On the fundamental solution of partial differential operators of Schrodinger's type

We shall construct the fundamental solution of partial differential

Daisuke FUJIWARA

Dept. Math. Univ. of Tokyo

Preliminaries

operators of Schrodinger's type; $L = (h/i) \frac{1}{2} / \frac{1}{2} \sum_{j=1}^{\infty} 1/\sqrt{g(x)} \quad (h/i) \frac{1}{2} / \frac{1}{2} \sum_{j=1}^{\infty} (h/i) \frac{1}{2} / \frac{1}{2} x^k + V(x),$ where h is a positive constant and $(g^{jk}(x))$ is a positive definite matrix-valued function of class $C^{\infty}(\mathbb{R}^n)$. The notion of Feynman integral has been explained mathematically by several authors (for example [1] and [5] [7] and their references.) as a limit of analytic continuation of Wiener integrals. Direct treatment of it was proposed by Ito [6] in introducing an "ideal uniform measure on \mathbb{R}^{-1} . In this note we prove that the Riemannian sum approximation of Feynman's path integral that Feynman himself defined in [2] actually converges in the operator norm to fundamental solution of the operator L if the function exp (i/h)S, S being the classical action, oscillates rapidly. Note that our method enables one to treat the case that $g^{jk}(x)$ are not constant.

140

assumptions

The Laglangean function is of the form

$$L(q, q) = \frac{1}{2} \sum_{ik} g(q) \dot{q} \dot{q} - V(q)$$

 $L(q, q) = \frac{1}{2} \sum_{j \neq k} g(q) \stackrel{?}{q} \stackrel{?}{q} - V(q),$ where (g(g)) is a positive definite matrix valued function, i.e, $ds^2 = \sum_{j \neq k} g(x) dx \stackrel{k}{j} dx$ is a Riemannian metric in R^n . The Hamiltonian function is $H(p, q) = \stackrel{?}{q} p - L, \text{ where } q \cdot p = \stackrel{?}{\sum_{j = 1}^n} \stackrel{?}{q} p.$ We denote by $q(t,y, \xi)$ and $p(t,y, \xi)$ the solution of Hamilton equations

$$\frac{d q}{d t} = \frac{\lambda^{H}}{\lambda^{p}} \qquad \frac{d p}{d t} = -\frac{\lambda^{H}}{\lambda^{q}}$$

satisfying initial conditions q = y, $p = \begin{cases} at t = 0. \end{cases}$

Our first assumption is

There exists a constant $\delta > 0$ such that the canonical transformation χ_{t} ; $(y, \xi) \longrightarrow (x, \xi) = (q(t,y,\xi), p(t,y,\xi))$

induces a diffeomorphism of the configuration space for any t ϵ [0, δ].

Let $x^0 = x^0(t,x,\xi)$ be the unique solution of $q(t,x^0,\xi) = x$. Then a generating function of χ is given by

 $S_0(t, x, \xi) = \int_{-1}^{\infty} L(q', q) ds + x^0 + \xi$

where the integral should be made along the classical orbit from x^0 to x. Denoting the Euclidean length of a vector \mathbf{x} in $\mathbf{R}^{\mathbf{n}}$ by \mathbf{x} , we shall further make the following assumptions;

 $(A-II) \quad \underline{\phi} = \left| \operatorname{grad}_{\xi} \left(S(x,\xi) - S(z,\xi) \right) \right| \geq \underline{\beta}(x,z,\xi) \quad \underline{\beta}(|x-z|),$ $\underline{\psi} = \left| \operatorname{grad} \left(S(x,\xi) - S(x,\eta) \right) \right| \geq \underline{\beta}(x,\xi,\eta) \quad \underline{\beta}(|\xi-\eta|),$ where $\underline{\beta}(x,z,\xi)$ and $\underline{\beta}(x,\xi,\eta)$ are smooth functions with a positive lower bound and θ (t) is a function such that θ (t) = 0(t) near t=0 () (t) = t^{σ} for t > 1, with some $\sigma > 0$. For any multi-index < , there exists a constant C > 0

such that we have

$$\left| \left(\frac{1}{\sqrt{2}} \right) \left(S(x, \xi) - S(z, \xi) \right) \right| \le C \overline{\Psi},$$

$$\left| \left(\frac{1}{\sqrt{2}} \right) \left(S(x, \xi) - S(x, \xi) \right) \right| \le C \overline{\Psi}.$$

Let $Y(t,x,\xi) = \det \frac{\int q(t,y,\xi)}{\int y}$. Then $Y = \neq 0$ for

For any multi-index \times there exists a constant C > 0 such that we have estimates;

$$\left| \left(\frac{\lambda}{\lambda x} \right)^{\alpha} (Y(t,x,\xi)^{-1} Y(t,x,\xi)^{-1}) \right| \leq c \mathcal{Z}_{2}(x,\xi,\xi)$$

$$\left| \left(\frac{\lambda}{\lambda \xi} \right)^{\alpha} (Y(t,x,\xi)^{-1} Y(t,y,\xi)^{-1}) \right| \leq c \mathcal{Z}_{1}(x,y,\xi).$$

We set $E(t,x,\xi,y) = (\frac{g(y)}{g(x)})^{\frac{1}{4}}$ $Y(t,x,\xi)^{-\frac{1}{2}}$ exp i h $S(t,x,\xi,y)$, where $S(t,x,\xi,y) = S_0(t,x,\xi) - y_x \xi$. Then E satisfies $(h/i)^{\frac{1}{2}}/2 t + H(h/i)^{\frac{1}{2}}/2 x, x) E(t,x,\xi,y) = h^2 F(t,x,\xi,y),$ where $F(t,x,\xi) = \frac{1}{2} \triangle Y(t,x,\xi)^{-\frac{1}{2}}$ exp i h $S(tx,\xi)$

We define two operators E(t) and F(t) by

$$E(0)$$
 $f(x) = f(x)$. Moreover we have

We have the following estimate

$$\|E(t)\| \le C$$
 and $\|F(t)\| \le C h^2$, for any t in $[0, 5]$.

714 This is an immediate consequence of our previous work [4].

We set
$$E(t) = E_0(t) + (i/h) \int_b^t E_0(t-s) F(s) ds$$
.

Let T be the one parameter unitary groupp generated by H(-ih ∂ /) x, x) . OUr main result is

THEOREM (Feynman [2])

lim
$$\parallel$$
 E(t/k) E(t/k)E(t/k) - T \parallel = 0.

k-> ω

Proof

$$= -ih^{-1}$$
F(t-s) F(s) ds and that

§ 4 Space time Approach

If we integrate first by ξ in (1) and use stationary phase method, we can prove that

 $E(t) \quad f(x) = \int a(t,x,y) \exp i h^{-1} \mathcal{G}(x,y) \quad f(y) \, dy,$ where $a(t,x,y) = (hi/2 \pi)^{-\frac{1}{2}n} \left(\det \operatorname{Hess}_{\xi} S \right)^{-\frac{1}{2}} \left(\frac{g(y)}{g(x)} \right)^{\frac{1}{4}} Y(tx \left\langle (x,y t) \right\rangle^{\frac{1}{2}},$ where $\mathcal{G}(x,y) \text{ is the classical action} \int_{x}^{x} L \, ds \quad \text{along classical path}$

from y to x. $\{(x,y,t) \text{ is the solution of } q(t,x,\xi) = y \text{ and} \}$ Hess $\{S = \text{the Hessian matrix of } S_0(t,x,\xi) \text{ with respect to } \xi \text{ variables at } \xi = \{(x,y,t,) \}$. Starting with this expression of E(t), we can discuss everything and prove our result in the configuration space and time.

References

- [1] Babbitt, D.G., Ass summation procedure for certain Feynman integrals. J. Math. Physics, vol. 4, pp 36-41 (1963).
- [2] Feynman, R., Space time appraoch to non-relativistic quantum mechanics. Reviews of Modern Physics. vol. 14/ 20, pp317-384, (1948).
- [3] Fujiwara, D., Fundamental solution of partial differential operators of Schrodinger's type I and II. Proc. Japan Acad. 1974.
- [4] ----. On the boundedness of integral transformations with highly oscillatory kernels. ibid.
- [5] Gelfand, I.M. and Yaglom, A.M., Integration in functional spaces and its application in quantum physics. English translation.

 J. Math. Physics, vol 1, pp 48-69 (1960).
 - [6] Ito, K., Wiener integal and Feynman integral.

144

4th Berkeley symposium, pp227-238.

- [7] Nelson, E., Feynman integrals and the Schrodinger equations.

 J. Math. Physics, vol. 5, pp332-343. (1964).
- [8] C. Morette, On the definition and Approximation of Flynman's puth integrals.