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oN H-COBORDISMS BETWEEN
THREE DIMENSIONAL HOMOLOGY HANDLES

AKIO KAWAUCHI

Graduate school, Osaka City University

The present note will introduce a cobordism theory, called
ﬁ—cobordism, to the class of 3-dimensional homology oriented
handles and to the class of 3-dimensional homology non-orientable
handles. These classes modulo M-cobordism relations will form
groups SE(SIXSZ),QE(SlXtSZ), called H-cobordism groups,respectively.

We will discuss about the properties of the invariants of
Q5 s%)  and SR(5™%cS?). Then we will know that SR(sx5%) is so
related to the Fox-Milnor's classical knot cobordism group Cl and
the Levine's matrix cobordism goup G_ , and that SE(SIXzSZ) is
isomorphic to the direct sum of infinite countable copies of the
cyclic group of order 2.

Section 1 will construct the oriented H-cobordism group
gE(SlXSZ). In Section 2, we will discuss about the properties of
the invariants of‘§2(S¥sz) and compare SE(S%KSZ) with the Fox-
Milnor's knot cobordism group Cl and with the Levine's matrix
cobordism group G_. Section 3 will describe the non-orientable
H-cobordism grouﬁ-SEKSlxtsz) and determine its group structure.
Section 4 will prOpose:further discussions and questions.

Throughout this note, the space will be considered in the
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piecewise-linear category.

§ 1
A CONSTRUCTION OF THE ORIENTED F-COBORDISM GROUP Gps'xs?)

A 3~dimensional homology orientable handle M is a compact

3-manifold having the homology of the orientable handle 81X82 :
He(M;2) = H*(SIXSZ;Z). A homology orientable handle M is oriented
if one generator of HB(M;Z) is distinguished. The class of all
homology oriented handles is denoted by Eiks%xsg). If M is in
E&S%&SZ), then =M, which is the same manifold as M but has
the opposite orientation, also lies in Z?(slxsz).

1.1 DEFINITION., Two homology oriented handles MO s Ml are

H-cobordant and denoted by MO/\-Ml, if there exists a compact
connected oriented 4-manifold W with the boundary 73IW Dbeing

the disjoint union MOU(—Ml) and such that there is an infinite
cyclic connected covering (ﬁ}ﬁb;ﬁi) —_— (W;MO,Ml) of the triad

(W;MO, Ml) with H*(ﬂﬁQ) being finitely generated over Q.

As usual, the triad (W;Mo,Ml) is called an H-cobordism.

For any M e@(slxsz), note that H*(ﬁ;Q) is finitely generated
over Q. Then the use of the Mayer-Vietoris sequence clearly yields

the following.

1.2 LEMMA, The'ﬁ-cobordism relation -~ is an equivalence

relation.

If M ~ SXS° then we write M ~ O. Note that M~ O if

B
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and only if there exists a compact connected oriented 4-manifold
W with the boundary 9W being M and such that there is an
infinite cyclic connected covering (W,ﬁ) —> (W,M) of the pair
(W,M) with H*(W;Q) being finitely generated over Q. In this
case the notation (W;M,®) may be adapted.

1.3 DEFINITL.ON. The set Q(SIXS2)' is defined to be the set

' ~
of @(SJKSZ) modulo the H-cobordism relation.

"For any Mé@(slxsz) [M] denotes the element of Sz(slxs2)
having M as the ;épreaentative.

To show that the set Q(S]XSZ) forms a non-trivial abelian
group, we introduce a sum oparation, called a circle union.

Let MO, Mlé aslxsz) and choose polyhedral simple closed
curves COOC MO’ colc M1 which represent generators of Hl(MO;Z),
Hl(Ml;Z), respectively. Then there exist closed connected orientable
surfaces FOC Mg» FlC Ml such that Foﬂcoo, Flﬂcol consist of
single points, respectively.[To see this, first note that the
identity map CUOC. Q)O can be extended to a piecewise-linear map
fO:MO -—9(,00 by mea.hs of the elementary obstruction theory.
Second, note that there is a point poéa)o such that the preimage
fO—l(pO) is a closed (not necessarily connected ) orientable
surface. Now choose the component of fal(po) containing pj as
Fy. Similarly, the desired F, exists. ]

Consgider the solid torus Slx32 and piecewise-linear
embeddings

hy:STABXO —> M,

h.:S1xB%%1 —> M,

1

N R
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such that

2
(1) there exist points SéSl,b €IntB with hO(st2x 0) C Fgo

1 2 1
h (87Xbx0) =@ g, hl(st x1)< F; and hy(Sxbxl) =w, ,

1
(2) the orientations of SIXB‘?xO and Sle2xl are induced
from some orientation of Slezx[O,l] and ho is orientation-

preserving and hl is orientation-reversing.

1.4 DEFINITION. The oriented manifold

1.2 1 2
MO M, = MoUh S*xB x[O,l]Uh M, - S"xIntB x[0,1]

0 1
is called a circle union of MO and Ml‘

From construction, easily we have MN,O Mle 8(81)(82) .

1.5 REMARK. In general, the homeomorphism type of MOO Ml
depends upon the choices of Coo and wl. For example let COCS]'XSZ
be a simple closed curve of geometrical index 1 and T(w) be
the tubular neighborhood of @ in slxsz. If the circle union
s 5%0 51xs° is defined to be the double of c1(3XS°-7(@)), then
Sl)(320 SlXS2 is clearly piecewise-linearly homeomorphic to SJXSZ.
On the other hand, consider for example a simplé closed curve
@ < Sle2 of geometrical index 3 and algebraic index 1(See
figure 1.) and let T(w') be the tubular neighborhood of ¢’ in
s1xs%. If the circle union 5x5%0'5'x8° is defined to be the

double of ol(S™XS°-T(w')), then sTxs?0'stixs?

to slxszf,c SJ‘XSZO SleZ, because the natural inclusion

is not homeomorphic

AT (@W!') —> S]')KSQ(')‘SIXS2 induces the monomorphism T{IT(c'))—>
T (sx5%0' s1x52%) by the loop theorem and hence Ty(5'x5”0 s'xs?)# z.
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Sxst

figure 1.

In‘ spite of REMARK 1.5, for arbitrary two circle unions
MOO M, MO()'Ml we have the following.
{
1.6 LEMMA, MOOMlN MOQ Ml'

Proof. Let M OM, = MXO U, s'xB°x[0,1]U, MXO -5 IntB%x [0,1]

0

and -(MO'M.)=Mx1 U, , S’xBX[0 g]u MX1 - $1Ent82 [0,1]
0” "1/ 0t Py '+ ny T neE KLY,

and 5

U stx8%x[0,1]

he 1
Mlx[O,l] (See figure 2.).
] U ] ‘

by sk [0,1] P1

Clearly we have QW = Moo M; U -(Myo'M,). Further, the infinite

W= Mx[0,1]

cyclic connected covering M"(;?)"Ml - Moo Ml can be easily
‘extended to a1'f1 infinite cyclic covering v -—>\w. From construction
the restriction to MOO‘Ml gives the infinite cyclic connected
covering —I@Ml — —(MOO‘ Ml). Using the Mayer-Vietoris sequence
we obtain that H*(W;Q) is finitely generated over Q. Thus, the

FAd
triad (W;MOO Ml,MOQ‘Ml) gives an H-cobordism and the proof is

completed.

h.OXto")a 6 ’11x tol‘]
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1.7 LBMMA. Mg~ My

Proof. Assume MONMl. Then there is a compact connected

is equivalent to MOO—M1~ 0.

oriented 4-manifold W with JW = MO U -M and such that for

1
some infinite cyclic connected covering (W;Wlo,ﬁl) —_ (w;MO,Ml)
H*((VY;Q) is finitely generated over Q. Let

1

W1 2
MyO-M, = My U S lB%([O,l]Uh (-M)) - 5"XIntB°X[0,1] and

W' =w U sixB2x[0,1] (See figure 3.). Clearly, JW'=M.Q -M
hO’hl 0 1
and the infinite cyclic covering W —> W is extended to an
infinite cyclic covering W' —> W' and H*(?V";Q) is finitely
generated over Q. Therefore MOO -Ml~ 0. Conversely, assume

MOO—M A, O, Then there is a compact connected oriented 4-manifold

1
W" with QW" = MOO -M; and such that for some infinite cyclic
connected covering (’V}"',M'g-a':f'll) —_— (W",Moo—Ml), H*(l‘f";Q) is
finitely generated over Q. Note that by the definition of the
circle union there is a natural injection j:SlXEBZX[O,l]-éM()Q—Ml.
Now we let W™ = W" Uj SlXBZX[O,l]. It is easy to see that IW" is
equal to the disjoint union MOU -Ml and that the triad (W"% MO,Ml)

gives an H-cobordism between MO and Ml' This completes the proof.

1.8 LEMMA, If M

~Q and M

~ 0, then MOOlevO.

0 1

—G—
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Proof. Let (W;Mo,fé), (W';Ml,fé) be ﬁ—cobordisms, and let

2 7
MO My = B Uy s1x8?x[0,1] Up, 1y - sxIntB% [0,1]. If we let

o= w U, s™B%[0,1] U, W' (See figure 4.), then the triad
0 1
(W";Moo Ml,ﬁ) gives an ﬁ-—cobordism, which completes the proof.

Now we state the main theorem of this section.

1.9 THEOREM. The set SB(SlXSZ) forms an abelian group under

the sum [MQ] + [Ml] = [MOOMl]. The zero element of this group

is [‘SIXS2]. The inverse of any element [M] is the element [-M].
Proof. To show that the sum [MO] + [Ml] = [MOO Ml] is

well-defined, we let My~ M), and M, ~ M). By LEMMA 1.7,

0 0 1 1
MyQ -Mj ~0 and E’IlO—M]'_A— 0. Then by LEMMA 1.8
(MOQ -IJI('))Q(M]_O —Mi) ~ 0. On the other hand, clearly

(MOQ Ml)o-(MéQMi) ~ (MOO—Mé)O(MlO—Mi)
(Use LEMMA 1.6.). Hence again by LEMMA 1.7 M@ My~ M4QOHM;. Thus,
[MOJ = [Mé] and [Mlj = [Mi] imply [MO]+[M1] = [M(')]-t-lt_Mi];'It is
clear that ([140)+[y[l])+[M2] = [MO}+([M11+[M2]) and
[myl+liy ] = [y J+[M ). Also, we have [M]+[sxs®]=[rmos'xs?]=[n]
and, by IEMMA 1.7, [M]+[-M] = [5'OS?]. This completes the proof.

The group Q(Slxsz) is called the (oriented) H-cobordism

Ny
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group between 3-dimensional homology oriented handles. The zero

element is denoted by O and the inverse of [M] is -[M].

§ 2
, 1, 2
GEOMBTRIC AND ALGEBRAIC STRUCTURES.OF SS:X §°)

Let p:'ﬁ-—é> M Ybe the infinite cyclic orientation-preserving
covering projectiqn and t be a generator of the covering
transformation group. Since M is oriented, one fundamental class
(M] & H3(M;z) is specified. Then the choice of t determines a
finite fundamental class }4, =3 Hz(ﬁ;Z)(zZ) of '1\\5 In fact, we let
M= p;l(Q)ﬂ[M]), where a)éIﬁTNuZ) is a cocycle identified with
the covering transformation t and p*:Hz(ﬁEZ)4t H2(M;Z)(2$ Z)
(See Kawauchi [6,Remark 2.?].). Note that the dual isomorphism
Ny 2L (¥;Q) Hl(’M";Q) holds(See Kawauchi [5,Theorem 2.'3].).

Equivalently, the skew-symmetric cup produs¥ pairing

(o) x B (e —L—s (W 0) % By(Ma) = @

is non-singular (See Milnor[(¢,pl27].).
5.1 DEFINITION.The bilinear form < , >:H-(¥;Q)eHT(¥M;Q)—> Q

defined by the equality <x,y> = (xUty)ilx + (yUtx)llx is called

the gquadratic form of M.

It is easy to check that the quadratic form is uniquely
determined by the oriented M (in particular, it does not depend

upon.the choice of t), and that it is a symmetric bilinear form

- —
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with the identity <tx,ty> = <x,y>. Furthermore, this form < , >

is always non-singular. To see this, it is convenient to introduce

the concept of the Alexander polynomial.

2.2 DEFINITION. The (rational) ‘Alexander polynomial A(t) of

M is the characteristic polynomial of the isomorphism
t Hl(ﬁ}Q) —_ Hl(ﬁ}Q) (See Kawauchi[6] for details and the

definition of the integral Alexander polynomial.).

A(t) is the invariant of M up P units ctiei Q[t,t_l]

1)

and

has the properties A(+1) # O and A(t) = A(t™

Suppose , for all x, <X,y> = [xU(t—t_l)y]ﬂ}L= 0. Then
(t—t-l)y = —t—l(t—l)(t+l)y = 0, which implies y = O, since

A(+1) # 0. Thus, the quadratic form < , > is non-singular.

Since <, > is non-singular and symmetric, with a suitable

basis of Hl(ﬁEQ), <, > vrepresents a rational diagonal matrix

( a; >0, bj > 0).

2.3 DEFINITION. The integer 0 (M) = m - n is called the

signature of the oriented M.

It is not difficult to see that &(M) is even (, since

dimg Hl(’zv‘f;Q) = degh(t) 1is even) and that G (-M) = - §(M).

—q—
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2.4 THEOREM. If M~ O, then the signature @ (M) is O and
_.]_)

the Alexander polynomial A(t) of M has the form f(t)f(t

for some rational volynomial f(t).

One may note an analogy of the signature and the Alexander
. . Y . lx 2
polynomial hetween the oriented H-cobordism group S2(s'%xS ) and
the Fox-Milnor's knot cobordism group Cl(See Fox-Milnor [2].).
This relation will be clarified in this section.

2.5 DEFINITION. The reduced Alexander polynomial Kit) of M

is the rational polynomial obtained from the Alexander polynomial

A(t) by cancelling the factors of the type f(t)f(t-l).

Let ’K(t), T'(t) be the reduced Alexander polynomials of M,
M', respectively. The following is a direct consequence of THEOREM
2.4.

2.6 THEORFM., If M A M', then (M)= ¥') and X(t)=X'(t).

[Note that there is a canonical isomorphism Hl(ﬁa:M')chl(ﬁ)+H1(4ﬁ“)3.

2.7 PROOF QF THEOREM 2.4. Since M~0O, there exists an

ﬁlcobordism (W;M,8). Then for an infinite cyclic connected covering
(ﬁﬁﬁ)—e> (w,M), H*(W;Q) is finitely generated over Q.

Now we consider the following diagram

i) —2> EMe) —S— B2 Tq)

Loy LoE

i, (Q) —*—= H, (V;0)

.,lo——
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Here, the top sequence is exact and the vertical maps are
isomorphisms and ﬁeHB(W,’I\‘ff;Z)(%Z) is a finite fundamental class
(See Kawauchi [B,Theorem 2.3].) obtained from the finite
fundamental class ﬂeﬂg(ﬁ;z) by the boundary-isomorphism
Q:Hj(w,'ﬁ;z) %HZ(?’I’;Z). And the square is commutative.

Because the sequence 0O —> Im i* —> Hl(ﬁ'; Q) —> In§ —> 0
is exact, the equality A(t) = B(t)C(t) holds, where B(t),C(%)
are the characteristic polynomials of the linear isomorphisms
t: Im i* —> Im i* and t: ImS —> Im § , respectively.

By the commutativity of the above sequare, we have the
isomorphism ﬂ}i: Ind —> Im i,. This asserts that the equality
c(+™1) 2 B(t) holds.[Use the identities (tu)t= t™*(ullf) and
Im i%= Hom(Im i,,Q).] Thus, we have A(+)2C(t)c(t™13&B(+™H)B(t).

Next, for all uéHl("v'Jv;Q), suppose <i*(u),y> = 0. This
situation is equivalent to S(t—t-l)y = 0, that is,(t—t-l)ye Im i*,
because <i*u,y> = i*u U(t—t_l)y = ng(t-t—l)y.[Use the. above
square is commutative.] Using (t-t_l)Im i*CIm i* and the
isomorphism t-t"1:HY(PGQ) — XM Q), (t-t™ D)y € Im i* is
eq_uivalent to y € Im i*, Thus, we showed that the orthogonal
complement of Im i* is 1Im i* itself, Then, a familiar protess
implies @(M) = O (See for example Milnor-Husemoller((l,p13].).
This completes the proof. |

Let X be the set of knot types of tame ®riented l-knots in

ﬁ
the oriented S°. We shall construct a function m : X -—-e»e(SlXSZ),

(Now we regard the class @(Slxsz) as the set of orientation-
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preserving homeomorphism types of homology oriented handles.)

Tet T(k)C 52 be the tubular neighborhood of & knot kCS-.
By Schubert [12), the knotted torus T(k) in 32 has unique
meridean and longitude curves ( up to isotopies of dT(k)). Define
m(k) . to be the oriented manifold obtained from thé surgery of S3
along T(k) by using the unique meridean and longitude curves:
m(k) = SB—T(k) U BZXSI.(The orientation of m(k) will adapt the
orientation induced from S°-7(k).)

This assignment clearly implies a function m’?))( -—9 é(slxsg)
" from the knot types to the homeomorphism types.

Two knot types & &, ave(knot) cobordant if for representative

knots k€€, and k,€f; the sun kf-k, < S° bounds a locally flat
2-cell in the 4-cell B4. Such a concept is called the knot
cobordism. The set P( modulo the knot cobordism relation forms an
abelian group Cl, called the knot cobordism group (See Fox-Milnor
[Q] for details.).

Note that the function m: K——)@(SIXSZ) induces a
homomorphism m: Cl-—€>§;B(SIXS2). In fact, easily we have
m(k#k,) = m(k,)Om(k,), and if k is cobordant to a trivial knot
then m(k)~ O [To see this, let D°C BT be a locally flat 2-cell
with k = 3D2<: s2. By using an embedding ?& aB?sz — SB, giving
a tubular neighborhood of k = f%9B2Xp) such that a circle
?(QB%kp') is the longitude curve, we construct a 4-manifold
W = B4U@ BXB®. Then W = m(k) and a 2-sphere 5= DU BXp C ¥
is lecally flat. By performing a surgery along the tubular

neighborhood of 3 , we obtain a 4-manifold W' with JW' = m(k)

*) This function is not injective. A non-invertible knot would
provide such an example.
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and H,(i';Z)= H,(5%;2). The triad (W';m(k),4) gives an

Fa'd
H-cobordism. |.

2.8 LEMMA. The homomorphism m: CF —> S2(s1xs?) satisfies

<> = ¢[m(k)] and A (%) = A[m(K)J(t) for all <k e ol

The proof will be given later.

By LEMMA 2.8, the known results of Cl also imply the
following two corollaries.

2.9 COROLLARY. For any integer i, there exists Me @Sk s2)

with (M) = 2i.

2,10 COROLLARY. The oriented H-cobordism group S2(S'xS°) has

the free part of infinite rank and contains a torsion element.

For example, for the figure eight knot 41(See figure 5.), the
element [m(4l)]¢ESﬁKSlXS2) gives an eélement of order 2, because
the element <41>€ Cl has order 2 and the reduced Alexander
polynomial of m(4,) is ’t2—3t+l which implies [m(4l)] £0 by
THEOREM 2.4. - .

4y

figure 5.

—\3—
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Now we need a concept of Seifert matrices. A Seifert matrix

V is an integral square matrix with det(V-V') = ¢ 1. (V' is the
transepose of V.)
For two Seifert matrices V and W, if the block sum

V@ W is congruent ( over the integers ) to a matrix of the form

J B
( ) (B,C,D are square matrices of the same size.) then V is
cC D

said to be (matrix) cobordant to W. Such a concept is called the

matrix cobordism. The set of Seifert matrices modulo the matrix

cobordism relation forms a group G_ , called the matrix cobordism

group (See Levine[¥Q] for details. Note that only Seifert matrices
with sign -1 are considered.). By Levine (9], G_ is isomorphic
50 - s = "& .
. i i i
to the direct sum Zﬁz @fa,zz 3, 7.
For a knot %k in 33, denote M(k) to be the knot exterior,
or the closed knot complement of k, and 350{) to be its infinite

cyclic covering space. By a Seifert matrix of the knot k we

will mean a Seifert matrix which is S-equivalent to a Seifert matrix
associated with a Seifert surface of k. (See Trotter[l3] for recent
results of S-equivalences.)

The guadratic form < , >: HY(M(k),3M(k);Q)xat(M(x),2f(x);q)

—> Q of the oriented knot k in the orfented S° is defined

by the equality <x,y> = (xUty)iIM+ (yUtx)lyo (See Milnor [{0] and
Erle [/ ].), which is a complete analogue of DEFINITION 2.1.[Note
that since k and 83 are oriented, both t and }o are specified
wniquely. ] (Heve, peto(@K,aH®52) is o finile fundamental class [5],)

Erle [/] then showed that , with a suitable basis of

- (4 —
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Hl(ﬂTk),?ﬁZk);Q), the linear isomorphism 1t : Hl(ﬁ(k),éﬁ(k);Q)——>
1

Hl(ﬁ(k),Qﬁ(k);Q) represents the matrix V' -~V and the gquadratic

form <, > represents the matrix V + V' for some non-singular

Sgifert matrix V.,

The same assertion also applies for the homology oriented
handles.

By Kawauchi E;,Corollary 1.3], there is a piecewise~linear
map f : M —> s! such that F = f’l(p) is a closggzgﬂgﬁace.
Clearly, the homology class [F]§E Hz(ﬁ}z) coincides with
i}LeHg(@I’;Z). If t is specified, then M is also specified and
hence we may orient F so that [F] f}b . Let M* be a manifold
obtained from M by splitting along ¥F. Note that a duality
Hl(F;Z)4§:Hl(M*;Z) holds. Let QM* = FU ~F (Here we identify the
component of QJM* with the orientation compatible with F.).

With dual bases of Hl(F;Z) and Hl(M*;Z), the canonical
homomorphism Hl(F;Z) — Hl(M*;Z) represents a square matrix Vo.
To show that VO is a Seifert matrix, let V; be another matrix
representing the canonical homomorphism Hl(—F;Z) —> Hl(M*;Z)‘

By an analogy of Levine [TT] it is not difficult to see that the
matrix tvo -V, is a relation matrix of H,(f;z) and that V7
is in fact the transpose Vé of VO. Thus, tVo—Vg is a relation
matrix of H (W;2). Using H (4;2) = 2, det(V -V!) = # 1. Thus, V,_
is a Seifert matrix.

2.11 DEFINITION. A Seifert matrix V which is S-~equivalent

to VO is called a Seifert matrix of M ( with a specified

generator of Hl(M;Z)).

T
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Note that if another generator of Hl(M;Z) is specified
then the transpose V' of V is considered as a Seifert matrix
of M.

A technique of Erle [/] then implies the following :

2.12 LEMMA. With a suitable basis of HT(WQ), the linear

-1

isomorphism t Hl(’l‘f;Q) —_ Hl(ﬁ;Q) represents the matrix V' °V

and the gquadratic form < , >:Hl(ﬁ;Q)X Hl(ﬁ;Q) —> Q represents

the matrix V + V' for some non-singular Seifert matrix V of M.

Using LEMMA 2.12, we obtain a well-defined homomorphism
Y' :Q(SIXSQ) —> G_ sending homology oriented handles to the
Seifert matrices (See Levine [¢,p101].). [Note that the Seifert
matrix V is always cobordant to the transpose V', although V
is in general not S-equivalen’é to V' (See Trotter(/3].).]

Thus, we sketched the following. |

2.1% THEOREM., There is the commutative triangle

i Qs%s?)

\/

sgt e:i; 7 Q2,2

, where (ﬁ: Cl —> G_ is a canonical epimorphism defined by Levine

and %:S?(SIXS% —> G_ 1is an epimorphism defined as above

and m satisfies /E;p(t) -L-/A’[m(((”(t), and T<& =QC[n(k)] for

—(6—
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all < e cl.

. 7 ~
2.14 PROOF OF LEMMA 2.7. The inclusion map i : M(k) —> m(k)

. . . . nr ~ . .
induces an isomorphism 1*:H1(M(k);Q)534H1(m(k);Q). From this, it
. o . lond
follows that Ak(#) S Am(k)(t), and hence A (t) = A{m(K)](t).
Next, since the following triangle
B (W) 5 Q) X B (F(x) Q) —_
~ | ik, Q

L (@0 Q) XENE ;0 —

is commutative, we obtain that @®(k) = @(m(k)). This completes the

proof.

The general problem of deciding a geometrical condition of
“H~cobordism seems difficult, but a partial result is presented
here.

Dol o2
2.15 THEOREM. If M € @(5'xS°) is embeddaile in a homology

4-sphere .§4, then M is H-cobordant to O.

Proof. Assume M C§4. By an easy computation of the
homology, we obtain that M separates §4 into two manifolds,
say, wl, w2 and that one of wl, w2 has the homology of the
circle, say, H*(Wl;Z)ctH*(Sl;Z). Then (wl;M,ﬁ) gives an
%icobordism. This proves THEOREM 2.14.

Here are a few examples, whose somewhat analogous properties

were also noticed by Kato[4.].

2.16 EXAMPLES. First we consider a trefoil 31 (figure 6).

— (01—
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Using  ®(m(3))) =+ 2 or K(t) = t°-t+1, we see that m(3;) is

not H-cotordant to ©. Hence m(Bl) is not embeddable to the
4-sphere S4 and the minimal embedding dimension of m(31) into a
svhere is five [In fact, Hirsch[3] showed that every compact

orientable manifold is locally flatly embeddable to the 5-sphere. ].

s

figure 6.

On the other hand, a stevedore's knot 6l (figure 7) is a
slice knot and hence m(Gl)ﬂrO.

Note that a slice knot k can be realized as a local knot
type of a 2-sphere S(k) in S4 with only one locally knotted
point (See Fox-Milnor[2].).

Let N(S(6l);S4) be the regular neighborhood of S(6l) in

4

s*. It is not hard to see that 9N(S(6l);s4) = m(6,). Thus, m(6,)

is embedddble in the 4-sphere S4.

3
0
Qe

Similar arguments also applies for a granny knot Bi#Bl and

a square knot 3£ﬁ-31 (See figure 8.). In fact, m(Bﬁ#Bl) is not
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embeddable to , although m(3f¥—31) is embed dable to S4, since

®(o(3#43,)) =20(3)) =+ 4 and 5d-3, is a slice knot.

0 o
343, 3#%-3,

figure 8.

$ 3
™ 1 2
THE NON—ORIENTABLE H-COBORDISM GROUP STXS7)

A 3-dimensional homology non-orientable handle M is a
compact 3-manifold having the homology of the non-orientable handle
s1xs? : B, (42) % H(51%5%;2), and let (C(51%S%) be the class
of the homology non-orientable handles.

1 2 nr . . R R

m s Xz3°), an H-cobordism relation is defined as an
analogy of DEFINITION 1.1.

3.1 DEFINITION. Two homology handles Mo, Ml in fg(SerSZ)

are H-cobordant and denoted by Mov'\--Ml if there exists a compact
connected (non-orientable) 4-manifold W with the boundary W
being the disjoint union MOU Ml and such that there is an
infinite cyclic connected covering (@ﬂﬁb,ﬁi) —_— (w;Mo,Ml) with

r
T

W being orientable and with H*(ﬁ?Q) being finitely generated
over Q. [Note that T is always orientable (See Kawauchil§,

Lemma 2.3].).]

—[9—
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Je say that W is T-cobordant to O if 15 H-cobordant to
Slx'c‘s?‘.
f T l (‘42 3
For i, Mlée(s Xx37), choose polyhedral simple closed
curves Q)OCIVIO y G < Ml which represent generators of Hl(NiO;Z)

, Hl(Ml; ), respectively. It is not difficult to see that the

tubular neighborhoods T(%) < liy; of &, and (@) €M, of
&y are both piecewise-linear homeomorphic to the solid Klein
bottle STXgB.

Let FO C Fl <M be closed connected orientable

(O 1
surfaces transversally intersecting cho, &) in single vpoints,
respectively.

Consider two piecewise-linear embeddings

By 5%z BXO —= M
2

0

h.: SWeBX1 —> M

1 1
such that there exist points seST , b &IntB® with
hy (37XcbX0) =ad,, hy(sKB°X0) C ¥, hy (57X bX1) = & and
h, (sXBX1) & F,.
As an analogy of DEFINITION 1.4, we may have DEFINITION 3.2,
3.2 DEFINITION, The homology non-orientable handle

. 1
M-S XTInthx[O,l]

1 2
MyQM, = Mouhos X.B x[o,:L]Uhl
is called a circle union of MO and Ml.

It is not difficult to check that for two circle unions
{ {
MOQ Ml, MOO Ml, Moo erv Moo Ml. Further, we can prove that
MONMl if and only if MOOMl»vO as an analogy of LEMMA 1.7.
Thus, we sketched that the set Q(Slxtsp‘) = G(SlXtSZ)/N
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forms an abelian group under the sum imuj + L] o= [NOQ)MlJ.

This group is called the non-orientable 'ﬁ¥cobordisﬁ:group of

3-dimensional homology non-orientable handles.

overy non-zero element of gz(Sl%vSE) has order 2, by
construction.

- S{ wly o2 . -

Turther, (S"X%xS%) 1is not finitely generated. Actually, the
following is obtained.

‘M o
3.3 THEoREM. GR(s'Kes? )% 2 23,

To prove THEOREM 3.3, the Alexander polynomial is useful.

The Alexander polynomial A(t) of M é}éﬂ81XfSZ) is simply

defined to be the characteristic polynomial of the linear

isomorphism t :Hl(ﬁﬁQ) —> H (@gQ).(bee Kawauchi [€].)

1
Then THEOREM 3.3 follows from LWMMA 3.4 (, which is somewhat
analogous to THEOREM 2.4).

3.4 LEMMA, If Me& C(s'Xws?) is T-cobordant to O then

the Alexander polynomial A(t) of # has 2 type of f(t)f(—t_l)

for some rational polynomial f(t).

3.5 PROOF OF THEOREM 3.3. By Kawauchi [CJ, the irreducible

integral polynomial An(t) = nt°+t-n (n=1, 2, 3, ....) is
realized as the Alexander polynomial of some Mnegé?(s¥xtsg).
Then it is easy to see that Ml, Mg, M3’ ..... represent a set
of linearly independent elements of S}(SlXtSZ). This completes

the proof.

-2 —
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3.0 PRUOF OF LIMMA %.3. Since M a 0, there exists a compact

connected 4-manifold ¥ with @W = ¥ and such that for some
infinite cyclic connegted covering (g;ﬁ) — (W,M), W is
orientable and H*(ﬁ}Q) is finitely generated over Q. Then from
the exact sequence Hl(w;Q) S Hl(?ﬁg) Ji> Hg(w,ﬁ}Q) we obtain
the short exact seguence d ~— Im i* ——9-H1(E}Q) —> In§y —> O.
Thus we have A(t) = B(t)C(t), where B(t), C(t) are the
characteristic polynomials of t : Im i* —> Im i*, t:Im§—=Ind,
respectively. Since the square

gt (T q) - 12 (W, 7; Q)

sl MeE

H (T —% 1 (T0)
is commutative, we obtain the dual isomorphism O]EEInzé?'Qt Im ig.
Using the identities .(tu)laz= —t—l(ugib and Im i*=Hom(Im 1,,Q),
this dual isomornhism gives the equality C(~t"l) = B(t). This

proves LEMMA 3.3,

§ 4
FURTHER DISCUSSIONS AND QUESTIONS

The most basic and interesting problem on this paper is the
following question,.

4.1 QUESTION. Whether or not are the homomorphisms m, <ﬁ,$b

in THEOREM 2,13 isomorphic ?

lad
This question also asks the difference between H-cobordism and
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H-cobordism.

Usually , for compact closed oriented n-manifolds Ng, Ng, if
there exists an oriented compact (n+l)-manifold B yitn
M™M= ¥ U N and H(E™HN]52) = 0 (= B (E™,oN,52)), then

Nl is said to be H-cobordant to N?. Also, such a condept is called
H-cobordism.

Yoy 2 B ne .
4.2 QuesTIoN.In C(s'Xs?), are H-cobordism and F-cobordism

strictly distinect ?

For example, it is not difficult to see that two H-cobordant
homology oriented handles are ﬁ:cobordant.

In E?Slﬁsz) or a class of more general manifolds it seems
difficult to define a non-trivial H-cobordism group. However, for
the class of homology oriented n-spheres, the H-cobordism group
'){}Sn) is defined in the natural way. In the piecewise-linear
category, it is not so hard to see that'){xsn) = 0 for n=>>5,

At n = 4, the author does not know whether ',)(:(84) vanishes or
not. At n = 3, Kato pointed out that KJ(S°) is non-trivial, that
is, there exists a homology 3-sphere which is not the boundary of
any homology 4-ball. In fact, the dodecahedral space 5= SE/SL(Z;S)
is such an example.

53

4.3 QUESTION., For any homology 3-sphere » is the connected

sum SlKS%#§3 H-cobordant_to SlX32 ?

Note that for the dodecahedral space §3, S%XS%#§3 is not

H-cobordant to S4(S°.

—23—
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Let 33"1 be the class of compact oriented 3-manifolds having
the integral homology of the connected sum #nslxsg of n
copies of SlXSz. Similarly, let @8"“ be the class of compact

oriented 3-manifolds having the rational homology of #nSlXS‘g.

4.4 QUISTION. In @  or €g’n (n >2), can a

’Itf-cobordism theory be developed 7

It seems that for n > 2 ail_things would become extremely
difficult.

In 88’1, the H-cobordism group gzg’l is actually defined
as an analogy of Q(Slxsiz).(’i‘his group is so related to the Levine's
rational matrix cobordism group G_Q.) ‘

Now suppose the ?f—cobordism groups Sf’n = 83,11/,\, and
R = ag’n/,v are obtained. Let S2°'°0 = )((S?) and let
528’0' be the rational H-cobordism group of rational homology
3-spheres. The direct sumsgﬁz = S{B’OQ QS’lQ 523’2, @ .....
and g{é = S?_a’QQD Qa’l@ @3’29 would have ring
structures under the connected sum operation.

Ih the higer dimensional case, we can also define the
H-cobordism groups R(sxs™ 1) ang S?(Sl;(@n—l) of n-dimensional
homology oriented and non-orientable handles, respectively.

The following seems no__t so difficult for n > 5.

4.5 QUESTION. Is SZ(SlkSn—l) isomorphic to the piecewise~

linear (n-2)-knot cobordism group C?EZ ? Also, is Q(Slxrsn-l)

isomorphic to 2;’-'2; if n is even, or to O if =n is odd *?
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