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Spectral and scattering theory
for the J-selfadjoint operators associated with

the perturbed Klein-Gordon equations

Takashi KAKO

College of General Eduction, University of Tokyo

§1. Introduction
In this lecture I shall investigate the spectral properties
of the generators of the Klein-Gordon type equations and then
study the asymptotic behavior of the generated semigroups, i.e.,
scattering problems.
The perturbed Klein-Gordon equation, to which we shall apply

the abstract theory to be developed in the following, is

y 2. <>
(1.1) { (57 ~1bo(x)) +(-Z_1§(

% "ib, (x)) 2mP+q(x)) by (x,1)=0,
3

J

where b, (x), bj(x), gg—bj(x) and q(x) are real functions which

decrease to zero with the order O(]xl-z-e) when |x] tends to
infinity. The first order equation in t, which is associated

with (1.1), is in an abstract form

0 -iJ [fl(t)

1
(1.2) i[f (t)}= i ) i
i k) L£2(t))

dt fz(t)

For the Klein-Gordon equation, the operators H and K in the above
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3
equation are specialized as H=-) 2(5%— —ibj(x))2+m2+q(x)—bo(x)2
i=1 j
J

and K=2b°(x), and fl(t) is Y(x,t) and fz(t) is g%w(x,t). If

H is positive or K is zero, then we can construct a nice Hilbert
space in which the generator of the equation (1.2) is selfadjoint
(see [2],[371,[51,[91,[121,(171,[19]1,([23],[26] and [27]). In
general we can not find out such a space a priori and the gen-
erator may have non-real spectrum (see [9],[17] and [24]).

We therefore handle the equation (1.2) in the space for the

unperturbed equation

1 N
a ey (o0 -i) (£
(1.3) dfol. 5 ol . Hy>c>0.
| dt| g2 iH, o) €27 =

In the case of the Klein-Gordon equation, we take Ho= -A+m

We must treat a non-selfadjoint problem, while we have a nice
sesqui-linear form (not nécessarily positive definite)} for which.
the generator of (1.2) is symmetric, i.e., J—selfadjointl).

Using the limiting absorption method, we then construct a
perturbed spectral measure and invariant subspaces which reduce
the equation (1.2). The above mentioned form is positive

definite in the subspaces and we develope the scattering theory

with two Hilbert spaces.

§2. The unperturbed equation
Let X be a Hilbert space with an inner product (.,.) and
the corresponding norm [|-||. Let H, be a positive definite

selfadjoint operator in X: Ho>c>0. We denote the square root
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of H, by ho. The Hilbert space ¥, is then defined as the direct
sum of spaces D and X, where D is the domain of h,, D{(h,), which
is a Hilbert space with an inner product (ho:,hs-). We denote
here and hereafter the domain and the range of an operator A by
D(A) and R(A) respectively and in the case of sesqui-linear form
h{-,-], the domain by D[h]. We consider the equation (1.3) in
this space ¥,.

Proposition 2.1. The operator B, defined as

D(Bo)=[D(H°)} s
D

1

Bofo=| O ", £o=[%3|en(Bo),
iH, 0

(<]

is selfadjoint in ¥,.

Using this proposition, we can integrate the equation (1.3)

and obtain a unitary group ¥,(t) with a generator B,. A simple
proof of this proposition is given as follows. We transform
the equation (1.3) into a ''diagonal' form. Let ¥, be another

Hilbert space which is a direct sum of two copies of X, and let

T be a unitary operator from ¥, to %, given as

The unitarity of T is an easy culculation. Then the equation

{(1.3) is transformed into
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(2.1)  fgos i[§° 2 ]go, go=Tf,.

he 0
0 -ho

We denote the operator [ 1

D(h . .. .
=(Dgh:%} and A, is selfad301nt in ¥%,, and consequently B, is

]=TB°T' by Ac.  Then D(A,)=TD(B,)

selfadjoint in ¥,. We denote a unitary operator T¥°(t)T'1 by Ho(t).

§3. The perturbed equation and the indefinite inner product
We shall now investigate the perturbed equation (1.2) on

the following

Assumption 3.1. (1) H is a selfadjoint operatof in X with =

domain D(H)=D(Ho) and bounded from below; (2) K is a closed
symmetric operator in X with &dmain D(X)DD=D(h,).

We define an opefator V as D(V)ED(H)=D(H°) and Vf=Hf-H,.f
for feD(V). This assumption imblies the following

Theorem 3.2. The operator B which is defined as

D(B)=D(B.),

| Bf=[ 0 'i]f, f=[fz)eD(B);
iH K f
is a closed operatof in ¥, and generates a C°-semigroup ¥(t).
In order to prove this theorem, we need the next lemma.
Lemma 3.3. In the case that H is positive definite in
Theorem 3.2, B is selfadjoint in ¥, which is equipped with the

inner product (f,g)¥=(/ﬁf1, /ﬁg1)+(f2,g2).

—_ 4 —
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The operator A in ¥,, which corresponds to B in ¥,, is

defined as
D(A)=D(A,),
Af= TBT 1f= A £+Gf, feD(A), -

where G=%Vh;1[_% _i}+%K[_i _%]. Then we obtain the next

theorem in ¥, which corresponds to Theorem 3.2 in ¥,.

Theorem 3.4. The operator A is a closed operator in %, and

generates a C°-semigroup B(t).

We shall now introduce "inner product's for which the
operator A or B is '"symmetric". The sesqui-linear forms (',-)¥
in ¥, and (-,—)* in ¥,, which we call (indefinite) inner products,

1

are defined as follows. Let h[f ,gl] be a sesqui-linear form

on the product space DxD defined as
' 1 1 1 1.
hif!,gl1=(/FvEL, RYe D) v (£1,8Y), £1,¢ e,

where -y is a lower bound of H (H>-v). Then the desired form

is defined as

1

1 2 2
(f,g))[_ =h[f ’g ]+(f > 8 ), f’g5¥'°'

We also define the form (-,-)* on the product space ¥,x¥%, as
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-1p -1
(£,8)y=(T “£,T “gly=(£,8)y *VIf,gl, f,ge¥o,

where V[f,g]l=2{h-h,}[hot(£1+£%), 050 (gl+g?)] with no£h,g1-

1

(hofl,hogl)., Since D(H)=D(H,) by Assumption 3.1, h:1vho! has

a bounded extension (hQIthl)a, and V[f,g] is expressed as
1, .. - -
V£, gl=a((hslvhi ) B (etee?)  gleg?) .

Then we have the following propositions.

Proposition 3.5. The forms (-,-)¥ and (-,~)* are bounded

in ¥, and ¥, respectively.

Proposition 3.6. The operator B (A) is symmetric with

respect to the form (-,-)¥ ((-,-)*):

(Bf,g)y=(f,Bg)y, f,geD(B),
((af,0)4= £y, £,eD00)).

§4. Strﬁcture of the perfurbed operator
4.1. Discrete spectrum

First we state the basic condition which we shall always
assume from now on.

Assumption 4.1. The operators V and K are compact from

D(Ho) to X and from D to X respectively, where D(H,) is equipped

.

From this assumption, using the interpolation theorem (see

‘with the norm ||Ho +

Hayakawa[7]), we have the following
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Proposition 4.2. The operator (h;1Vh;1)a is compact.

Now we»shall proceed to the investigation of a discrete
spectrum of B.  From Assumption 4.1, H has a finite dimensional
‘negative subspace e(0-)X, where e(A) is the spectral measure
of H: H=fc3de(k). This implies that the space ¥, equipped
with the-;;definite inner Product,(‘,-)¥ is a Pontrjagin spacez)
when null space of H, N(H), ‘is empty. So, modifying slightly
the proofs in the book of Bognér, we can prove the finiteness
of the»non-real spectrum of B. Furthermore, using the standard
argument about the meromorpﬁic family of compact operators
{B—BO}R(z;BO)‘(here we denote the resolvent of B,, (Bo-z)'l,
by R(z;B,)), we obtain the foliowing ”

Theorem 4.3. The intersection of the spectrum of B and

the resolvent set of B, is discrete and (B-z) is a Fredholm
operator with an index zero at such é point. Further, the
points which belong to the non-real spectrum of B are finite
and lie symmetrically with respect to the real axis and-are
included in the circle C={|z|i/?}. And, if we replace B, by

A, and B by A, all the preceding statements are still valid..

4.2. Construction of a perturbed spectral measure
In the following part of this lecture we use the X,
representation exclusively unless otherwise stated, and use

1

the notations: Ro (z)=R(z;As)=(Ao-2z) ~, R(z)=R(z;A) and r,(z)=

R(z;ho). We now state here another basic assumption.
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Assumption 4.4. There is a bounded selfadjoint operator

d in X such that: (1) d is oné to one and has dense range; (2)

R(V),R(K)cR(d)=D(d"1); (3) the operators dro(Axie)d,

1

dro(0)ro(Atie)d, d "Kro(A*ie)d and d-1Vro(0)r°(Aiia)d with

real A and ¢ are compact and have boundary values in the

operator norm topology as e¥0, where the convergence is uniform

for A belonging to any compact interval of the real axis Rl;

1

(4) The operators d, d "K and d-IVro(O) are ho-smooth in the

sense that

f |9, (Axie) £ 2dr<c]| £])2,
Rl -

1

where d stands for one of d, d “K and d_IVro(O), and c does not

depend on €.

We define an operator M in ¥, as Mf=[g g]f. Then we have

the following proposition from Assumption 4.4.

Proposition 4.5. Under Assumption 4.4, we have: (1)

R(VR,(z))<R(M); (2) the operator Q(z), which is defined as
Q(z)=M-1GR°(z)M, is bounded for non-real z and has a boundary
value-Q(liiO)=1ig Q(Atie) in the operator norm topology and

, €
Q(Ati0) is continuous in A; (3) there exists a closed set PCRl
with Lebesgue measure zero such that (1+Q(Azie)) (AeA and €e¢(0,8))
is invertible and continuous on ﬁ;TE?KT= the closure of I, (6,A)
for A with Anl'=¢, where Hi(G,A)={z=A+i€; reA, €e(0,£8)}, and

for sufficiently small 6>0.
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After these preparatory .works we can define the following

sesqui-linear form E(A;e)[f,g] on Xox¥,:
E(A;e)[f,g]=7%fj ({RO+ie)-R(A-ie) }f,g), dA
A o
.
T27i
1
2mi

.[ (R(A—ie)GRo(A—is)f,g)% dx.
A v °

({Ro(1+i€)¢R¢(Afi€)}f,g)* dx
A )

(R(A+ie)GRo (A+ie)£,g)y dA
A o

=t

+

2Tl

The first term of these integrals is bounded and has a limit as
£+ 0 which equals to (EO(A)f,g)*o, where E,(A) is a spectral
measure of a selfadjoint operator A, (here we used the absolute
continuity of A, which is a consequence of the smoothness
condition in Assumption 4.4). The second and the third integrals
are estimated as follows. By the resolvent equation, the

integrand of the second integral is rewritten as

(R(A+i€)GRo(A+i€)f’g)*

1

=((1+Q(A+ie)) "M TGRo (A+ie) £,MRo (A-ie)g)y

1

So that, using the concrete expression of M ~GR,(z);
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T L e e E e e TN

and the smoothness condition, we obtain, for a compact A, AnI=¢,
2wl

I——-JA (R(A+ie)GRo (A+ie) f,g)y dx|<c|lflly llglly, -

Then we have the following

Theorem 4.6. A set of sesqui-linear forms E(A;e) [f,g]

with;compact A which do not intersect with I are bounded in
Xox¥X, uniformly in e,'and‘havexlimits E(A)[f,g] when €¥0 which
are also bounded. o

This theorem shows that E(A)[f,g] defines a bounded

operator E(A) which is given as

(B(A)E,g)y =E(A) [f,g].

We call this family of operators E(A) (&; compact and AnT=¢)
the perturbed spectral measure and shall investigate 1its

properties in the following.

4.3. Properties of the perturbed spectral measure
We shall show that the family of bounded operators E(A)
has most of the properties of a usual spectral measure. Namely

we can prove the next theorem.

- 10 —
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Theorem 4.7. Let A and Aj (j=1,2) be bounded sets of R1

whose closures do not intersect with T. Then we have: (1)
E(A;)nE(8,)=E(bynd,); (2) (B(A)E,g)y=(£,E(8)g)y; (3) (BE(A)E,f)y
>0 and, if 0f£A, (E(A)f,f)*=0 <=> E(A)f=0; (4) if A contains a

point of the spectrum of A,, R(E(A)) is non-trivial; (5) if O£A4,
ciIEMEl <IIBEMIEly <c)lIEIE]]y

with some positive constants cq and Cys and consequently E(A)X,
is closed with respect to each of the topologies defined through
-1y and [~ lly -

In proving this theorem we use the following facts. “First,
V[R(A+ie)Mf, R(A+ie)Mf] is uniformly bounded in e by Assumption

4.4 and Proposition 4.5. Second, (E(A)Mf,Mf);G is expressed as
(4.1) (E(A)ME,ME) =1im EJ HR(Aiis)MfHZ ax
™ *o
etv0 A
= . 1.2 .
=] 1Mo (W) (1+Q(A210)) 7 "£|] 5 ax,
A [+]

where M, (A) is defined as

Mo()\)=/7Tl—r-i—M{Ro(A+i0)—R°(A-iO)}M,

which is bounded by Assumption 4.4.

Now next, we shall examine the properties of A on R(E(4)).

- 11 —
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Theorem 4.8. Let ApT=¢, then we have: (1) E(A)AcAE(A);

(2) A is bounded on R(E(A)).

These theorems show that R(E(A)) is a Hilbert space with
a definite innér product (},})*. We denote this space by %(A)
The restriction of A on %(A), A[X(A)’ is a bounded selfadjoint

operator. Namely we have the following

Theorem 4.9. The operator AIX(A)‘iS selfadjoint in *(A)
and bounded. The family of operators E(Q) (9; QcA) is a spectral
measure of AIX(A) in X{4).

Remark. Using the representation of (E(A)f,f)* in (4,1),

we have that A is also absolutely continuous in X(A).

§5. Unitary equivalence and scattering theory

Now we shall establish the unitary equivalence between
A°|R(EO(A)) and Al*(A)’ using the abstract stationary method
of scattering theory (see Kato-Kuroda[l3] and [14]). Namely,

first we introduce the Hilbert space which is a completion of

L2 (%o38)={E(A); Aed, £00)=Mo(M)g(N), g(A) is

a strongly continucus function of A with its values in %o},

(=R(EQ(A)))
and then define a unitary operator J.(A) from ¥,(A)Y to the above

defined Hilbert space LZ(XO;A) as follows. Jo(A) is an extention

of an operator: Jo,(A)E, (A)Mf= XA(X)MO(A)f, where XA(A) is a

- 12 —
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characteristic function of A. Next, we define two unitary
operators Ji(A) from X(A) to LZ(XO;A) as the extensions of
operators: J, (A)E(A)ME= x, (MM (A) (1+Q(A£10)) 1€,  Then we

have the following

Theorem 5.§. The operators J, (A) have the properties:

*
J,(8)AJ, (L) =X, where * denotes the adjoint. The wave operators

Wi(A) defined as
*®
W, (A)=J,(8) Jo(a)
are unitary and have the intertwining properties:

W, (Ao g ) ™A x(ay Vs () -

Furthermore, using the smoothness condition, we have
another representation of W, _(4), and it shows the asymptotic

behavior of BH(t) . Namely, we have the following
|3%(A)

Theorem 5.2. The wave operators W_(A) have the

representation:

Wi(A)f=lim U(-t)E(A)U, (t) £, fex,(A),

t>to

where the limits are taken with respect to the norm

*

We can prove this theorem by using the smoothness conditions.

Remark. We can omit E(A) in Theorem 5.2,
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6. Applications
We can apply the preceding results to the Klein-Gordon
equation (1l.1), on the assumptions described in the introduction.

Theorem 6.1. Let the functions bj(x) (3=0,1,2,3) and g(x)

be bounded real functions in R3 and satisfy the conditions: (1)

lbj.(x)lsclxl'z‘e(j=0.1,z,3), €20; (2) by(x) (3=1,2,3) are

differentiable and |§%7bj(x)|sc[x|‘2"€; (3)[q(x)lsc|x|'2‘5.
J

Then Assumptions 3.1, 4.1 and 4.4 are valid, so that the results
in the preceding sections are valid.

Further, we have in this situation the following

Proposition 6.2. If X belongs to the set I' in Proposition

4.5 and A#m, there exists a non-zero vector ge¥, such that Ag=Aig.
Since the equation Ag=)Ag implies the existence of a non-

zero vector gl in X such that (H+AK)gl=AZgl, using the result

of Ikebe-Uchiyama[8] for the non-existence of a positive eigen-

value, we have the following

Proposition 6.3. Under the assumptions in Theorem 6.1 and

the unique continuation property of (H+AK), A has no singular

spectrum in (-«,-m)u(m,x).

1,2) see a book of Bognér.
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