goooboooogn
O 2420 19750 139-144

139

On the fundamental solution of partial differential

operators of Schrodinger's type

Daisuke FUJIWARA
Dept. Math. Univ. of Tokyo
§ 1 Preliminaries

We shall construct the fundamental solution of partial differential
operators of Schrodinger's type;
L= (/)3 /3¢ +43 1/ VERD ()2 hx, (VefRedin/i) & =% + v(x),
where h is a positive constant and ( gjk(x))' is a positive definite
matrix-valued function of class C“ (R%). Jl';he notion of Feynman
integral has been explained mathematically by several authors ( for
example[ | ] and[S:)[ﬂJ and their references.) as a limit of analytic
continuation of Wiener integrals. Direct treatment of it was proposed
by Ito C'é ) in introducing an " ideal uniform measure on gp’t?
In this note we prove that the Riemannian sum approximation of Feynman's
path integral that Feynman himself defined in.[-z.]actually converges
in the operator norm to fundamental solution ofthe operator L if the
function exp (i/h)S, S being the classical actdon, oscillates rapidly.

Note that our method enables one to treat the case that ng(x) are

not constant.
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§ 2 assumptions

The Laglangean function is of the form

g, a) =4S ¢ (@ aqa a -V,
Jk j k
where (g(‘f()) is a positive definite matrix valued function, i.e,

ds =2g(x) daxJ d:x is a Riemannian metric in R'. The Hamiltonian

function is H(p, q) = c’q»p - L, where q-p ?c} J We denote
by q(t,y,% ) and p(t,y, $) the solution of Ham:.lton );qug.tlons

dg \)H dp 3 H

at —5; at ) T )4 a

satisfying initial conditions q =y, p = g at t = 0.
Our first assumption-is
(A-I) Therepxists a constant E)O such that the canonical transformation
i3 — &) =ty §)y oty §))
indttl'ces a diffeomorphism of the configuration space for any t 6@. & J.
Let x0 =x (t X, %) be the unique solutlon of q(t,x0, g§) X

Then a generating function of ;K is given by

A .
so(t,x,§) = jL(é' q) ds +x"(§ .
where the integral should be xixade along the classical orbit frem xo t0 Xe.
Denoting the Euclidean length of a vector x in r? by x , we shall further
make the following assumptions;
o B §) -8, 8) | 220 2, §) 6 (xe) ),
Y o= |erad ( 8(x,%) - S(x,7%) )};{gz(x, $40) & ClE-11)s

x
where 7 (x, z, %) and 2> (x,%,7) are smooth functions with a positive
[ (-/\2

(a-11) ¢ = | grad

lower bound and G(t) is a function such that (9 (t) = 0(t) near t=0
and  Q(t)= t7  for t>1, with some 5>0.

(A-III) For any multi-index X , there exists a constant C> 0

2
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such that we have

& )(ss(x. ¥) - s, ng ¢ F
&) °is<x. - stk € ¢ E.
Q(tgyp %)
Let Y(t,x,%) = det ;;_—-—-—-——— . Then Y =¢ 0 for
ry
0<t < by (4-I). OUr last assumption is
(A-1IV) For any multi-index X there exists a constant C )O such

that we have estimates;

-1
(3 Y(t,x, ”{) T(t,x, 7) }15 sz.? 0

{(‘;%)“@(1;,,{, )7 Yy §)

),S C gi(x)yré)'

Y t.x, eXp 1 ll [ R ] ly

where S(%,x, % y) =S (t x,%) “ya§ o Then E satisfies

We set E (t,x $.y) = (

(n/1) * />t + H(B/i?/yx, x) )E (t,x, 5,y '=th F(t,x, $,5),
where F(t,x, §) = % A Y(t,x, ¢ )'% gxp i h-i S(tx, ¥)_
We define two operators E(t) and F(t) by

@) E(t) £(x) = (21rh)'n// E(t,x, §.y) £(y) dy 4§,

-n 2
F(t) £(x) =(2wh) b F(t,x, §,y) £(y)dyd§.
These are defined at least for any f in Cga(Rn). It is easy to see
£(0) f(x) = f(x). Moreover we have

Lemma, We have the following estimate

I E(t)“é c and ||F(t) | ¢ b°,  for any t in [o, 3]
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Tié This is an immediate consequence of our previous work[}#].

Zf_
We set E(t) = Eo(t) + (i/h)/ Eo(t-s) F(s) ds.
I3

Let T Dbe the one parameter unitary groupp generated by H( -ih &/) X, X) .
t

OUr main result is

THEOREM  (Feynman [_2))
Bim || B( t/k ) E( t/k ) o...E(t/k) - T, | = o

k-2 i

Proof

Yifét/ddt/  Note that -ih ) />t + H( -ih )} fx, x)E(t)
t
- oan / F(t-s) F(s) ds  and that
0

t
h-l/V F(t-s) F(s) ds H < cltn’ for +€[0, ]
Hence the difference R(t()) = T, - E(t) is estimated as||R(t) <clt |2 hb(.
Now let t be any positive number. Take k so large as t/k belongs to
o €1 /Hidd/////[E  Then |\R(t/w)|I<C Bt (/)% Ehis implies that
| E(t/k) ECt/k) ooeoE(t/K) - T, [ = 1+ RGN ) -1,

and this converges to 0.

§ 4 Space time Approach

If we integrate first by % in (1) and use stationary phase method,

we can prove that
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E(t) f(x) = /a(t.x,y) exp i h-ifﬂ (x, y) £(y) dy,

1 i ) &
where a(t,x,y) = (hif2<] )-511 (det Hess; S) 2 ( ’g-(_y'_ ¥ Y(x ?(x,y t))

g(x)
where ?(x,y) is the classical action /[ L ds along classical path

from y to x. % (x,y, t) is the solution of q(t,x,%) =y and

Hess iS = the Hessian matrix of So(t,x, ‘;) with respect to 2 variables at
% = %(x,y,t, e Starting with this expression of-E(t), we can

discuss everything and prove our result in the configuration space and

time.
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