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We shall study on the asymptotic behavior as [x| tends to o

of the solution u(x) € H2lec(£z)'satisfying the folleowing equation..

(1) —Aux) + a(x)ulx) = 2u(x) for x e 2cR*(n>3),
where A is a positive comstant and () D ER = { X € Rn; iIx{ > RO} .
0

The conditions to be imposed on the potential q(x) are following

ones.

Assumption 1. The petential q(x) is real valued and satisfies
the following inequality:

(2) |x1<Dg, ¥> £(~2¥ )a(x) for xell,

where Y is some constant, Dq is a gradlent of q(x), X = —ET

and ( .,. > denotes the inner product of ch.

Assumption 2. For q(x), we have

2
(3) sup j lq(y)é_h“ dy {+ o

Xé]i | x-y |
[x-y 1<

for some constant H > 0.

Assumption 3. The unique continuation property holds.

Remark. If q(x) is a homogeneous functions of x of degree
=2}(, then (2) is satisfied. So we cannot expect that q(x)
decays uniformaly at infinity.
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sxample.  The potential of the Schrodinger operator of an atom

(or ion) consisting of & nucleus with churge +¢ =znd m clectrons

given by
m
T
() e =-) e ) ;i—,
k=1 k 1¢ k<1< m kl
waere 2 >
2 N 2 2 N/ 2
Ty = )L4/X5k-1( v Ty = 2LJ[X5K~1_X53—11 » 1S &
1=0 1=0

homogeneous function of x ¢ Ram of degree -1(i.e.?y =—%—-)

we can admit u(x) be a real valued function. Our aim is to
take & in the following estimation (5) for the not identically
vanishing solution u(x) of (1) as large as possible.

. . -
(5) lim inf r j((some form of w)ds > 0,

r > ®
Sp
whereSr={x€l{n; lxl:r}. 1
n-’
To this end we introduce v(x) by v(x) = ‘XIT u(x), and then

v(x) satisfies the following egquation

(8) —Av+r—'1-}%:‘l-<Dv, >+ ( qx) + a(x) - A )v(x) = 0 in .,
where
(7)) £ 222053)

4)x|
According to the caluculation used in Ikebe-Uchiyama [4J ,
we have by (6) and integration by parts

(8) 0 = j {th»e left side of (&) }{2[x[°<<Dv, %o -

BSI‘

- l{}xlo( J’v}dx
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= (g - S\ ) {somc form oi v} 4o + j{:;l.nc:-ther forn of v} dx,
ol &
r s

“sr

where 3_ . = { XeEIy 8<|x|< r}'C €. dere pareweter x is

introduced according to the uethod used in Agmon [’t_] . Ge
define the surface integral on S5, in (8) as ¥F(r,o ;k). Namely

N

(9)  F(r oK) - j{zwv, K0% - lov® + (A =aGO-FE) [vI® -

<
[e)
r

- %(DV, Xov o+ (oé;n—2) (k[2 [vfg}fxloédfj.
X

Then let us rewrite (8), and we have

(10)  F(r,d 3k) ~ F(s,o ;k) = S [(5-o<-n-1<>((:5v|2 <DV, X0°9) +
) Bsp ' ‘
+ (& +n-k-1) < Dv, ?c}a + {(0(+n+£<—/l)7k - (o +n+k=1)g(x) -

- |x1<Dq, %7 - («+n+k=3)q(x) +
+ k. (o +n-2)( o +1=%) _.1..2} lvig:l )de fqu,'for r>s>0,
Ix|
where BsrC‘-Q"

By (10) we have

Lemma 1. If 0<Y € 1, we have for any r» g> O satisfying BsrC—Q‘

(e, 3 ¥ )P F(s, 3 Y )

where OZO = 1-n+ Y .

Noting the fcllowing relation

(1) P(r, Wgs¥) =27 j[e <Du, 2 ~[pul® +

Lc'YV)I‘
. _%_zf_z <Du, F>u + (x-a(x) )u|? +



, (=¥)(n-1-7) ’ulgjds
21x|

2

and u(x) € H loc(nQa)’ we have

Lemma 2. If ()= R™ and 0<¥ <1, we have

lin (s, oLq3 ¥) = O.
820
Noting that u(x) is a not identically vanishing solution of (1),

we have by (10) and Lemma 2

Lemma 3. If ()= R™ and 0 < ¥ <1, there exists some ry”> O such

that
F(roa 0(05 Y)> O.

Se by Lemma 1 and Lemma %, we have

Theorem 1. If () = R®, and if u is a not identically vanishing
solution of (1), then we have ’ '
N ¥ -1 2
lim inf R |u(x)|“dx> 0, when 0< ¥< 1,

R - o0
x|l €£R

and

lim inf (leg R)'I] S [u(x)]2dx> O, when Y = 1.
R 2 oo
IXI<€R

Hereafter we only assume () > Ep . In order to prove Lemma 3,
0

we introduce the function wm(x) by

(12)  w (x) = X Dy(xy,
and the form F(r, oLy p smy;k;f) by

(13)  P(r,o,p ym3k;f(r) ) = J[e < Dw_, %>2 - l})w-m[2 -
S

r
B ri: <D /’\E)"’m + ék - a(x) = q(x) + m°£'? - mev -

- 4 -
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. . «
.1_2 + T%JPI- f'} | v, CJ | x| as

- egmﬂr)":}?(r,d sk) + j {2mf'< DV, XDV +

[
(w4

r
+ (Emgf'z - mf" - Ix]ﬁ—d)[vfg} | x ]deJ .

In order to show ¥(r, o(o; Y )20, it is sufficient to prove

(x| P% +—-—l§-—-(o('+n-2) .y
{X

F(r, s (3 ,m3 ¥ 3£(r) ) >0 and S‘{2mf' <Dv, TOV +

Sr o
+ (EmC'f'E - nf" -[x| E—K)[v{2}[xf O48 <0 for some (5 , m and
f(r).
To investigate the property of ¥(r, « ) B ,m;k;f(r)), we apply the
caluculation, which is similar to (8) or (10), te I(r, « ’F ,m3k;
f(r) ), noting the identy

(14) 2J<Dw, %>wix|bax = jmamF as - jmem fas -

BSI‘ r S

- (n+(s -1) j (wlglx{ @-16.}(.
By

T
So we have

(15) F(r, o, l3 am5k5f> - F(s, o, F ,m;k;f) =

S [(3— o -n—-k) ( ‘Dwml2 - <Dwm, ?c)g) +

BSI‘

~ - 4 ~
" (oc+n——k—’l+4m[:><(f')<DWm, x>2 - 2(x| ?’ X+ <Dw,x>w, +

+

{(o(+n+k—’l)ﬂ. - (ot +n+k-1)q(x) - |x[<Da, %>~

2

- (o¢+n+i;-5)’5(x) + (o(,+n+k—’l)m2f + 2m2[x|f'f" -

(¢ +n=-1)mf" + k(od+n-2) mf' - [x|mf"! -

=T

o =1
(P+n—’l)lx' B-o -_g.-(oé+n-2‘)(oc +n-3) T::i-22{[wﬂl|2jlxl dx.
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Here we put ol = 0(0, B = 040—5, k =¥ z2nd £f(r) = r® . Then
we have
Lemma &, If £€22(1=8), €>0, ¢>1-¥ and &§> O, then there
exist some Rq>QRO and some m, > 0 such that for any T2 82 R4 and
for ény m2m,y wWe have

F(r, oy o(o-S ,a3 Y 3 & )2 F(s, oéo, o(O- §,m; Y ;SS ).
Unique continuation property leads that there exists some sequence
{rl} 1-1,2,... ;uch that Ry <z <ry< «e <7<y 4 <eee,
lim ry= oo and j' [v|2dbj>0 (1=1,2,000)0
1so0

Srl

Since in the right hand term of (13) the éoefficient of e2mr€ is
a quadratic form of m, in which the coefficient of m2 is positive,

we have

Lemma 5. There exists some constant‘m,];mo such that

F(I‘,], 0‘07 0‘0- é‘sm/ﬁ Y 51'/‘2 ) >0.

By Lemma 4 and Lemma 5, we have

‘\[’(_Y\'_/
Lemma 6. Under the same conditions imposed/\Lemma 4, we have

F(r, oLy, o(o—é‘,m,l; dirt ) >0 for any r>T4.
Now the problem we consider is reduced to the following Case I

or Case IT1:

aco 3 o A
Case 1. There exists some sequence {rl }l:’I,Z,... such that

PAaTAKTrL Cone <P 1 Leuwy lim 1Y = 0
1 1 2 1 1+1 ? 300 ;

and vY<DV, X >vds €0 (l=’1,2,...‘),

B
.C‘l

Case II. There exists some R-.» T, such that j<DVs x>vde >0

&

r



: d 2. - . )
(i.e. a5 j‘(ul as > 0) for any rp k..

r

By (13), we have

Lemna 7. We assume the same conditions imposed in Lemma 4.
¥Yoreover if Case I holds and if 2E¢-2<-§, there exists some
sz 2T, suci that F(R5, oy 3)>0.

rd

Lemma 8. If —%r-<'i <1, and if Case I holds, then the statement
of Lemma 7 hclds. X

g=f-d

If vase 1T holdc, f|u(‘3db is
P
a monotone 1increasing function.
Consequently under either Case

or Case II, we have

> €
Theorem 2. It QZ:)ERO, and -1f u is a not identically vanishing

solution of (1), then we have

lim inf g 377 [u(x)| %dx >0, when -%-< ¥y <1,
R 9 oo
R, S’IXISR
and -
lim inf (log R)”Il [u(x)]2dx;>0, when ¥ = 1.
R > @
Rys|x <R

Corollary. If (2= R" ond 0<¥ €1, or if QDER and
(0]

—%—<X’é1, the SchrBdinger operator appearing on the left side

of (1) has no positive eigenvalues.
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KHemark., Weidmann [ J ﬂuS(DOU expllcltly)snown under the
conditions (2, = ¥ and 0< ¥ € —,

l:Lm inf R2Y JIJ ]u(x)lzd}:)O, (< X<—-;,L—)

J.'?.-}QO
[xI <R
and
lim inf (log R)™ lu(x)l2dx;>o, ( Y= —1—).
R > oo <
[xX|<R

It has shown that the Schrodinger operator appearing in (1) has
no positive eigenvalue by Weidmann [5] under the conditions
= R™ and C>< P $-€}~ Weidmann [6 ] under the conditions

2= R" and ~2~ $¥<1 and dgmon [2] , [3] under SZ;)ER
0

and—~2—- }l<’|
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