An example of unirational varieties in characteristic p.

T. Shioda

Department of Mathematics University of Tokyo

This note is to supplement a computation in my talk at Kyoto whose content can be found in [1].

Let X denote the Fermat variety of dimension 2r and of degree n, defined by the equation

$$(1) \qquad \sum_{i=1}^{2r+2} x_i^n = 0$$

in the projective space \mathbb{P}^{2r+1} of characteristic $p \neq 2$. When $n \not\equiv 0 \pmod{p}$, X is a non-singular irreducible variety. An irreducible variety (defined over a field k) is called <u>unirational</u> if its function field is contained in a purely transcendental extension of k. For simplicity, we assume k to be algebraically closed.

<u>Proposition</u>. Assume that $p^{\nu} \equiv -1 \pmod{n}$ for some integer ν . Then the Fermat variety X is unirational.

<u>Proof.</u> Put $q = p^{\nu}$ and $q + 1 = n \cdot a$ with some integer a.

Then the map

$$(2) \qquad (x_{i}) \longrightarrow (x_{i}^{a})$$

defines a surjective morphism of the Fermat variety of degree q+1 onto that of degree n.

Hence it suffices to prove the case n = q + 1.

By a change of coordinates, we rewrite (1) as

(3)
$$\sum_{i=1}^{r+1} (x_{2i-1}^{q+1} - x_{2i}^{q+1}) = 0.$$

Putting

(4)
$$\begin{cases} y_{2i-1} = x_{2i-1} + x_{2i} \\ y_{2i} = x_{2i-1} - x_{2i} \end{cases}$$
 (1 \le i \le r+1),

we have

(5)
$$\sum_{i=1}^{r+1} y_{2i-1} y_{2i} \left(y_{2i-1}^{q-1} + y_{2i}^{q-1} \right) = 0 .$$

Setting $y_{2r+2} = 1$, we consider y_1, \dots, y_{2r+1} as the inhomogeneous coordinates on X. The function field K = k(X) is given by

(6)
$$K = k(y_1, ..., y_{2r+1}).$$

Put

(7)
$$\begin{cases} y_2 = y_1 \cdot u \\ y_{2i} = y_{2i-1} \cdot t_{2i} \quad u \\ y_{2r+1} = u \quad v \end{cases}$$

Then we have

(8)
$$K = k(y_1, u, v, y_{2i-1}, t_{2i} (2 \le i \le r))$$

with the relation

(9)
$$y_1^{q+1}(1+u^{q-1})+\sum_{i=2}^r y_{2i-1}^{q+1} t_{2i}(1+u^{q-1}t_{2i}^{q-1})+v(u^{q-1}v^{q-1}+1)=0,$$

$$(10) u^{q-1}(y_1^{q+1} + \sum_{i=2}^{r} y_{2i-1}^{q+1} t_{2i}^{q} + v^{q}) = -(y_1^{q+1} + \sum_{i=2}^{r} y_{2i-1}^{q+1} t_{2i} + v).$$

Let

(11)
$$\begin{cases} (y_{2i-1})^{1/q} = t_{2i-1} & (1 \le i \le r) \\ t_{2} = u(t_{1}^{q+1} + \sum_{i=2}^{r} t_{2i-1}^{q+1} t_{2i} + v). \end{cases}$$

Then the field

(12)
$$K' = k(t_1, u, v, t_{2i-1}, t_{2i} \quad (2 \le i \le r))$$
$$= k(t_1, t_2, v, t_{2i-1}, t_{2i} \quad (2 \le i \le r))$$

is a purely inseparable extension of K, (8).

Now the relation (10) becomes

$$(13) \ t_2^{q-1}(t_1^{q+1} + \sum_{i=2}^{r} t_{2i-1}^{q+1} \ t_{2i} + v) = -(t_1^{q(q+1)} + \sum_{i=1}^{r} t_{2i-1}^{q(q+1)} t_{2i} + v).$$

This shows that v is a rational function of t_1, \dots, t_{2r} , and hence

$$K' = k(t_1, t_2, ..., t_{2r})$$

is a purely transcendental extension of k of dimension 2r. This proves the unirationality of X, q.e.d.

Reference

- [1] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. (to appear).
- [2] O. Zariski, On Castelnuovo's criterion of rationality p =P₂=0 of an algebraic surface, Illinois J. Math.2 (1958)^a 303-315