the use of
the symbols N8¢§l,§é) is d-. strictly in the above senses:

To be sure, if232%¢ ,a couple (§) is always a couple 65”81)

of positive numbers. If252=4’, a couple (&) is always of the
form (§,,0).

Let ﬁ be a bounded {set ;~in ch anGHZLlra.subset of ¢c%

~ ) ~
such thatzlr{r}' k0 . Moreover, letX, be a subset of C" such
thatﬁilnflznﬁ #f. The set X, intersects (d)-regularly with

-~ ~

ﬂl in U 1if

2

N

a5~ a(?,, imfz) for any B, &Z U .
Remark. The notion of ‘intersect {d)-regularly’ is
inspired;that offregularly suited’ in Marglange [ ]. The
former 1s essentially same as the later except modificationsg

of technlcal natures.

Let U be a bounded set in C". We then define the

N Nr ot ~ e
radius r(U) of U by r(U) = sup?,aéud(P,Q). For a bounded

~ns ~e 1 R -
set U in Cn, a subset U of o 1s8(d)-envelop of U if the
following condion (X) 1s wvalid. »

~ lo ~ i
&) For any. PU, A( P; xr(U))C U , where k is in R
such that k 22. '
) ~ 1 ~ /
If U is a (d)-envelop of U ,then the following (% ) 1is

obvious.

4
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(*)' For a subset{:'..’/ecn satisfyingzm g’f‘f’, d(P,%\'/nﬁ')
=d(P,§) for any Tel.

Henceforth our arguements will be done in R™. Let U be
a bounded domaln and U' a (d}-envelop of Uf Moreover, let U"
be a domain in R" containing U'. Furthermore, let f be a
real analytic function defined in U' and V the zero locus
of £ in U'. Then the following is also obvious.

(i?)" If VpU ¥, then f(P)N-d(P,V) =dCP,VnU') for any
PeU,

] 1"
Remark., -Let U,U and U ,f be as in 6&)”.u0hoose coupl-

"
f 1
-es (a),(a ) such that f(P) ﬁf&:ﬁf;l d(P,VAU ). Then, for
i g™y (2) (a))
.-any U such that U<« U < U, we have £(P) I/ *° °~
111 .
a(p,v U 5
(2) A bounded domain U satisfying
(3.1) r(W<1/2 ,
1s called to satisfy (d)-regularization condition.LettU be

such a domain.end V a closed set in U. For a pair (U,V) ,a
' 1] : - ]
pair (U .V ) of a bounded domailn U'C.Rn and a closed set V

]
in U 1sq(d)~envelop of (U,V) if

(3.2) L'ﬁ’is a (d)-envelop of U and V' U= V.
n

Let (U,V),(U',V') be as above , and let (8,5 ) ve «

pair of prestratifications of V and V’respectively. If

i .Y ’ LA |
'S 1s a restriction of(S to V, then the triple (U',V 33 )

(¥) If @ subset UcR®,then a subset U < R® will be
) I ! ~r %
called a (d)=-envelop of © provided U = Uf\Rn. Here Uclis

a (d)- envelop of U in the originsl sense.

2’
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7 : - e Y
is called a (d)-envelop of (U,V,S). For the above (38,5 ) we

say that ( S,Sj) satisfies {§)-separation condition if the

following 1s true.

(3.3) ©. With each S& S associated is a couple (¥) =
%(s) such that if Nw(SX,,fron(Sx,) g ¥ (;x.,fron(sf))¢é,
then S<S or %<S, .

In (3 2) the rule in the use of a couple (S) is kept.
(Cf. the firsr remark in§ 3.1.). Moreover, ('s,s") satisfies

(d)-regular Iintersection condition if the“following is true

| 1 ]
(3.4) I For any Sy' S such that S)~Au,,U 59,

'xﬂ

(resp S l"(resp. %@ ) regularly *nU

X'> intersects

For a relation between the above two conditions,see
the remark in -the end of this section.

(3) Let (U,V) be as in the beginning of (2) and/S 2
prestratification of V. Moreover, let (U',V';S') a (d)-
envelop of (U,V,S). Let F =$f (s>-sss},’é=fé(s)- SeS,fro"(SJ%“?}
and H = {nl@,s) se§, T¢S, such that Semlhof real analytic
functions. Such familiesgif,g,f w*l%z%ijég%ggd families

of comparlson functions (f.c.f) associated with ((S;S/) if

the followings are true.
v - ’
(3. 5) Functions f'(S),é(S\awﬂ n/m,8)’s are defined iIn v,

' ' !
N%KS fron(S 1), where’ =%(S) is q,subtk£%e coupleand S égfa
such that S(\U =S. '
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(3.5)2 For each Seési,we have the following comparisons:
(1) f'(S:Q)«/d(Q,S) and ng:Q)Vd(Q,fron(S)) for
any QeNfS,.(S,fron(S)).
(11) H(%;S:Q)««d(Q,T”+(S)) for any Qé%N@?S,fron(Sﬁ
n N (E"+(S)-§). Here E'='§(S,T) is a suitable couple and
T T(s) = 7 tEQ)- {s'; aim s%n}.
(4) ©Let (U,V) be as in the beginning of (2). A finite

prestratification S of V is P.G.-adequate (polynomial

growth adequate) 1f we can find the following data.'

(3.6)1' A triple (U',V',S') of a (d)-envglop of.
(H,V,S)sati;fying Qg)—separation conditiﬁn (and so the
regular 1h£e;§eé%ion condition) (ef. the end of this sectiom.)

(3.6)21‘de111es’Fﬁ,G,H'associated with ( $,S}).

When we emphasize (U',V',Sj) and (F',d,HS we say that

. ' ' ’ vy
S'1s P.G.-adequate with (U ,V ,S ) and (F ,C,H).

§ 3.2. Sets of ¢”- functions. Let (U,V) be as in (4),

§ 3.1. Moreover, let S be a P.G.-adequate prestratification
of V with (U',V'Qéf) and (F';GZﬁ). Fix a d”—function.fo(t)
; t&R. satlsfying the conditlons : (i) 05X, (t) =1,
(11) X(¢) =1,1f £ £1/2 and X y(t) = 0,1f £ Z1 .. Now
we define d”-functions of the following two typeé:

(1) Let Séfg‘such that fron(s) %% . For a couple (a)

5o



203
' . o0 r ¥
of positive numbers , define a C - functionfa(f s& :S) by

' A a 1
X, g :8) =X al~f%? ) .

t \
This function Xa s defined in U - fréon(S') ,where S'& S
1
such that S, U =38 .

(11) Let (S{T) be a pair of S=g and (T&e@y- For a
00 . ] 3 o
couple (a) = (a;,a,) , define a C -function Xa(f ,h: S§T)
by
_ C .
Ya_(f R :S,T) = fo( aiha2/f"}, .
' | - ¥
The function J(f',k) 1s defined in(U - $)Ng(S:fron(s) ).
‘ v \
The following properties of functions Ia(f',g) and
Ia(f‘,h') will be utilized in the later arguements:

(1)' Let S be as in (1). Given a couple (8'), we find

4
a couple (a) and a couple (§) = (sli’ra.) ) such that

(3.7) '\Ca(f,g) =0 Outside N (8,fron(s)) ,and]( (¢’ ,g)
=.1 in NS,(S/fron(S))

(ii) Let S{T be as in (1i). Given a couple (§), we

find a couple (a) and a couple (S) = (S(a)) such that

(3;7)21’3(1‘.",\(11') =0 outside Ns@l*’("s) N (8, fron(S))

and = 1 in Ns,@""(s),’s’)(\N(s,fron(s)).

5/
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A r~
§ 3.3. Assignments QJ(S,N) and %(S,N). (1) Let (U,
V) be as in the beginning of (2),§ 3.1. Moreover, let@w

be a P.G.-adequate prestratification of V. A Cm—thic%ening

N of a P.G.-adequate prestratification .S* is always assumed

tD:the following condition in addition ‘to (2.1), (2.2).
LR (%) For each S« S ’NS,(S,fron(S))CN(S)C. NS(S,fron(S))
with sultable couples (§) = (5(5) ), (8) = (§C ).

I..et@\‘= {NJ 3 = 1,2,...} be a system of C -thickenings of

a P.G.-adequate S..” We say that N 1s a direct system of

Cithickenings (with respect to inclusions) of S, 1if,

in addition to the condition$ i»\IJ v~_< N:jS. AJI:,Z 3_, ohe following
2.4 )1,7(\?:?‘}&",’ ey

condition 1s walid.

(3.8) PFor any S« S and . any couple (§) , Nj( S ).
NS(S,f‘ron(S)) with a suitable J.

(3.8)' [\JNJ(S) = 3 for each S .

For a direct system 'ji\I ={NJ} of a P.G.-—adequa_’ce.;_.s , We
define, for each J , assignmemts (\Q(Q’p.g.j@’lm)"-E'(Qb.g.j

(S,N)) and :’\E(Qp.g.,j(fé',ﬁj)) by the following formulas.

~1 -y .
(3.9); G®R, ;N8 ;T e 8, —>lp.g. Ny @sfralv))

(3.9)2 e;cy(@p.g.J(N,S)): U’é—SO__—:—%ng.g.(NJ(U)’fron(V) J 5
] v N
(3.9)5 (4@ p.2.3(5,M)): T8 ——Elp.g. Ny (@)sFronter),

g

£z
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Obviously S?A >s in ths right side of (3. 9), ,2,3 are
2

P.8.y 3

graded differential ringgwith the differential operator &.

Also note that the above LQ .2 LT ,fron(T)) are determined by Né éLno'\
v Sy ' 3

by f;U;é_YSC, @é Sc, » T & SOC uniquely. We, therefore,denote

», ™. F
them by p.g.3< T )y T & SC’ S, or SOC‘ For an
) .Y‘ { !,\
element T & 8455, or Sy, let GJ'J(‘U) 3 J<d denote the
induced homomorphism e i'j : Lbj( ¢) —yr | (» )

from the inclusion 1.',; Nj'(U ) 5 N.(’C" ).  Then,for

(%

any T, €,7,(0) (& gfu)) e Rbg,(’“v

The restriction of (-‘J 1(U) tol /() “will be denoted

by ep g.3 j . Now we have the following direct systems
of graded differential rings of two types: {Q (C), Qj'j(C)gU

-~ e 1 -
{LLJp.g.j<U) Pf’iJ 3 ;0 We let ,for any U , uL(S N:0U) and

~ . :
‘?Up (S,N;T) be the durect limits llm‘.u('\u(ﬁ )) and

g. =0 3
l,_i,mgzp g.; ("”U}) respectively. The differntial operator d
i I ~ N
commutes with Pj 3 ’s andfp.g.J'j T.s, and@f,;; (S,N: TZ),

™~

ﬁ?_ b.g (S,N,U) are graded differential rings with the operat-

. 3 AN
-or d in an obvious manner. Define assignments C (%.(S,N)),

( @ @
9 S o N E(y
E(R (S, N)), E (R(s,1)) ( resp. ¢ (g, g, (5N, Bl o

S,N)), o (,_,,_‘D 2. (S,N)) by the following formulas.

c<ﬁ,(s N)) 3 Te s———>L(S,NT),

(3.10) ¢! .
o Qtp g. (S5} TeS—> p.g. (8,8:1).

0 () =R ().

53
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~
E(QX(S N)) :‘C’/é SO —_ L_(S N _C_ )’
(3.10), Y é *
E I (S,N)) :Te &, —> 5 (s,N
p.g . - X
A
(3.10) { (“il(s N0 “g—?(l(S,\* ),
~
E(Q— g (SN0 1 Ta 85, ——>p ((S,N L);
' N . A
Collections ¢C (L(;L(S,N)) , E(QL.(S,N)), 5 A(s,m) ord.
ay
5 TN
T O T R (S g (S:X)) are
denoted byﬂ(s N) andﬂ (S,N‘) respectively.

. A
(2) Collections K(QL.(S,I\)) and K(JQD« (S,N)). Let

jc;bj(c) ej 3(T )}and \L..U gi(U),ngi

direct systems of graded differential rings def*z‘led in (1)

}( o ﬂ be the

§ 3.3. . In this part § 3.3.(2), we write E—‘J.'W.(D') as

i f
d\J j(U ) 6;}!}( T Jor 53 'j('G) according to whetherT& S,

>

11 _ t (T o \ f

S’O or SOC' We write col ;.ections}rij J.(b ) 3Te SC? . s-j (1’)

5Te S, ¢ and {5'#;, as;‘{i'ﬁ ,ﬁ?ﬁ';and@ . respectively
(%] ):( 3 v v oY [ y N

Moreover ',let A 'j denote the co’leotion(d s ‘n ii"'ft .

Then 1t is easy to see that A J. commutes with Kj>=
K(L.u (s, N))) and KJ = K(uu(S \I,)) 3 1< ;fJ .From the commuta —

-

~tivity of Aj e with Kj and KJ.’ we obtain the following

direct systems of homomorphisms: (i) ( );Se Swf ,(11),

(. ' . -t ]
l15070,70) 5 72T By (3105 {4y (T) for any T T8 st
_uﬂ

- f N A =
(lli)l XIk,J(Tm) s = CSC 9k 132:. 54 1CSOC 3

In the above 'I‘l andl’l‘9 are assumed to be independent.

5%
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From the above direct systems of homomorphisms we have
1. N DA
the following direct limits: (1) {i(S);SéSfr, (ii)l{i(Tl,Tz);

v AP . = *
».Tl,‘l‘zesc%.‘where Tl T2, (11)2{1(11), for any U Tl(SAl,...,)tD})

A ~ A .
(111)1{11{3(1;“)/;\ Tesy, k=1,2} and (111),{I, (05 Uesy ]
In the above 1(S) = lig iJ(S),..,.Let K@CS’N)) be the

collection of all the above homomorphisms. Thedéi(say) Lo
becomes a cochain complex with Kdﬁﬁ,N)}(attached to 8) in
an obvious manner. Next recall that ., for,neachijéi&:;;,
Rp.g.}(gﬁg; ) d{(IS,NJ )._ _qo o¥OW . Ve show the following

ki
Proposition 3.1. For each J, the collection K.} = K(,QL(S,N}))

preserves Q’_‘ (S,sz .
1S o

Proof. We will show the following relations for maps

in question.

55
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(3'11)1 0 ——>(p c. J-LG) > ED g 3(8) —=0
' 1y a’l’T ) ' (T ) @
(3.21); O 8. J(\TT?"-—Q p.g.J

:‘Cﬁ-8-5T2) —_— 0

(3.11)5 0—>Ey . ( U)iﬂ—(—U—)—e @At+l B g.1¢ lew’;\m‘ﬁ),—“z-o ;
f"Ii:):T;(S;\ ,...,)u”".:)L .
(3.11), o~—->cp o3 (Tne1)S 1}(T'“) > Co. g J(T )@{ R
g.J(SA'ml)} ) |
.(T ): 3(’1' ) @{ m+1 ‘5. g J(Slm+l } C—
®)\m+l iEp g. J(Tm(s)\m#l) )

U,)
(3.11)5 0> Ep c. J(U +l><__.__u—§\_~>gp e, j(U Y +

E (Sy ooy mm) U= T (s , o351, )
f@xﬁl P.g.J "A; t,.} m m X

+
( O,l),-, m_*_}: = Tm+£ S l;-., %) .

7 Ty '
I2J(Um) : @~S-J(Um) @{@ ﬁ+l p g. J(S)\ > )m+1)1

< I t+l
— {@ m+l (s p "’m+1) .
Ag+l P83 Ag+1

5%
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In the aboves S,...., T (SX ""X ) have the same meanings

as in (1.5), (1.6) , (1.7). We show the above ‘obvious?

relations by checking each case. At filrst (3.11)113

. [} r
trivial f t finiti £C nd E_ : . Next
rivia rom the defin ons o D.g.] a p.g. 3 X
(5.7) are ilmmeadiate from the following remaks : (a)

The independence of T and T Ty Implies the relation :

d(Qi’ fron(Ti))A¢ d(Q fron(Tl *é)) for each Qié:Nj(Ti) s

, strata S, s

'
1=1,2. (a') For TI( Sy00 )={Sx "
t+

s
are independent each other. Then d( Q, fron(S 3\ )~
t+1

a(q, fron(T <S) yo ,) )) for each Q&N, (S‘ll;u.,‘xt+l)
Conggning (3. 11)3 I firskfnote obvious relations : fron(Tmid

< fron(Tm), fron( Um+l)<;fron(U ), where’ rt .oy U, are

‘m+l’”
as in (3.11)3 y+ Combining the above remaks with the facts
3

(2;)s (ay),

(a;) a(Q,fron(Sy ;1)) ~ a(Q,fron(Tr 1)) for QeN,(Sy 1\ Freal§,

mt

)

\
(a;) d(Q,fron(s | ) ~d(Q,fron(U ,,)) for QeN, 3 S\me 1 Fron ()
t1l ol
P -
we obtaln the first relations involving Ik?j(Tm) and IZLé(JmJ

\\)i;!‘

in (3.11)4 and (3.11) respectively. Concerning the second

Y'H

relations in (3. ll)h 5 note the fol low1ng facts

(a,) d(Q,fron(Tm) d(Q,S)\m+ ) WPG;(VQ“fr‘Eon(T (s NI %) '“'\_\,\ /\’%
for QeN gg m+1 )
(a;) d(Q,fron(C‘\‘Iﬂ))'\’ d(Q’g)\m+l) A d(Q,-‘-ron(m (S)\ ’!o)} ))
t
+
for QéNJ( Tm(sl/{ls-'s/\ ,)\m.’.‘))
t‘f—l

~ Now the inclusions for 123(‘m)’ 21(T (Sl o .,At,)p+l)) in

Tt

7
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1 NN ,
(3.ll)u and (3.11)5 follow  from (a2)’(32) and from the

obvious relations: fron(S . ,) C 8 4 )‘fIOH(S)F+l)Ci§ m+

L,
t41 At+l

i

[

. +
For homomorphisms 1.\J),...,123(Tm(SA1,.., Kt)), define &

.set of direst limits of homomorphisms as follows.

(e g {T(s) = 1in ij<s)},§i(.ﬂ:l,m2> = lig 1, (T;,T3)}

Q(g@{(s}i,...,At)):%ij(*r;_(s%,...,/\t)) :

(3-12) @ 5. + /\ . _ {,?' .
?k(:;Tm) = Q_fglkj (T)s I, (U) = oD @) ;

; +
T=- ]
‘Lm' \Tm(s l,..”At) 3 k ‘ 1,2.

In (3.12) S,....., U are as in (3.11). We let K(% o (S,N))
be the collection of homomorphisms {E(S);Sees},{f(Tl,TZ)

v N+ +
T, T2G;SC% fi(Tl(SXl,..,At)) 3y for any Tl(sAl },

,..,,\t>
A + 1

5 U & B=
{ij(Tm) 3 Téscf,{lkjwm) 3V Soc}pl"? . - Then,for

N N ~l -
homomorphisms 1(S) , (T ,T,) , i(T?(S 1505 ¢J)) In K(égLR&&\\

o N .
-(S,N)), exact sequences for Cp.g.(s) S eenn ’Ep'g'<s}iy.!At)

corresponding to the exact sequences (3.11)l 5 3are valid.
3 3

Therefore, 1f we prove the following facts (3.12)737 , then

A
the collection ﬁﬂp g. bas a structure of a cochaln complex
"p.g. O

attached to 'S with K(Sﬂp 2 ) in an obvious manner.
T opt Tk
(3J3M_I%rlzmm)=imgeLﬁﬁﬁ ; TES

c and that

+
. .
*ngm) is surjective, where TeS,.
e
(3.12)2 Krr(Um

58
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(3.12), Ker I,(Uy) = imagel,(U_) , and that Iz(»Uy"‘n) is

surjective ,where _‘Umé--SOC .

Let (U,V) be as in the beginning of § 3.3, and@;a
prestratification of V . Let Te Sc ;and let sef;\ For a
point P&S Rg ang I’HP standr for the germs of the amblent
space R" and !il"[at P. We say that T is complete along 8

if the following is satisfiled.

" B ]
(%) If at a point Pe&S Rgcmp , then for any Pe S
qu?ﬂ?' °  Moreover, if ﬂcint(@), then. Ns(sl,fro_n(s))nvc‘

iTi holds with a suitable (§ ).
> |

" Let (U,V) be as above and S a P.G.-adequate prestratif-
—1cation of V. Moreover, let N be a direct system of Cw-

thickenings of@l Now we show the following lemma.

Lemma 3.1. Let the triple(U,V,S) be just as above.

Agsume that ,for each pair (S,T) = QSX'%,, gatisfying the

relation Se(T) , the condition (&) is valld. Then (3.12), .

-

Lt e

I~
ate valid , and the collection S&n . (S,N) is a cochain
= . )

N
complex attached to S with K(Rﬁﬂ (S,N)).
N PET
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of (3. 12), below. Then the proof of (3.12),1s applicable
to that of (3.12)1 word by word. Let ,F,G,H be the families
of analytic functions assoclated withaé. Take an element

(S/\ ,...,/\ )é—SoC Tn the arguements below , for

ar. nt S

an elemen‘c EPP g. é—g-‘ .Cfm.) ,&p.g.\g(s)\l""lt)z'v P.8. 5
stands for an element in Q\p.g' é(( (‘T;’rn))""Qp.g.é,(’(sll”"lg)

/N
such that ? (}?pgj)w?p g

(1) First we show that ker?((! ) = imagei (’Um). Take

an element ‘5’ in ker( ~2(U )). Regarding \j’ aban element

D.g&- P

ing&(U ), we can write a representative \Jop g .j ofj’p "

in the following form.

(3.13) \})p.g.J = Ilj(}PJ) , Wwhere ‘;?'jé QNJ(Umﬂ))

For our purpose , 1t 1s ,then, sufficlent to show that
{? Qp l)), where. U = m+l(s)~ ”’)‘t) From
the relation Nj(Um+l) Ny (U) WUX‘H 5(51 se+58 M)ia nd
(3.13) we know that An
.14 = . ..
(3.14) ¥, bog.gr 10 Ng(U) and in Ny(S, }?:D

for each )\ ?Ii

On the otherhand d(Q,fron(Uj))~ d(Q, §m+i) in
Ag+l

NJ(S m+l)’ and 4(Q, bs-m+l)’\>: d(Q,fron(s m+1)) outside
t+1 t+l t+1
NJ(S/\m-!-l)' vTherefore, we know that

t+l



\ .
(3.14) d(Q,f‘ron(Um))’\/ d(Q,f‘ron(Um'_l)) in N:(;\Ur‘n)

-U m+l +1 )
t+1 trl

Moreover, d(Q,fron(s . ,))~ d(Q,fron(fQ:I;I_,_l)) in
t+1 v
J(SAm+l)‘ It 1s clear that (3.13),§3.14),(3.14) and the
t+1

distance comparison Just above suffices to show that ‘EOp g3

N

€ Iy g5 (Upep))-

T, . np
(II) Fory = T;(Ski’...’lt) , let'U ~ be the

subset of Um composed of those elements -S’s such that S{-

int‘,\qn;‘.Of course Umcontains strata with dimension at most
I
n-1. If Um does not contain a stratum of dimension n, then

i

¥
U=1U_ , Note that U = S, implies that Umc_S We prove

m m m C c

A
the surjectivity of the map I’Q,'(Um) in the following

two steps:

N~
(II), For an element\_?_ = (-DQA (U (S 1))

A Lﬂ t+1
take a re resentative\y of . For ‘\P .
? p.g.J gp-g- v p.g.J’

' .
define an element yp g : "(S, ,..,fm) as follows.

D Ee

f
m+l :=4>’ §P

v
(3.15), Forjxm +1 such that U (S

Aol
cin N.t( S, 5.4 ;
-Wp°gJ e Nl ! *%1§). 9
(3.15) For )\’2:% such that U(S +l) ¥P . g =

*t+1

6/



\é}p g. 71 in int tU '(S m+1)l/\ -?[( )\ nml),and}fp . 4

t +21 ! tl
X(f h Sm+1 U(Sm+1))“ .g.J. 1n Ny(s ..,*‘,)_
Al £+l AT M
t+{
int (Um(S 1))
t+1

1
In the above,,j > J, and(a)is a suiltable couple (cf.§3.

2.) . By a sultable choilce of (2)and by the condition (%),

we can assume that }9

!
p.g.J -SDP g.J an 1 .j’(um( Am+l))‘

Ag+l £+l
: oo
Moreover, we can assume that this f‘orm‘:?p g. 1s C-differen—
' C t+1 7 ' NE+lTS
polynomial grow*h with respect to | m+1US;\m+l .
£+l t+1
!
(II)2 Next we start with the form{?p e 3 constructed
, et 7
in (II)l. In this case ,for a suitable couple(b) , let EPD e %
be "& form defined by
1 , ? .
'}Pp.g.* 3%(f g 8 m+1) -3;’g.3'
A, | £+l
t
II
Then f0r: a suitable couple(b), we can assume that BD p.g. j

't —_
= ‘j? - inN=| N (S ) - 8 Y. Mor,over,
) P.E.J ) m+}{ 'R Am+_]’_ /\Tii}
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VA z Vv - S ne1)) bY lett
is a C-form in N,j" (U - Nj,( mt1 by letting

p.g.J \mHl
t+1 £+1
"
\\‘yp.g.J =0 outsj.deU m+1 N ,(S)\m_,_l)
t+l t+l
~~ 1"
Moreover, define ‘:?p.g.j by the following equation.
Yo 1 t
(3.16) \j’p.g.,j = (1 "xb(f s& ¢ Xm+1) }?p g.J
tel
in each Nj’g gll,..,mﬂ)
Ag+1
This funci::!.on\jp g.j 15 defined in Y m+1 NonlSy ""/\m-l'i)
Xeq1 i
and is of polynomial growth with respect toU fron(S 1) .
, bV A
o~ , N 1 t+l +1y
i 1 = . =
Obvious y}?p“ Bapgj }}’pgj Le‘cﬁ’pg \ n(}fpg

andg?p g.éfooj (‘fp g3 “) . Then bop gé‘Rp g.(Um) in view
8¢ %BS Fagt 8k3%8d 1n the 1ast of (1D),. Also‘yp =

®m+l P03( A "”m+1) in view of the fact thaty g. is of

Ai %onial owth*tth re tt Uf on(S ) Clearly
y gr spect to|/fr m+1

A N
(U ) (‘10 *?p?g. ) =Bop.g. . thfs ¥ inisnes our proof

of Lemma.g. l.

: s ~ . -
We call the C.C.S. (S,N) with %(G{{S,N)) in Lemma 3.1
4. 3 .

will be called the (P.G.-C=de Rham cochain complek attached
to (S,N).

{73



215

n -
3.4, Relations between@(S,N) and\g{\“ _ (S,N) .Let (U,
Meoe

V) and (S,N) be as in Lemmag3}l. Then we have two c.c.s.’s:
~

~ s PR
SEQS’N) andszb g (S,N) . Let 7 derote an element In¢Sg, So

“+
or /S... Note that, for each jcZ and U,there exlsts a

C oc
canonical injection 1 K Sz, (U)C-, SZ (U) = Q(\ ().
.8y p.g-:}
Then we can form direct limits p g. Q_)p z. (V) =
@ (S,N:U) ———-}&(U) -CL(S N:U) by 1 (U) =
P-g. P.g-
]%gn ip-g-d(g) . Here UéS SO or SOC.‘ According t/c\)
Uesc, SO or SOC’ we writi .. (U) asd (U) ,§p g. (U
,;/\4
.and ﬁ p.g. (U). Moreover, 02 (S,N), (S Ny andB(S N) deno‘ce
the collectiors{@ " U:s 3,0 @ (U); UeS }and f§ T)
p.g. ¢ p.g. ? 0

j\%\UéSOC'I respectively . It is obvious that d\(s N) é(s ,N)
»*
5’(S,N) commute with K(Q,cs N)) and K(,Q,(S N)).

Corollary to Lemma 3.1. Let (U,V) and (S,N) be as above .

Assume that the .homornhism.

e ~
CRIN AU "Ry, ) —> B Qo) ;5 vas,

‘1s. isomorphlsm:, Then,for each Te& S, we have the fo’-llomiirxg

(3.17) * 5 N S NI
B (R o () === " &m) 2= " (mr)

Proof. The first isomorphism follows from (3.16) and
Proposition 1.1. The second isomorphism follows from
the difinition of diYect systems of C - thickengs (§ 2)

and the obvious fact NJT(T) =|T|.for each j.

b¥
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_§7. Proof of Theorem 6.ld;

d=1,..,

The purpose of thls section is to prove Thecrenm 6.ld
(d=1,..) inductively on 4. Our arguments of this section are
divided into the following two gteps.

(I) To prove Theorem 6.11.

?

(II) To show that the validity of Theorem 6.14",4 =1,..
.,d=1, implies the validity of Theorem 6.1d (az2).

Thls sectlon conslsts of two parts:‘§7.l andh§7.2. First
we show the induction step (IT) 4in §7.1 . The proof of Fheor

-rem 6.1, 1s easy and will be given in§ 7.2,

§7.1. Discusslon of the inductlon step: Theorem 6.1d'
(a'=1,..,d-1) = Theorem 6.1,.(d%2).

97.1 consists of subsections: §7.1.1~§7.1.Q;, and will
be , roughly, divided into the foilowing three patrs.

(A) §7-l-l-“’§ 7.1.2, This part i1s preparatory for
the later parts (B),(C): In é?.l.l we do a reduction of the
{nduction step (II). In §7.1.2 we fix certain notations and
data used in (B),(C).

(8) §7.1.3.~ § 7.1./¢c. Here we start with a given and
rfixed adequate serles R at a point PPeRM(x). Te ij{yn,CmAilf

-uct collections from R, denoted by(%@r),ﬁkzﬁ , of (1) ger-~

65
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-les of euclldean spaces, bounded domalns, varieties ang
prestratifications and (11) serles of sets of functions.
Here r denotes a serles of positive numbers parametrizing
collectionSC:)r)]](r). Moreover, we construct collec¢tions
C}r,r')iyrgr'), parametrized by serles r,rr of positive num-
-bers, from(g}r)’s andTé}r),s by a simple divice.
(C).§7.l.lo~§7.l.'2 . The main purpoéq_of this part ig
to show that collections(Eyr;r')]ﬁ(r,r') are, under mild con —
-ditions on serles r,r', normalized serles-attached to the
adequate series R,
Further explanations of our arguments will be, when we

feel necessary, Iinserted in parts (A),(B) and (C).

In §7.2.1. ~§7.2.10 s;we_fix an Integer 4( >2) once and

Tff‘w;c'm_ '
for all and assume the validity of “ " 6.1,' for & =1,,,

T

.ld—l.
‘A.‘Préiiﬁinaries.

7.1.1. Here we make a simple remark about the Znduct-

4
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-ion step (II) as follows., We divide adequate serles R s
of dimension d into the following two types.
(1) Adequate serles R’s satisfying the equality:
/dim R = rank R.
(11) Adequate series R,s satisfying the inequality:
dim R rank R. '
Let us assume that the assertions in Theprem 6.1d are
true for adequate serles R's of type (1), We show, then, the
validity of the assertions in Theorem 6.ld alsoffor adequate

. seriesj s of type (i1). To see this take an adequate series

E( st ,@‘at a point P® in a euclidean space R (x)&such"
that rank D7 dim@ We write @@@ and@explici’cly as fo-

-llows :® {k+l(ylx":yk+l):”:R (yl:“ay %} @ {VJ} @' =
{V'J}'and(:) {WJ} » J=k#1,..,n. Then we can define , in view

. Ar O Ay
of Proposition 5.1 , an adequate series @w{@,@,@ ,N}gs foll

~QWS ., » . N
(a) The serles R is of the form: @ = {Rd".l(y;,. . ’.y;l)“

i ] r !
o Rn(yl,--,yn)} » Where (Yl,--,yé+l) 1s a linear transfoem-

' ' W 1 1 "
—ationyOf (yl:"syk+l) and (yk+23":yn) = (yk+23"?yn)-

(In the above d=dim R.) ; | . |
(b) ‘v“j = VJ V'J, 'Jgand w-% wj, J:k-‘-l’..’n. Moreover,

~ k+l

Vo 7 v m i 6o k”) and W= ¢, 1=a+1,

k.
° 0 ) B .
The adequate series [R]satisfies the equality: dim#R] = &

¢/
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T "y
rank E. Therefore,v we can choose a normalized series ,ﬁf 7)
Ko 3
attached properly to ﬁ Moreover, we can assume that the gon
o N
-ditions (6.8),,, are valid for [F. It 1s clear that,the norm—
-alized serles (ﬁfﬁ) 1s attached properly to the original se —

-ries@ Also 1t 1s clear that the conditions (6.8) are

122
valid for the series R. Thls shows oue desired fact.

By §7.1.1. ‘we restrict our attension to those adequate
series R’s satlsfying the equality dimHfR] = rank iH, Let pr
be a point in a euclidean space Rn(X) and@ an adequate se-
-ries @ at P",such that dim )= rank{E. We wri.te@ explicit-
~-ly as follows : E = {®,®.@' D, Where@"{Rkﬂ(y;_,-‘- ,y;(H)
. ,Rn(yi,. . ,y;1>}, =), @=v Y ana @ = 09}, 3mx41, .. on.
ig §7.1.2~8§7.1.2 , we fix the above data Rn(x), an
E‘ ={®,@,®' ,@}once and for all. Our arguments in §7.1.2~87,1.10

will be done fot these fixed data R'(x), P" and ®),

i 1
L Sy .

Y 7.1..2. Here we shall fix for the adequate seriles @cer«
~-taln notations and data used in the later arguments.

(1) For J=k+1,..,n, let @ and @)'J denote the- sets of
all the irreducible components of \I“J and V"j. Moreover, we
Yenote by@(d) and @J(d) the sets of all.the irreducible
components of dimension d of VJ and V'J. ‘Furthermore, we de-=
note by@(d-l) and ®'J(d-l) respectively @9-,@){(@ and @'J_
@J(d). We write the unions (V“?\@'J,@J (.d)~v@"j(d) and @ﬁ(d-l)\"xf/(}df/)
respectively as @ N @'&;and @J(d.- 1

2's



1 .
(11) We denote by 0Y the ring of germs of holomorphoc
< 1 2
functions at P¥ =Jﬁjn(y )(Pn), j=k+1l,..,n. For a germ X*
of a variety at PJ, IXJ willl denote the ideal of XJ ov.

1 ,
(1ii) For each germ X“Eﬁﬁ(d); define a proper subgerm

_ A
J J
Yo (X3) of X3 by

Y, (X ) = xj ﬁéw;,,-b}m} yd=k+1,

In the above Xﬁy and wx; exhaust respectively all the germs
in W = }ana wo-ixdy.
el ay oy : Ll
(iv) For each Xkégy (&), fix a finite baSiS:§>(XA) of

the ldeal IXJ once and for all.Moreover, £iX a proper subgerm

| 4 2 . 7
vexd, (xi))A of X3 such that X§ - Y(X,£(X])) is [y L,

s
y'k*2’3), £ (X)) Yesmootn. (cr.§ 5)
Symbols V(d),V(d-1),¥ 11 as data @ () e,v.(x) . ®x)
ym \ R ~-1),V,.. as we as data fj (X3 , O(X&,‘,(,,x,,
,..e as above will be used in the sequel of §7.1.

B. Construction of collections R(r),F(r}.

Here we shall construct collectlons R(r),F(r), paramet-
-rized by series r of positive numbers, of series explained
in the beglinning of §7.1; This part B contains subsections
7.1.3.~ 7.1. N ,and contexts of this part can be subdivided
as follows.
(B) Const”uct~ov of an adequate seriles, denoted bvaad-i)
{ﬁfj{d-l),@fv(d 1)(@d 13 Here/;d 1) V (a-1) and W{a-1)

contain only germs of dimension at most a-1.0 7.2.3~742.T)

In ﬂub CU'}"AIJ”\,\,LCLLCW na%« Q/ wE. use Pxo?c&{,tx)rn, 5.1,

‘)
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DY

B,- Construcfion of collections(@ir)(ﬁkr) based on data
J J oyl [ n
\ﬁgd -1) andu65(d)% k+1’ (Y ), Xié'V (d)é=k+l¢,and construct—

3 b
-ion of collections R9r,r ),E}r p') from(élr) s and C)r) S.
3
(§7.19~ 7.1.°9.)

In Bl arguments are purely local in the sense that argu

-ments are done for only germs of varletles anf functions.

We will concern in 52 with bounded domains, varieties,;..
g "'"Bl Construction of an adeqaute seriles @(d-l).

7.1.3. (1) Fere we shall associate with each Yk+1/fﬁk

L)
a proper subgerm Y ,Y§f1> of Xk+l satisfying the following

conditions.
g _mqo 1) S 1
(7.1 )l For each X“é%j}(d), the inclusion Y (%)Y, (X%)
. ) : v v
t}Y(XJ £ (XJ)) holds,J=k+1l,..,n. Here we write the intersectiom

XINFTT, (X k+1) with xK* _Tki"l‘*(xj)

(7. 1)2 For any pair(X“ » X %rV“(d)7~V°(d> such that

1 4
as Y (X“)

~

-'
Eﬂlan‘<xj Y = XY, we have the following relation.
JJ an y '
Tyt xv)\ - Y <XA) g foe. biho., Ly- ¥ (X

We show a method to associate wlth each Xk+Lé5(§§+l(d)

b Y
' + .
a proper subgerm Y (X%Ll)ssatis”y*ﬂg (7. 1),,2'

(1) With each pair (" XJ )é@d(d) )((V\“(d) such that
t 1
an

Jo 1(y )(Xl>

U
A s k+1§35jg_n, we associate a proper subgerm
{
1

Y(XJ XJ } of X& 30 that the fo‘lowing 3re valid,

“To
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(1.0); YOex J'>:>Y°(x3)uY(xi,f'uﬁ’)), and moreover,
Y(X';\ ,XJ) 7'1' (xJ/) Vy(xd, ,f (X“)), where we write the inter—
_section x%vxﬁj'<Y(XV,f (x ).

(7.1), Ty,': X = Y(xJ ) (Z20:DEhos xd o Y(xi,xi})

(1), Nexiwe define, for each X‘g\e@(d),a’ proper éub'germ
v"(xd) of X} by

?
L Al N
iy 1) U : (x"'/> »where %’ exhaust all
‘.‘f“ ‘Ln the germs 3.1'1@j (d) such thatc 'n’((x-j))’ga xJ»,
(1) Now we define, for each Xkﬂ'e@ﬂ)%ﬂ , & proper

subgerm Y (x}fl) of X>\l

by
() Y (xkﬂ) UJ T’ki?j( )(XJ), where X‘i ‘exhaust

all the germs in Vj(d) such that xkﬂj(XJ) - X,

' Then it 1s clear that the proper subgerm ¥ (xk"'l) as

above of: Xk)tlé-@(ﬂ(d) satisfles (7. 1)1,2,
We fix, for each XIS\HEVMl(d), a proper subgerm Y (Xk)':l)

or XK satisfyling (7.1)5, in the later arguments. |
(11) Now we define a germ '\7'k+1(d-l) at ]?k"'l by

(7.2) ¥¥*l(a-1) = I\\/'k"'l(d-l)U(U)Y'(x/lsl)%’ xk)fié_@(-b-lw)
Clearly dim V **1(4-1) £a-1. Moreover, 1t 1is obvious W

+ +
that each germ YI}CLl of V yerl

!

(d-,.) is an 1rreduc*ble compon-

7/



223

7.1.4. Here we use Proposition 5.1 to proceed one

pore step: By Proposition 5.1 there exists a bijective lin-
k+1 k+l(

A\ A\ ! " "
cear map L7 OF RUTT(Y 50 u¥yy)t LlypseesVpry) = (§950059.% )

so that the following are valid.

k+1 k+1 | an . k+ ):;—1
(7.3), For any 2 @?{ , the map?t,kk+l. ‘9jrkk+1

o w—-an
‘15 integral, where we abbr*v at /Hﬂ(y ) asj?{kﬂ. .

(7.3)2 For any pair(\[?‘”ﬁf \{g_jl) of irreducible componen—

k+1 k+1ly , o5 &" kvl
s ot (P** (a-1), T U (V5 ¥ Ty (P50,
' k+l yk+l +1 +1 (d3
. (708) FOI‘ any pair(y-}\{— A é&k (d))‘ d{ )

K+ +1 k+1 k+l p
quﬂ(‘f 1)47}%3(21(3()’& )), where we put R(XX ) = R(Xy ,.13(3;

We fix a:bijective linear map Lk+l satisfying (7'3)1,2,

] " [} [
and the resulting cooydinates (yy,..,¥, 1) F L(¥yseesVpy, )
in the 3ater arguménts. For notational reasons we write ‘the
: 1t " ] ' " L
system of coordinates (y,,.. Va1 YyansesVp ) as (¥ys- .5, .
11"
,y}l+2» .,y ) and abbriviat pro*ect.uons )S:.Jv(yy) as ][H .

The coordinates (y ) and the projections”@® "y will be

: JJ‘
utillized in §7.1.5.~§7.1, 6,
Now we define a germ VX(d-1) at PX=JC kk:l(l,k-!-l) b‘y
(1.4 vi(a-1) - "Ekan (T @ YITTER (ROG)
where kaﬂ(d)'

our arguments from now on in 7(B) will be based on this

T&(ct-i) .

72
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7.2.5, (1) Now we define germs TIJ(k-l)-'at:-PJ(g-,wl,, .
.,n) by w

. LI "
(7.5) v (a-1) =jDle(Vk(d—l))U V.

3] ! 4 ‘
Moreover, define germs ¥ (a-1), ¥ J (d-1) at PY(I=k,..,n)

by
(705)2 ?fj(d"l) = ’\\fj(d-l) ’ J=k+l,..,n,cz,and’.ﬁ}’k(d-l) =
T (VT e,

V- = Uyl K 1 -
(7.5)3 //E).L ;where Y%_ exhaust all the irre
-ducible components of Y‘% that are not contained in Yg(.j=k,,, P
[CEShN ©d-) ’
(11) To treat germs &n qhestion at Pk, we'shall introwl

-duce the following symbols: We denote by Rk the germ Rk(y"k)

k N <! .
at PF.nMoreover, we denote the set RX consisting of the sips

-gle germ R* by vK(d). Purthermore, we write the germ Yi/as

K, oKX
R,
il

Now we summarize basilc properties of Vi (a-1) K/J’(d) se e

l\.«{ ~ 1 ‘
(“(.6)l VY (d-1l) and V J(d—l) have no common irreducible

components ,é-k, ) ’n ']

, ;
(7.6)2 For any irreducible component Y)'j_L offl':f"j(d—l),

' an
7%-31(1{)1) is an irreducible component of ?J"!(d—l),ﬁk,u,n- '

73



' '.'-—l o A
(1.6), ¥ (a-1) =70, (W (a-1NV, key<s's n.
-'

4
(7'§)u For any palr (X%\,X”X)C—@(d) ﬁ@(d) such that

TN = X Geageg e, | )

' -1 ! }

(1.6), ;YO FX,  (redNN xr |

and - ' T ’ {
(7.6)y p Ty Xyy= vOx), ) A2 xo vy -0

(7.6);  Por any Xe@ (), xr1ey2n, /

v y>y oy v, e (xdy).
A 0t VY A’ AT
Note that (7.6)4,5 implies the following,

o g
(7.6)¢ For each Xxé@}(d), I=k+1,,.,n,

' e, M n 9 —
A (e (xi>;(y Sy I g ~Y<x5;>> =

The above properties of germs XJ,YJ,...follows easily
from (7.1) and the definitions of XJ,YJ,..,and will be used

arguments in Bz.

In the next subsection& 7.1.6 we shall defilne finite

sets wJ(J=k,..,n) of germs. Arguments in §7.1.6 will be basi

-tion in the part C.
=100

7.1.6. (1) Recall that, for each Xi¢ @' (a), the profec—
k
_tion75i?: Xi@aﬁ is integral (J=k+l,..,n). Therefore we can

attach to each Xifi:ﬂ(d),3=k+l,.,,n, a set f(Xi) = gé(xi:y"k)

4
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cm

satisfying the following conditions,
. .
(@) »i. 2f(§i)<;IXJ
(b) The diseriminant of ft(xjx)ﬁeo,t.-_l,“,;!_d.
we_fix, for each Xié@(d),3=k+l,..,n, a set f(XJA) of

. 4
weierstrass polynomlals at PY(with respect to the coordinate

n
(y )),once and for all We note that, for eachﬂxi é@"(d)

@ v - cade™ " -Y‘cx;:g,rm,..
(11) Let X‘iGVJ(d), J=k+1,..,n. For each mezﬂ_d,
gefine a germ wr;(f(xg\)) at P by |

- 1] ] .
, (7.7) Wm(f(xi)) is the locus of the gemrs of function
mtft(xd), t=1,..,j-d and m =0,..,m -1. Here D'tr (xJ) 1s

D
Iy o o, ()M
Dm?ft(x)\) _3 € /gxm: .

Moreover, define a subgerm wm(f(x«;\)) by
(eexdyy = w'(eexd 3
(7.7) Wy (X)) wm(f(x)\))(\ (x3).

Furthermore, define a finite set W(‘f(xi)) of sub germs
of y(xj)\) by the following requirement.

(7.8) A germ W'j of a variety at P:J is 4in W(f(Xi)) if

+3-a

and only if, for a suitable m< Z , W‘j 1s an 1lrreducible

component of wm(f(}(i)).
J el 1
Let w w(f(XA)) . Moreover, let my=(m .,..,m) and mz‘
- 1
.,mi) be in Z+J dssuch that W' 1s an irreducible co

J

2
] (mk+l"
0
component of both W, (f(X)\)) and W(f(X';\)). Pu'; mo=(ml+l,..,m

where, mg = max(mt]:',mt)(s=k+l,. .»J). Then w 1s an irreducible

75"
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.‘
component of W (f(%X)). This mean the exlstence of the elem—

-ent m=m(w3)) characterized by the fqllowing properties.

(7.8)l w) 1s an irreducible component of.W (f(x>3),

+3-4

«(7.8)2 1 The element m is maximal in Z satisfying (7.

in the following sense: If wjegw (f<x)3)’ then m&fm.
We call this element m=m(W°) the exponent of W‘j wlth

respect to f(Xi).
(1i1) We define a finite set(j&(d—l),d=k+l,..,n by
(a-1) = l&w(f(x"))} where X3€ V¥ (a). -
Moreover, define a finite set(:}(d-l) of germs at PJ

J=l€,0|,n’ by

O (a-1) —@’U@wgwaY( e v, Reg,
Wa-1) =P,

In the above we denote by Y(X%Q the set of all the irreducld

=ble components of the germ Y(X )
7.1.7. Now we summarize arguments in 7.1.3.~ 7.1.6."
I /
(1) Define series %Qd-l),%r(d-l) of germs by
~s ~g '
=1 (a- n 1y = '3 040 n
(1.9); Vea-1) ={# (a-1}, 2y o1V (@1 = F -1} R,
Moreover, define a series W of finlte sets of germs by
".?'\/ - ~J n
(1.9), *Wa-1) = i (a-1)}7, .
Furthermore, define a seriescgkd—l) of euclidean spaces
by :
94 1
(7-9)3 @Qd-l) = QR“(y J)§=k .

Then the collectionzgkd—l)'=k®(d;iSfV(d~l);§4(d-l),aﬁd-i)R

76
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is, in view of (7.6), an adequate series at PPCR™ (x).
(11) For each J=k+l,..,n, define collections@’(d)@d(d}

of sets of germs of functions by

1.9, @) =fze) X @0}, B @ =l <@ @},
Moreover, define series F(4),F (d) by

(7.9), @n) - @k, @@ =g @fn,,
Data@d—l),@(d)z‘and @(d) 1ntroduced above will basic

in arguments in 52 .

The above 7.1.7 finishes arguments of Bl‘ Arguments in
B, Wil bw based on the data R(d-1),V(4),F(4) and F (d).

B, Constructlon of collections R(r),F(r),..

7.1.8. Now we apply Theorem b.ld'Zd'al,..d-l) to the
adequate series@(d-l) to obtaln a normalized series
@d-l) @d-l) attached properly to @(dwl) We assume that t
the normalized series (@d l),@(d-l)) 1s of monomial type and
satisfles the differentiablity condition for R(4d-1l). We write

the normalized series @d-l)@% 1)) expl"citly as follows:
{@d-l)Qd-l)\ ®e-1), (@d—l) fr9a-1) @(d 1), (O(d 1),@@-0@(&—1))

m @d-—l)@(d-l)) .We use the letters (yl,..,yn) for the
iE system of coordinates defining the series@d-l) . Then

77



we know that
4 1]
(7.10) (yk+2”"yn) = (yk+2,..,yn), and (yl""yk+l) is a %

t 1
linear transformation of (¥i,..5¥y4q).
Moreover,(?}d—l)f%}(dhl) will mean, respectively, the

\
serles of prestratifications of(@?d—l)(ﬁ)(d—l) ineeduced from
(5pce-1) e,
TWe.will.fix the normalized -series- @d—l) @(d‘-l) ) as
Above orioeland,for'gll.: We also use the letters (yl"fyn) and¢
. ) :
symbols'S(de1),S (d-1) as above in the sequel ofg 7.1,
. N’ .
“7.1.9. Now we construct collectionsCﬁ}r)(@kr) in the
following divices:
(1) Choose a series éD={M31'UZ1 of pnositive monomials so
that (1) for each XJe(W(a), £(x)) 1s{(y*) (|- esbimacsa
)\ ] A - ? v .,
(J=k+1,..,n) and (2) the normallzed seriles (§kd—l)fgxd-1))
1s of type M. Moreover, we choose a series ré of positive nu-—

-mbers. of type M so that the followlng are valid.

(7.11)l The series U(Pn,y,r) is conslstent with
(R(d-1),F(d=-1)).
(7.11)2 ‘Fach germ Xieﬂgy(d),j=k+l,..,n, has & represen—

_ I a oyl SR J5 "y "ovdy s
;ative XA' of XX’ f(XA’ of f(XA) and f (XA) of £ <XA> in
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TR0,

We fix the series M, ro, chosen as above,Ln the sequel @
of §7.1. Moreover, we will fix , for each 74 éC}(dJ(J-k+l, .
vasn), representatives xﬁ,f(xi) and f (XA),respectively, of
Xd,f(xd) and £ (xx) in vd(p",y,r) omice and for all. We write
ey, et o) as £(x), e (x) XAV () (g=k+1, . un) . Further-
—more, we Will write the collectionsix{ \,{f(}(‘j)‘)%,.éf‘(xj)\)}, x) €
<§3(d)(d’k+l""n) as(??(d)ﬁ??(d) and<:jj(d).
: (11) Let r< ré be a series of positive numbers;of type
M., For each i=1,..,n, we shall make the following convention
éa),For a subset A) of Rj(yj), we write the intersection
AJ UJ(Pn,y,r) as AJ(E).(m) Let gg be a function defined in
a domain containing UJ(Pn,y,r). When we emphasize U(Pn,y,r)

we write the restriction of gJ to UJ(Pn,y,r) as gJ(r).(c)

for collections A= AJ of subsets in R?'y ) and G = gj of
functions defined in domains containing UJ(P sYsT) we’aqite

Aj(f) and gq(r) as A(r) and G(r).

(11)" Let X)e §F (@),3%k+1,. . ,n. We write £(x))(r) and
f'(X%Q(r) as’f(XJ(rD) and f'(XJ(r)) Moreover, for the germ
Y(X‘;\) we write Y(XJ)(r) as Y(xJ(r)). Here Y(x{) denotes the
representative of Y(X ) 1n(:§ (ﬁ)d-l)(:}d—l)) (cr.§ 6).
Furthermore, we write(f?(d)(r)(:)(d)(r) ascgg(d r){i) (d,r)
J=k+l,..,n, Finally ,for j-th components(Q}fd-l)(ip(d-l),
@%(d-l)g:]J(d-l),...and(é?(d—l)fgij(d-l) (J=1,..,n), we write

@(d—l)(r)®(d-l)(r)‘,---@(d)(r),.-- as,.@-(d—l,r),v (a-1)

4
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P ,'F"’ (d=1,r),... Similar abbriviations of symbols as above

will be done, when there does not occur a confusion,
1
(111) Now we choose a series ro<ry.of type (‘@so that
the following are valid.
(7:12), For each X‘j)\e@(d),3=k+l,..,n,

(7.12) xj(r ) 1s the locus of f'(XJX(r'O)),

1°1 Ao
and : _
(7.12)1.2 f(xi(ro)) vanishes on Xj)\(ro)and is u;(Pn’y"o7—

-estimated.
Moreover,
(7.12)3“3 Y(X‘}\(:}O)) 1s a subvariety of X';(ro),
and ~
(7.12)1_4 XJ)\(ro) - Y(Xg\(ro)) is{(yd,yj),f'(xfi)}, -smooth.
] Nr' ’
("{.12)2 ‘For ‘any pair (XJ',XJ)\)Q@j(d)U@) (d) such that -
_an, (v vy ktlededgn, |
T3y, (@) = ¥y(a), J¢eJ<n,

‘ |
TYyte X =k v(xd(r)) wxj\- 1)

(7.12); For any X‘;\evd(d), J=k+l,..,0,

Tyyte X)) - v (r)) (G2205yfa,r)

- - o~
(For the condltions (7.12), compare the conditions .= §6 -

The series ry of positive number as above elll be flxed
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once and for all,

(4iv) Let rry . be a series of posltive numbers of *ype(:>
We define a variety VJ(r) by

(7.13) @»(r) =@(d,r>u@’(d-1,r),3=k+1,.
Cad=1, .. 5k,

Next, for each xs(r)é£§7(d r)(j=k+1,. .,n), lethkxq(r))
denote the collection of all the connected components of xJ (x?
-Y(XJCr)). We write the collectionsés(xJ r)3 X é:VJ(d r{} as

fgi(d,r),3~k+l,;.,n. Moreover, 1et<§£(r) denote the collectiowL

of 2l) the connected components of UJ(Pn,y,r) - (r),3=k+l,

+vyeey Then we define collectionsfgy(r)fgg(r) (J=1,..,n) of
analytic manifolds by

(113, F@ @10 3o 0 ¥ = saa,m
USY (d,r) ,3=k+1,..,n

2.13%,  (Fm u@(r),;}sl,..,k, and B r) =F VF o,

J=k+l,9-;no

Thirdly we define series<§Y(r)fE)3(p) ,J=1,..,n, of
sets of functions by

(any @ Fe, ana(®) () -y

,3=k+l,..,n,

(7. 13)3 G?)J(r) =<i>J(r) J=l,..,k, andCf?J(r) =C§33(d—l r)

Lﬁﬁj(d,r), J= K+1,..,0

s/
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4 r~
Now we wlll write the serles @ (r)?,@(r) @(r) ,@(r)
oo ~ ~
md@"(r) ,d=1,..,n, respectively as V(r),S(r),go(r),F(r) e
and @(r)., and write the seriesPn,yv,-i-)"a‘sy@(r), Moreove
3,030
we will wr;te the serles {R“ (y* )é,l as@and' the collection

@r)@r) @(r) }as @(r) .

Finally we define, for any series r<ry, of type M, coll
—ections @fr)@(r) by
aan, ®r =SrQ L B =@ Oy
0l Moreovér, define, for any pair (‘r:',i':,j"éf"s*ei'ijeé of poSI~
#;ye' numbers of type M such that r<r < s collections

t 1 -
®yrsr ) and @r,r ) by

» t : 1 \ 1

(7.18), @r,r) =@ @), Bir,r) =THx).

It 1s these collections @r)sr)),(@r,r'):@(r,r'))

that we willccncern with in the next part (C).

¥z



