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1. Introduction

Let X and Y be Hilbert spaces and X8Y the completion
of the tensor product X®Y with respect to the prehilbertian
norm, which is a Hilbert space. Given densely defined closed
linear operators A in X with domain D[A] and B in Y with domain
D[B], éonsider two kinds of linear operators defined in X8y
(1.1) A®I + I&B
with domain D[AJ®D[B] and
(1.2) A®T + 18B
with domain D[A@I]ﬂD[I@B]. Here the symbol I stands for the
identity operators in both X and Y. ABI and I@B are the closures
of A®T and I®B, since they are closable in X§Y; Both (1.1) and
(1.2) are also closable in X8Y.

It is an interesting problem which spectral contributions
A and B make to the closures of (1.1) and (1.2).

The spectra of these operators in X8Y have been determined
in [3]. The result has been applied, by E.Balslev and J.M.Combes
(11, to the study of spectral properties of many-body
Schr8dinger operators.

The present note announces some results on fine structures
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of the spectra of these operators. It is attempted to represent
their essential spectra (and hence the complementary sets) in
terms of the parts of the spectra of A and B. By the essential
spectra are meant those in the sense of F.E.Browder[2], F.Wolf
[6]1, M.Schechter[5] and T.Kato[4]. Further, those formulae
expressing their nullity, deficiency and index in terms of
the quantifties concerning A and B are obtained.

The results may be useful as basic principles in the
spectral theory of many-body Schr&dinger operators.

Finally, it is remarked that the results will be extended
to the case where X and Y are complex Banach spaces as well as
to the operators zjkcjkAj@Bk and ijcjkAjéBk associated with

P(E,n)=zjkcjk£3nk in a certain class of polynomials.

2. The main results.

Let T be a densely defined closed linear operator in a
Hilbert space X. The spectrum and resolvent set of T are
denoted by o(T) and p(T),respectiQely.

The Browder essential spectrum of T, oeb(T), is the subset

of the spectrum o(T) of T excluding all isolated, finite-

dimensional eigenvalues. The Kato (resp. Wolf) essential

spectrum of T, cek(T) (resp. er(T)), is the complementary set
of the semi~-Fredholm (resp. Fredholm) domain of T. The Schechter

essential spectrum of T, oem(T), is the union of oew(T) and the

set of all A in the Fredholm domain of T for which the index of

T-AI does not vanish. TFor T selfadjoint all these four essential
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spectra coincide. |
T said to be of type (GT,Mf(G)), Oi6T<n,iif the resolvent
set p(T) includes the complementary seﬁ of the sector S(QT)
= {C;largc|ieT} and ﬁc(;I—T)-l“jMT(e);fe=argc, outsidels(eT),

where MT(G) is a constant depending only on 8=argt.

For the statements qf,the,main.results,,lg is assumed ..

throughout that X and Y are Hilbert spaces and that A and B are

of type (eA,MA(e)) and (eB?MB(e))’ respectively, Miﬁh.OieA+6B<ﬂ.

In this case, both the operators (1.1) ard (1.2) have the same .
closure, which we denote by,4, and we have.

c(4) = o(a) + o(B)
(see [3]). The identity operator in X8Y is denoted by‘ﬂ(=I§I).

Then we have the. following theorems on fine structures of
the spectrum of A. The proofs are -omitted. We only note that
in the proofs of the inclusions » for the essential spectra,
a frequenf use is made of the Fredholm, semi-Fredholm theory
and perturbatibn theory by I.C.Gohberg-M.G.Kre¥n and T.Kato,
while the other inclusions are’proved with,4 reduced by some
invariant subspaces.
The following convention is used. For the subsets o, of o(A)

A

and'oB of o(B), the set o, + og is empty if at least one of ¢

and og is empty.

A A

Theorem 1. a) For the Browder essential spectrum:
(2.1) oop @A) = (o (B) + o(B)U (a() + o (B)).
b) For the Wolf essential spectrum:

(2.2) Oy ) = (o (B) + a(B))U (a(R) + o (B)).
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Theorem 2. a) For the set of isolated, finite-dimensional
eigenvalues:
(2mc%hgmw>
(O (AN (8))+ (0 (BN, (B)Y L (0, (A)+0(B) )0 (A)+o,, (B))}.

Let A be in the set (2.3). Then X is an isolated, finite-
dimensionél eigenvalue of/4 with algebraic multiplicity
X(u}v)éA~(K)S(U)t(v)’ and

(2.4) ind(4d-r{)=0,

nul(d-29)

(2.3)

=Z(u,v)éA(x)Z;=1(nul(A-uI)p—nul(A—uI)p-l)(nul(B-vI)p—nul(B—vI)p_l),

def (A-29)
(2.6)

=L (1, v)ea(n) Lgmy (80 (A-uT)P-def (A-uT)P™1) (def (B-vI)P-ger (B-vI)®™H).

Here

A(X)

{(u,v) € (a(ANo_, (A))x(a(B)\g, (B)); utv=x}

{(u,v)e o(A) + o(B); utv=A} ;
the sum is finite and the summation in p is in fact taken over
1<p<min(s(u),t(v)), where s(u) and t(v) are the algebraic

multiplicities of the eigénvalues ¥ and v, respectively.

b) For the intersection of the Browder essential spectrum
and the Fredholm domain:
) 6o ANO, #)
=[{(o(B)Ngy, (A))+(a (BINo,, (B)) UL (o (ANG (A))+(0(BINO, (B)}]
N\ (o, (A)+5(B)IU(o(A)+o, (B))}

For every A in the set (2.7), A-Al has the nullity (2.5)
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and the deficiency (2.6) with
AX) = Ao M)V A1 (X)) = {(u,v)ec(A)xo(B); u+v=rl,
Ayo(A) = L(u,v)e(o(ANo,  (A))x(a(B)No_ (B)); utv=Al,

Do, (X)) = {(u,v)é(c(A)\Gew(A))X(O(B)\oeb(B)); u+v=rl;

the sum is finite as well and the summation in p is in fact taken
over 1<p<s(u) for (u,v) €A;,(A) and 1<p<t(v) for (u,v) € hq,(A).
The index of A-A4 is given by
ind (A-A9)

(2.8)

=Z(U,V)6A10()\)ind(B—VI)Egiljl_)(nu:l.(A-UI)p—nLIl(A—uI)p_l)

+ Z(u’v)eAOI(A)ind(A—uI)zgix)(nul(B—vI)p—nul(B—vI)p_l).

Theorem 3. a) For the Schechter essential spectrum:
Oemg4) = 0,Jo.
where
o, = (o (&) + a(B)V(a(R) + o (B))
and o, is the set of all A in the set
({0, (B) + 0(B))U(a(A) + o (B))}IN o,

for which the index (2.8) does not vanish.

b) For the Kato essential spectrum:

0o ) D0 (B) + (0(BINY,(B)))V ((6(A)\¥o () + o, (B)),

where ¥,(A) is the set of all p in the semi-Fredholm domain of A
for which either nul(A-uI)=0, def(A-uI)>0 or nul(A-ul)>0,

nul(A-uI)=0, and ¥,(B) is defined similarly.
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‘Remark. Oek(A) can be estimated by a set as small as
possible in which it is included, expressed by the parts of

6(A) and o(B) with the aid of the nullities and deficiencies

for A and B. 1In general, the set

(0, (B) + 0(B)U(a(B) + o, (B))

neither includes nor is included in cek04).

An exact representation of the Kato essential spectrum

of/4 in terms of the parts of the spectra of A and B will be

complicated.
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