ON H-COBORDISMS BETWEEN THREE DIMENSIONAL HOMOLOGY HANDLES

AKIO KAWAUCHI

Graduate school, Osaka City University

The present note will introduce a cobordism theory, called \widetilde{H} -cobordism, to the class of 3-dimensional homology oriented handles and to the class of 3-dimensional homology non-orientable handles. These classes modulo \widetilde{H} -cobordism relations will form groups $\Omega(S^1XS^2)$, $\Omega(S^1X_7S^2)$, called \widetilde{H} -cobordism groups, respectively.

We will discuss about the properties of the invariants of $\mathbf{\Omega}(\mathbf{S}^1\mathbf{X}\mathbf{S}^2)$ and $\mathbf{\Omega}(\mathbf{S}^1\mathbf{X}\mathbf{S}^2)$. Then we will know that $\mathbf{\Omega}(\mathbf{S}^1\mathbf{X}\mathbf{S}^2)$ is so related to the Fox-Milnor's classical knot cobordism group \mathbf{C}^1 and the Levine's matrix cobordism goup \mathbf{G}_{-} , and that $\mathbf{\Omega}(\mathbf{S}^1\mathbf{X}_{\mathbf{C}}\mathbf{S}^2)$ is isomorphic to the direct sum of infinite countable copies of the cyclic group of order 2.

Section 1 will construct the oriented \widehat{H} -cobordism group $\mathbf{\Omega}(\mathbf{S}^1\mathbf{x}\mathbf{S}^2)$. In Section 2, we will discuss about the properties of the invariants of $\mathbf{\Omega}(\mathbf{S}^1\mathbf{x}\mathbf{S}^2)$ and compare $\mathbf{\Omega}(\mathbf{S}^1\mathbf{x}\mathbf{S}^2)$ with the Fox-Milnor's knot cobordism group \mathbf{C}^1 and with the Levine's matrix cobordism group \mathbf{G} . Section 3 will describe the non-orientable \widehat{H} -cobordism group $\mathbf{\Omega}(\mathbf{S}^1\mathbf{x}_{\mathbf{T}}\mathbf{S}^2)$ and determine its group structure. Section 4 will propose further discussions and questions.

Throughout this note, the space will be considered in the

piecewise-linear category.

§ 1

A CONSTRUCTION OF THE ORIENTED \widetilde{H} -COBORDISM GROUP $\mathfrak{R}(s^1 \times s^2)$

A 3-dimensional <u>homology orientable handle</u> M is a compact 3-manifold having the homology of the orientable handle S^1XS^2 : $H_*(M;Z) \approx H_*(S^1XS^2;Z)$. A homology orientable handle M is <u>oriented</u> if one generator of $H_3(M;Z)$ is distinguished. The class of all homology oriented handles is denoted by $\overrightarrow{C}(S^1XS^2)$. If M is in $\overrightarrow{C}(S^1XS^2)$, then -M, which is the same manifold as M but has the opposite orientation, also lies in $\overrightarrow{C}(S^1XS^2)$.

<u>1.1 DEFINITION</u>. Two homology oriented handles M_O , M_1 are \widetilde{H} -cobordant and denoted by $M_O \sim M_1$, if there exists a compact connected oriented 4-manifold W with the boundary ∂W being the disjoint union $M_O U (-M_1)$ and such that there is an infinite cyclic connected covering $(\widetilde{W}; \widetilde{M}_O, \widetilde{M}_1) \longrightarrow (W; M_O, M_1)$ of the triad $(W; M_O, M_1)$ with $H_*(\widetilde{W}; Q)$ being finitely generated over Q.

As usual, the triad $(W; M_0, M_1)$ is called an $\widetilde{\underline{H}}$ -cobordism. For any $M \in \overline{\widehat{C}}(S^1 \times S^2)$, note that $H_*(\widetilde{M}; Q)$ is finitely generated over Q. Then the use of the Mayer-Vietoris sequence clearly yields the following.

1.2 LEMMA. The H-cobordism relation \sim is an equivalence relation.

If M \sim S¹xS² then we write M \sim 0. Note that M \sim 0 if

and only if there exists a compact connected oriented 4-manifold W with the boundary ∂W being M and such that there is an infinite cyclic connected covering $(\widetilde{W},\widetilde{M}) \longrightarrow (W,M)$ of the pair (W,M) with $H_*(\widetilde{W};Q)$ being finitely generated over Q. In this case the notation $(W;M,\emptyset)$ may be adapted.

of $\widehat{C}(S^1 \times S^2)$ modulo the \widehat{H} -cobordism relation.

For any $M \in \overrightarrow{C}(S^1xS^2)$ [M] denotes the element of $\Omega(S^1xS^2)$ having M as the representative.

To show that the set $\Omega(S^1xS^2)$ forms a non-trivial abelian group, we introduce a sum operation, called a circle union.

Let M_0 , $M_1 \in \widehat{\mathcal{C}}(\operatorname{S}^1 \times \operatorname{S}^2)$ and choose polyhedral simple closed curves $\omega_0 \subset M_0$, $\omega_1 \subset M_1$ which represent generators of $H_1(M_0; \mathbb{Z})$, $H_1(M_1; \mathbb{Z})$, respectively. Then there exist closed connected orientable surfaces $F_0 \subset M_0$, $F_1 \subset M_1$ such that $F_0 \cap \omega_0$, $F_1 \cap \omega_1$ consist of single points, respectively. [To see this, first note that the identity map $\omega_0 \subset \omega_0$ can be extended to a piecewise-linear map $f_0: M_0 \longrightarrow \omega_0$ by means of the elementary obstruction theory. Second, note that there is a point $p_0 \in \omega_0$ such that the preimage $f_0^{-1}(p_0)$ is a closed (not necessarily connected) orientable surface. Now choose the component of $f_0^{-1}(p_0)$ containing p_0 as F_0 . Similarly, the desired F_1 exists.]

Consider the solid torus $S^{1}\mathbf{x}B^{2}$ and piecewise-linear embeddings

$$h_0: S^1 \times B^2 \times 0 \longrightarrow M_0$$

 $h_1: S^1 \times B^2 \times 1 \longrightarrow M_1$

such that

- (1) there exist points $s \in S^1$, $b \in IntB^2$ with $h_0(s \times B^2 \times 0) \subset F_0$, $h_0(S^1 \times b \times 0) = \omega_0$, $h_1(s \times B^2 \times 1) \subset F_1$ and $h_1(S^1 \times b \times 1) = \omega_1$,
- (2) the orientations of $S^1 \times B^2 \times 0$ and $S^1 \times B^2 \times 1$ are induced from some orientation of $S^1 \times B^2 \times [0,1]$ and h_0 is orientation-preserving and h_1 is orientation-reversing.

1.4 DEFINITION. The oriented manifold

 $\mathbf{M}_0 \mathbf{O} \, \mathbf{M}_1 = \mathbf{M}_0 \mathbf{U}_{h_0} \, \mathbf{S}^1 \mathbf{x} \mathbf{B}^2 \mathbf{x} [0,1] \mathbf{U}_{h_1} \, \mathbf{M}_1 - \mathbf{S}^1 \mathbf{x} \, \mathbf{Int} \mathbf{B}^2 \mathbf{x} [0,1]$ is called a <u>circle union</u> of \mathbf{M}_0 and \mathbf{M}_1 .

From construction, easily we have $M_0 \circ M_1 \in \vec{C}(S^1 \times S^2)$.

1.5 REMARK. In general, the homeomorphism type of M_0OM_1 depends upon the choices of ω_0 and ω_1 . For example let $\omega < S^1 \times S^2$ be a simple closed curve of geometrical index 1 and $T(\omega)$ be the tubular neighborhood of ω in $S^1 \times S^2$. If the circle union $S^1 \times S^2 O S^1 \times S^2$ is defined to be the double of $cl(S^1 \times S^2 - T(\omega))$, then $S^1 \times S^2 O S^1 \times S^2$ is clearly piecewise-linearly homeomorphic to $S^1 \times S^2$. On the other hand, consider for example a simple closed curve $\omega' < S^1 \times S^2$ of geometrical index 3 and algebraic index 1(See figure 1.) and let $T(\omega')$ be the tubular neighborhood of ω' in $S^1 \times S^2$. If the circle union $S^1 \times S^2 O' S^1 \times S^2$ is defined to be the double of $cl(S^1 \times S^2 - T(\omega'))$, then $S^1 \times S^2 O' S^1 \times S^2$ is not homeomorphic to $S^1 \times S^2 \otimes S^1 \times S^2 \otimes S^1 \times S^2$, because the natural inclusion $\partial T(\omega') \longrightarrow S^1 \times S^2 O' S^1 \times S^2$ induces the monomorphism $\pi_k(\partial T(\omega')) \longrightarrow \pi_1(S^1 \times S^2 O' S^1 \times S^2)$ by the loop theorem and hence $\pi_1(S^1 \times S^2 O' S^1 \times S^2) \not\approx Z$.

In **spite** of REMARK 1.5, for arbitrary two circle unions $M_0 \circ M_1$, $M_0 \circ M_1$ we have the following.

1.6 LEMMA. $M_0 O M_1 \sim M_0 O' M_1$.

Proof. Let $M_0 \cap M_1 = M_0 \times 0 \cup_{h_0} S^1 \times B^2 \times [0,1] \cup_{h_1} M_1 \times 0 - S^1 \times IntB^2 \times [0,1]$ and $-(M_0 \cap M_1) = M_0 \times 1 \cup_{h_0} S^1 \times B^2 \times [0,1] \cup_{h_1} M_1 \times 1 - S^1 \times IntB^2 \times [0,1]$ and

$$W = M_0 x[0,1] \begin{cases} U_{h_0} & S^1 x B^2 x[0,1] \\ U_{h_0'} & S^1 x B^2 x[0,1] \end{cases} U_{h_1'} M_1 x[0,1] \text{ (See figure 2.).}$$

Clearly we have $\mathbf{3W} = M_0 \mathbf{O} M_1 \cup -(M_0 \mathbf{O}^t M_1)$. Further, the infinite cyclic connected covering $M_0 \mathbf{O}^t M_1 \longrightarrow M_0 \mathbf{O}^t M_1$ can be easily extended to an infinite cyclic covering $\widetilde{W} \longrightarrow W$. From construction the restriction to $M_0 \mathbf{O}^t M_1$ gives the infinite cyclic connected covering $-M_0 \mathbf{O}^t M_1 \longrightarrow -(M_0 \mathbf{O}^t M_1)$. Using the Mayer-Vietoris sequence we obtain that $H_*(\widetilde{W}; \mathbb{Q})$ is finitely generated over \mathbb{Q} . Thus, the triad $(W; M_0 \mathbf{O}^t M_1, M_0 \mathbf{O}^t M_1)$ gives an \widetilde{H} -cobordism and the proof is

1.7 LEMMA. $M_0 \sim M_1$ is equivalent to $M_0 \circ -M_1 \sim 0$.

Proof. Assume $M_0 \sim M_1$. Then there is a compact connected oriented 4-manifold W with $\mathbf{a}W = M_0 U - M_1$ and such that for some infinite cyclic connected covering $(\widetilde{\mathbb{W}}; \widetilde{\mathbb{M}}_{0}, \widetilde{\mathbb{M}}_{1}) \longrightarrow (\mathbb{W}; \mathbb{M}_{0}, \mathbb{M}_{1})$ $H_*(\mathcal{X}; Q)$ is finitely generated over Q. Let $\begin{array}{l} \mathbb{M}_0 \bullet - \mathbb{M}_1 &= \mathbb{M}_0 \ \mathbb{U}_{h_0} \ \mathbb{S}^1 \times \mathbb{B}^2 \times [0,1] \mathbb{U}_{h_1} (-\mathbb{M}_1) - \mathbb{S}^1 \times \mathrm{IntB}^2 \times [0,1] \ \text{and} \\ \mathbb{W}' &= \mathbb{W} \ \mathbb{U}_{h_0,h_1} \mathbb{S}^1 \times \mathbb{B}^2 \times [0,1] \ (\text{See figure 3.}). \ \text{Clearly, } \partial \mathbb{W}' = \mathbb{M}_0 \circ - \mathbb{M}_1 \\ \end{array}$ and the infinite cyclic covering $\widetilde{\mathbf{W}} \longrightarrow \mathbf{W}$ is extended to an infinite cyclic covering $\widetilde{W}' \longrightarrow W'$ and $H_*(\widetilde{W}';Q)$ is finitely generated over Q. Therefore $M_0 \circ -M_1 \sim 0$. Conversely, assume $M_0 O - M_1 \sim 0$. Then there is a compact connected oriented 4-manifold W" with 3W" = M_0Q-M_1 and such that for some infinite cyclic connected covering $(\widetilde{W}'', M_{O} \circ -M_{1}) \longrightarrow (W'', M_{O} \circ -M_{1}), H_{*}(\widetilde{W}''; Q)$ is finitely generated over Q. Note that by the definition of the circle union there is a natural injection $j:S^1 \times \partial B^2 \times [0,1] \longrightarrow M_{0} - M_{1}$. Now we let $W^{**} = W^{**} U_i S^1 x B^2 x [0,1]$. It is easy to see that $3W^{**}$ is equal to the disjoint union M_0U-M_1 and that the triad (W'',M_0,M_1) gives an \widetilde{H} -cobordism between M_{Ω} and M_{1} . This completes the proof.

1.8 LEMMA. If $M_0 \sim 0$ and $M_1 \sim 0$, then $M_0 \circ M_1 \sim 0$.

Proof. Let $(W; M_0, \emptyset)$, $(W'; M_1, \emptyset)$ be \widetilde{H} -cobordisms, and let $M_0 O M_1 = M_0 U_{h_0} S^1 x B^2 x [0,1] U_{h_1} M_1 - S^1 x Int B^2 x [0,1]$. If we let $W'' = W U_{h_0} S^1 x B^2 x [0,1] U_{h_1} W'$ (See figure 4.), then the triad $(W''; M_0 O M_1, \emptyset)$ gives an \widetilde{H} -cobordism, which completes the proof.

Now we state the main theorem of this section.

1.9 THEOREM. The set $\mathfrak{N}(S^1XS^2)$ forms an abelian group under the sum $[M_0] + [M_1] = [M_0OM_1]$. The zero element of this group is $[S^1XS^2]$. The inverse of any element [M] is the element [-M].

Proof. To show that the sum $[M_O] + [M_1] = [M_O M_1]$ is well-defined, we let $M_O \sim M_O'$ and $M_1 \sim M_1'$. By LEMMA 1.7, $M_O \sim M_O' \sim 0$ and $M_1 \sim M_1' \sim 0$. Then by LEMMA 1.8 $(M_O \sim M_O') \sim (M_1 \sim M_1') \sim 0$. On the other hand, clearly

 $(\texttt{M}_0 \texttt{O} \ \texttt{M}_1) \ \texttt{O} \ - (\texttt{M}_0' \texttt{O} \ \texttt{M}_1') \ \boldsymbol{\sim} \ (\texttt{M}_0 \ \texttt{O} \ - \texttt{M}_0') \ \texttt{O} \ (\texttt{M}_1 \ \texttt{O} \ - \texttt{M}_1')$

(Use LEMMA 1.6.). Hence again by LEMMA 1.7 $M_0 \cap M_1 \sim M_0' \cap M_1'$. Thus, $[M_0] = [M_0']$ and $[M_1] = [M_1']$ imply $[M_0] + [M_1] = [M_0'] + [M_1']$. It is clear that $([M_0] + [M_1]) + [M_2] = [M_0] + ([M_1] + [M_2])$ and $[M_0] + [M_1] = [M_1] + [M_0]$. Also, we have $[M] + [S^1 \times S^2] = [M \cap S^1 \times S^2] = [M]$ and, by LEMMA 1.7, $[M] + [-M] = [S^1 \cap S^2]$. This completes the proof.

The group $\Omega(S^1 \times S^2)$ is called the (oriented) \widetilde{H} -cobordism

group between 3-dimensional homology oriented handles. The zero element is denoted by 0 and the inverse of [M] is -[M].

§ 2

GEOMETRIC AND ALGEBRAIC STRUCTURES OF $\mathfrak{A} s^1 \times s^2$)

Let $p: \widetilde{\mathbb{M}} \longrightarrow \mathbb{M}$ be the infinite cyclic orientation-preserving covering projection and t be a generator of the covering transformation group. Since \mathbb{M} is oriented, one fundamental class $[\mathbb{M}] \in \mathbb{H}_3(\mathbb{M}; \mathbb{Z})$ is specified. Then the choice of t determines a finite fundamental class $\mu \in \mathbb{H}_2(\widetilde{\mathbb{M}}; \mathbb{Z})(\approx \mathbb{Z})$ of $\widetilde{\mathbb{M}}$. In fact, we let $\mu = p_*^{-1}(\mathfrak{O} \cap [\mathbb{M}])$, where $\mathfrak{O} \in \mathbb{H}^1(\mathbb{M}; \mathbb{Z})$ is a cocycle identified with the covering transformation t and $p_*:\mathbb{H}_2(\widetilde{\mathbb{M}}; \mathbb{Z}) \approx \mathbb{H}_2(\mathbb{M}; \mathbb{Z})(\approx \mathbb{Z})$ (See Kawauchi [6, Remark 2.4].). Note that the dual isomorphism $\mathbb{N}_{\mu}: \mathbb{H}^1(\widetilde{\mathbb{M}}; \mathbb{Q}) \approx \mathbb{H}_1(\widetilde{\mathbb{M}}; \mathbb{Q})$ holds (See Kawauchi [5, Theorem 2.3].). Equivalently, the skew-symmetric cup product pairing

$$\mathrm{H}^{1}(\widetilde{M}; \mathbb{Q}) \times \mathrm{H}^{1}(\widetilde{M}; \mathbb{Q}) \xrightarrow{U} \mathrm{H}^{2}(\widetilde{M}; \mathbb{Q}) \overset{\boldsymbol{n}\mu}{\approx} \mathrm{H}_{0}(\widetilde{M}; \mathbb{Q}) = \mathbb{Q}$$

is non-singular (See Milnor[0,p127].).

2.1 DEFINITION. The bilinear form <, $>:H^1(\widetilde{M};Q) \times H^1(\widetilde{M};Q) \longrightarrow Q$ defined by the equality $< x,y> = (x \cup ty) \cap \mu + (y \cup tx) \cap \mu$ is called the quadratic form of M.

It is easy to check that the quadratic form is uniquely determined by the oriented $\, \, \mathbb{M} \,$ (in particular, it does not depend upon the choice of $\, \,$ t), and that it is a symmetric bilinear form

with the identity $\langle tx, ty \rangle = \langle x, y \rangle$. Furthermore, this form \langle , \rangle is always <u>non-singular</u>. To see this, it is convenient to introduce the concept of the Alexander polynomial.

- 2.2 DEFINITION. The (rational) Alexander polynomial A(t) of M is the characteristic polynomial of the isomorphism $t: H_1(\widetilde{\mathbb{N}}; \mathbb{Q}) \longrightarrow H_1(\widetilde{\mathbb{N}}; \mathbb{Q})$ (See Kawauchi[6] for details and the definition of the integral Alexander polynomial.).
- A(t) is the invariant of M up t units $ct^{i} \in Q[t,t^{-1}]$ and has the properties $A(\pm 1) \neq 0$ and $A(t) \pm A(t^{-1})$.

Suppose, for all x, $\langle x,y \rangle = [xU(t-t^{-1})y] \cap \mu = 0$. Then $(t-t^{-1})y = -t^{-1}(t-1)(t+1)y = 0$, which implies y = 0, since $A(\pm 1) \neq 0$. Thus, the quadratic form \langle , \rangle is non-singular.

Since < , > is non-singular and symmetric, with a suitable basis of $H_1(\widehat{M};Q)$, < , > represents a rational diagonal matrix

2.3 DEFINITION. The integer $\mathfrak{C}(M) = m - n$ is called the signature of the oriented M.

It is not difficult to see that $\P(M)$ is even (, since $\dim_{\mathbb{Q}} H_1(\widetilde{M};\mathbb{Q}) = \deg A(t)$ is even) and that $\P(-M) = -\P(M)$.

2.4 THEOREM. If $M \sim 0$, then the signature $\P(M)$ is 0 and the Alexander polynomial A(t) of M has the form $f(t)f(t^{-1})$ for some rational polynomial f(t).

One may note an analogy of the signature and the Alexander polynomial between the oriented \widetilde{H} -cobordism group $\mathfrak{R}(S^1xS^2)$ and the Fox-Milnor's knot cobordism group $C^1(\text{See Fox-Milnor}[2].)$. This relation will be clarified in this section.

- 2.5 DEFINITION. The <u>reduced Alexander polynomial</u> A(t) of M is the rational polynomial obtained from the Alexander polynomial A(t) by cancelling the factors of the type $f(t)f(t^{-1})$.
- Let $\widetilde{A}(t)$, $\widetilde{A}'(t)$ be the reduced Alexander polynomials of M, M', respectively. The following is a direct consequence of THEOREM 2.4.
- 2.7 PROOF OF THEOREM 2.4. Since M \sim 0, there exists an \widetilde{H} -cobordism (W;M, \emptyset). Then for an infinite cyclic connected covering $(\widetilde{W},\widetilde{M}) \longrightarrow (W,M)$, $H_*(\widetilde{V};Q)$ is finitely generated over Q.

Now we consider the following diagram

$$H^{1}(\widetilde{W}; \mathbb{Q}) \xrightarrow{i^{*}} H^{1}(\widetilde{M}; \mathbb{Q}) \xrightarrow{\widetilde{S}} H^{2}(\widetilde{W}, \widetilde{M}; \mathbb{Q})$$

$$\downarrow \rho \mu \qquad \qquad \downarrow \rho \overline{\mu}$$

$$H_{1}(\widetilde{M}; \mathbb{Q}) \xrightarrow{i_{*}} H_{1}(\widetilde{W}; \mathbb{Q}) .$$

Here, the top sequence is exact and the vertical maps are isomorphisms and $\widetilde{\mu} \in H_3(\widetilde{\mathbb{W}},\widetilde{\mathbb{M}};\mathbb{Z}) (\approx \mathbb{Z})$ is a finite fundamental class (See Kawauchi [5, Theorem 2.3].) obtained from the finite fundamental class $\mu \in H_2(\widetilde{\mathbb{M}};\mathbb{Z})$ by the boundary-isomorphism $\mathfrak{F}_2:H_3(\widetilde{\mathbb{W}},\widetilde{\mathbb{M}};\mathbb{Z}) \approx H_2(\widetilde{\mathbb{M}};\mathbb{Z})$. And the square is commutative.

Because the sequence $0 \longrightarrow \operatorname{Im} i^* \longrightarrow \operatorname{H}^1(\widetilde{\mathbb{N}};\mathbb{Q}) \longrightarrow \operatorname{Im} \delta \longrightarrow 0$ is exact, the equality $A(t) \doteq B(t)C(t)$ holds, where B(t),C(t) are the characteristic polynomials of the linear isomorphisms $t \colon \operatorname{Im} i^* \longrightarrow \operatorname{Im} i^*$ and $t \colon \operatorname{Im} \delta \longrightarrow \operatorname{Im} \delta$, respectively.

By the commutativity of the above sequare, we have the isomorphism $\cap \overline{\mu}: \operatorname{Im} S \longrightarrow \operatorname{Im} i_*$. This asserts that the equality $C(t^{-1}) \doteq B(t)$ holds. [Use the identities $(tu) \cap \overline{\mu} = t^{-1}(u) \cap \overline{\mu}$ and $\operatorname{Im} i^* = \operatorname{Hom}(\operatorname{Im} i_*, Q)$.] Thus, we have $A(t) \doteq C(t) C(t^{-1}) \rightleftharpoons B(t^{-1}) B(t)$.

Next, for all $u \in H^1(\widetilde{W}; \mathbb{Q})$, suppose $\langle i^*(u), y \rangle = 0$. This situation is equivalent to $\delta(t-t^{-1})y = 0$, that is, $(t-t^{-1})y \in Im$ i*, because $\langle i^*u, y \rangle = i^*u$ $U(t-t^{-1})y = uU\delta(t-t^{-1})y$. [Use the above square is commutative.] Using $(t-t^{-1})Im$ i* $\subset Im$ i* and the isomorphism $t-t^{-1}:H^1(\widetilde{M};\mathbb{Q}) \longrightarrow H^1(\widetilde{M};\mathbb{Q})$, $(t-t^{-1})y \in Im$ i* is equivalent to $y \in Im$ i*. Thus, we showed that the orthogonal complement of Im i* is Im i* itself. Then, a familiar process implies C(M) = 0 (See for example Milnor-Husemoller[M, p13].). This completes the proof.

Let χ be the set of knot types of tame **eri**ented 1-knots in the oriented S^3 . We shall construct a function $m:\chi \longrightarrow \overrightarrow{C}(S^1\chi S^2)$. (Now we regard the class $\overrightarrow{C}(S^1\chi S^2)$ as the set of orientation-

preserving homeomorphism types of homology oriented handles.)

Let $T(k) < S^3$ be the tubular neighborhood of a knot $k < S^3$. By Schubert [12], the knotted torus T(k) in S^3 has unique meridean and longitude curves (up to isotopies of $\partial T(k)$). Define m(k) to be the oriented manifold obtained from the surgery of S^3 along T(k) by using the unique meridean and longitude curves: $m(k) = S^3 - T(k) \cup B^2 X S^1$. (The orientation of m(k) will adapt the orientation induced from $S^3 - T(k)$.)

This assignment clearly implies a function $m:\chi \to \vec{C}(s^1\chi s^2)$ from the knot types to the homeomorphism types.

Two knot types k_1, k_2 are (\underline{knot}) cobordant if for representative knots $k_1 \in k_1$ and $k_2 \in k_2$ the sum $k_1 \notin -k_2 \subset S^3$ bounds a locally flat 2-cell in the 4-cell B^4 . Such a concept is called the \underline{knot} cobordism. The set K modulo the knot cobordism relation forms an abelian group C^1 , called the \underline{knot} cobordism group (See Fox-Milnor [2] for details.).

Note that the function $m: \mathcal{K} \longrightarrow \overline{\mathcal{C}}(S^1XS^2)$ induces a homomorphism $m: C^1 \longrightarrow \Omega(S^1XS^2)$. In fact, easily we have $m(k_1\#k_2) = m(k_1)Om(k_2)$, and if k is cobordant to a trivial knot then $m(k) \sim 0$ [To see this, let $D^2 \subset B^4$ be a locally flat 2-cell with $k = \partial D^2 \subset S^3$. By using an embedding $f: \partial B^2XB^2 \longrightarrow S^3$, giving a tubular neighborhood of $k = f(\partial B^2Xp)$ such that a circle $f(\partial B^2Xp)$ is the longitude curve, we construct a 4-manifold $f(\partial B^2Xp)$ is the longitude curve, we construct a 4-manifold $f(\partial B^2Xp)$ is locally flat. By performing a surgery along the tubular neighborhood of $f(\partial B^2Xp)$, we obtain a 4-manifold $f(\partial B^2Xp)$ with $f(\partial B^2Xp) = f(\partial B^2Xp)$

^{*)} This function is not injective. A non-invertible knot would provide such an example.

and $H_*(N';Z) \approx H_*(S^1;Z)$. The triad $(W';m(k),\emptyset)$ gives an H-cobordism.

2.8 LEMMA. The homomorphism $m: \mathbb{C}^1 \longrightarrow \mathfrak{N}(\mathbb{S}^1 \mathbf{x} \mathbb{S}^2)$ satisfies $\mathbb{C}^1 = \mathbb{C}[m(\mathbf{k})]$ and $\mathbb{C}^1 = \mathbb{C}[m(\mathbf{k})]$ for all $\mathbb{C}^1 = \mathbb{C}^1$. The proof will be given later.

By LEMMA 2.8, the known results of C^1 also imply the following two corollaries.

2.9 COROLLARY. For any integer i, there exists $M \in \overline{C}(S^1 \times S^2)$ with C(M) = 2i.

2.10 COROLLARY. The oriented \widetilde{H} -cobordism group $\mathfrak{R}(S^1xS^2)$ has the free part of infinite rank and contains a torsion element.

For example, for the figure eight knot 4_1 (See figure 5.), the element $[m(4_1)] \in \Omega(S^1 XS^2)$ gives an element of order 2, because the element $4_1 \ge C^1$ has order 2 and the reduced Alexander polynomial of $m(4_1)$ is t^2-3t+1 which implies $[m(4_1)] \ne 0$ by THEOREM 2.4.

figure 5.

Now we need a concept of Seifert matrices. A <u>Seifert matrix</u> V is an integral square matrix with $det(V-V') = \pm 1$. (V' is the transepose of V.)

For two Seifert matrices V and W, if the block sum $V \oplus W$ is congruent (over the integers) to a matrix of the form $\begin{pmatrix} 0 & B \\ C & D \end{pmatrix}$ (B,C,D are square matrices of the same size.) then V is said to be (matrix) cobordant to W. Such a concept is called the matrix cobordism. The set of Seifert matrices modulo the matrix cobordism relation forms a group G_{-} , called the matrix cobordism group (See Levine[8] for details. Note that only Seifert matrices with sign -1 are considered.). By Levine [9], G_{-} is isomorphic to the direct sum $\sum_{i=1}^{\infty} 2^{i} \oplus \sum_{i=1}^{\infty} 2^{i} \oplus \sum$

For a knot k in S^3 , denote M(k) to be the knot exterior, or the closed knot complement of k, and $\widetilde{M}(k)$ to be its infinite cyclic covering space. By a <u>Seifert matrix of the knot</u> k we will mean a Seifert matrix which is S-equivalent to a Seifert matrix associated with a Seifert surface of k. (See Trotter[13] for recent results of S-equivalences.)

The <u>quadratic form</u> <, >: $H^1(M(k), M(k); Q)XH^1(M(k), M(k); Q)$ \longrightarrow Q of the oriented knot k in the oriented S^3 is defined by the equality <x,y> = $(xUty)H^1 + (yUtx)H^2 + (See Milnor [10])$ and Erle[/].), which is a complete analogue of DEFINITION 2.1. [Note that since k and S^3 are oriented, both t and μ are specified uniquely.] (Here, $\mu \in H_2(M(k), M(k); Z)$ is a finite fundamental class [5].)

Erle [/] then showed that , with a suitable basis of

 $H^1(\widetilde{M}(k), \widetilde{M}(k); \mathbb{Q})$, the linear isomorphism $t: H^1(\widetilde{M}(k), \widetilde{M}(k); \mathbb{Q}) \longrightarrow H^1(\widetilde{M}(k), \widetilde{M}(k); \mathbb{Q})$ represents the matrix $V'^{-1}V$ and the quadratic form <, > represents the matrix V + V' for some non-singular Seifert matrix V.

The same assertion also applies for the homology oriented handles.

By Kawauchi [5, Corollary 1.3], there is a piecewise-linear map $f: M \longrightarrow S^1$ such that $F = f^{-1}(p)$ is a closed surface. Clearly, the homology class $[F] \in H_2(\widetilde{M}; Z)$ coincides with $\pm \mu \in H_{2}(\widetilde{M}; Z)$. If t is specified, then μ is also specified and hence we may orient F so that $[F] = \mu$. Let M* be a manifold obtained from M by splitting along F. Note that a duality $H^1(F;Z) \approx H_1(M^*;Z)$ holds. Let $\Im M^* = FU$ -F (Here we identify the component of \mathfrak{d}^{M*} with the orientation compatible with F.). With dual bases of $H_1(F;Z)$ and $H_1(M*;Z)$, the canonical homomorphism $H_1(F;Z) \longrightarrow H_1(M^*;Z)$ represents a square matrix V_0 . To show that V_0 is a Seifert matrix, let V_0^- be another matrix representing the canonical homomorphism $H_1(-F;Z) \longrightarrow H_1(M^*;Z)$. By an analogy of Levine [7] it is not difficult to see that the matrix $tV_0 - V_0^-$ is a relation matrix of $H_1(\widetilde{M}; Z)$ and that $V_0^$ is in fact the transpose V_o of V_o . Thus, $tV_o - V_o$ is a relation matrix of $H_1(\widetilde{M}; \mathbb{Z})$. Using $H_1(M; \mathbb{Z}) = \mathbb{Z}$, $\det(V_0 - V_0') = \pm 1$. Thus, V_0 is a Seifert matrix.

2.11 DEFINITION. A Seifert matrix V which is S-equivalent to V_0 is called a <u>Seifert matrix of M (with a specified generator of H₁(M; Z)).</u>

Note that if another generator of $H_1(M; \mathbb{Z})$ is specified then the transpose V' of V is considered as a Seifert matrix of M.

A technique of Erle [/] then implies the following:

2.12 LEMMA. With a suitable basis of $H^1(\widetilde{M}; \mathbb{Q})$, the linear isomorphism $t: H^1(\widetilde{M}; \mathbb{Q}) \longrightarrow H^1(\widetilde{M}; \mathbb{Q})$ represents the matrix $V'^{-1}V$ and the quadratic form <, $>: H^1(\widetilde{M}; \mathbb{Q}) \times H^1(\widetilde{M}; \mathbb{Q}) \longrightarrow \mathbb{Q}$ represents the matrix V + V' for some non-singular Seifert matrix V of M.

Using LEMMA 2.12, we obtain a well-defined homomorphism $\psi: \mathbf{\Omega}(\mathbf{S}^1\mathbf{x}\mathbf{S}^2) \longrightarrow \mathbf{G}_{\mathbf{S}^1}$ sending homology oriented handles to the Seifert matrices (See Levine [9,pl01].). [Note that the Seifert matrix V is always cobordant to the transpose V', although V is in general not S-equivalent to V' (See Trotter[3].).]

Thus, we sketched the following.

2.13 THEOREM. There is the commutative triangle

, where $\phi: \mathbb{C}^1 \longrightarrow \mathbb{G}_{\underline{\hspace{1cm}}}$ is a canonical epimorphism defined by Levine [8] and $\psi: \Omega(\mathbb{S}^1 \times \mathbb{S}^2) \longrightarrow \mathbb{G}_{\underline{\hspace{1cm}}}$ is an epimorphism defined as above and m satisfies $A_{(\mathbb{K})}(t) \doteq A_{[\mathbb{m}(\mathbb{K})]}(t)$ and $\mathbb{T} \times \mathbb{S} = \mathbb{C}[\mathbb{m}(\mathbb{K})]$ for

all $\ll \epsilon c^1$.

2.14 PROOF OF LEMMA 2.7. The inclusion map $i: \widetilde{M}(k) \longrightarrow \widetilde{m}(k)$ induces an isomorphism $i_*: H_1(\widetilde{M}(k); \mathbb{Q}) \approx H_1(\widetilde{m}(k); \mathbb{Q})$. From this, it follows that $A_k(t) \doteq A_{m(k)}(t)$, and hence $\widetilde{A}_{(k)}(t) \doteq \widetilde{A}_{[m(k)]}(t)$.

$$H^{1}(\widetilde{M}(k);Q) \times H^{1}(\widetilde{M}(k);Q)$$

$$\approx \downarrow i_{*} \times i_{*}$$

$$H^{1}(\widetilde{m}(k);Q) \times H^{1}(\widetilde{m}(k);Q)$$

Next, since the following triangle

is commutative, we obtain that $\P(k) = \P(m(k))$. This completes the proof.

The general problem of deciding a geometrical condition of H-cobordism seems difficult, but a partial result is presented here.

2.15 THEOREM. If $M \in \widehat{C}(S^1xS^2)$ is embeddable in a homology 4-sphere \overline{S}^4 , then M is \widehat{H} -cobordant to 0.

Proof. Assume $M \subset \overline{S}^4$. By an easy computation of the homology, we obtain that M separates \overline{S}^4 into two manifolds, say, W_1 , W_2 and that one of W_1 , W_2 has the homology of the circle, say, $H_*(W_1;Z) \approx H_*(S^1;Z)$. Then $(W_1;M,\emptyset)$ gives an H-cobordism. This proves THEOREM 2.14.

Here are a few examples, whose somewhat analogous properties were also noticed by Kato[4].

2.16 EXAMPLES. First we consider a trefoil 3, (figure 6).

Using $\P(m(3_1)) = \pm 2$ or $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$, we see that $m(3_1)$ is not $\P(t) = t^2 - t + 1$.

figure 6.

On the other hand, a stevedore's knot 6_1 (figure 7) is a slice knot and hence $m(6_1) \sim 0$.

Note that a slice knot k can be realized as a local knot type of a 2-sphere S(k) in S^4 with only one locally knotted point (See Fox-Milnor[2].).

Let $N(S(6_1); S^4)$ be the regular neighborhood of $S(6_1)$ in S^4 . It is not hard to see that $3N(S(6_1); S^4) = m(6_1)$. Thus, $m(6_1)$ is embeddable in the 4-sphere S^4 .

figure 7.

Similar arguments also applies for a granny knot $3_1 \# 3_1$ and a square knot $3_1 \# -3_1$ (See figure 8.). In fact, $m(3_1 \# 3_1)$ is not

embed dable to S^4 , although $m(3\#-3_1)$ is embed dable to S^4 , since $(m(3\#3_1)) = 2 (3_1) = \pm 4$ and $3\#-3_1$ is a slice knot.

figure 8.

§ 3

THE NON-ORIENTABLE \hat{H} -COBORDISM GROUP $\Omega(s^1x_{\tau}s^2)$

A 3-dimensional homology non-orientable handle M is a compact 3-manifold having the homology of the non-orientable handle $S^1 \times S^2 : H_*(M;Z) \approx H_*(S^1 \times_T S^2;Z)$, and let $C(S^1 \times_T S^2)$ be the class of the homology non-orientable handles.

In $\mathcal{C}(S^1X_{\mathbf{c}}S^2)$, an \widetilde{H} -cobordism relation is defined as an analogy of DEFINITION 1.1.

3.1 DEFINITION. Two homology handles M_0 , M_1 in $\mathcal{C}(S^1X_TS^2)$ are \widetilde{H} -cobordant and denoted by $M_0 \sim M_1$ if there exists a compact connected (non-orientable) 4-manifold W with the boundary ∂W being the disjoint union $M_0 \cup M_1$ and such that there is an infinite cyclic connected covering $(\widetilde{W};\widetilde{M}_0,\widetilde{M}_1) \longrightarrow (W;M_0,M_1)$ with \widetilde{W} being orientable and with $H_*(\widetilde{W};\mathbb{Q})$ being finitely generated over \mathbb{Q} . [Note that \widetilde{M} is always orientable (See Kawauchi[6, Lemma 2.3].).]

We say that M is \tilde{H} -cobordant to 0 if M is $\tilde{\mu}$ -cobordant to $S^{1}\times S^{2}$.

For \mathbb{M}_0 , $\mathbb{M}_1 \in \mathcal{C}(\mathbb{S}^1 \mathbf{X}_{\mathbf{T}} \mathbb{S}^2)$, choose polyhedral simple closed curves $\boldsymbol{\omega_0} \subset \mathbb{M}_0$, $\boldsymbol{\omega_1} \subset \mathbb{M}_1$ which represent generators of $\mathbb{H}_1(\mathbb{M}_0; \mathbb{Z})$, $\mathbb{H}_1(\mathbb{M}_1; \mathbb{Z})$, respectively. It is not difficult to see that the tubular neighborhoods $\mathbb{T}(\boldsymbol{\omega_0}) \subset \mathbb{M}_0$ of $\boldsymbol{\omega_0}$ and $\mathbb{T}(\boldsymbol{\omega_1}) \subset \mathbb{M}_1$ of $\boldsymbol{\omega_1}$ are both piecewise-linear homeomorphic to the solid Klein bottle $\mathbb{S}^1 \mathbf{X}_{\mathbf{T}} \mathbb{B}^2$.

Let $F_0 \subset M_0$, $F_1 \subset M_1$ be closed connected <u>orientable</u> surfaces transversally intersecting ω_0 , ω_i in single points, respectively.

Consider two piecewise-linear embeddings

$$h_0: S^1 X_{\tau} B^2 X^0 \longrightarrow M_0$$

$$h_1: S^1 X_{\tau} B^2 X^1 \longrightarrow M_1$$

such that there exist points $s \in S^1$, $b \in IntB^2$ with $h_0(S^1X_{\mathbf{t}}b\mathbf{x}0) = \omega_0$, $h_0(S\mathbf{x}_{\mathbf{t}}B^2\mathbf{x}0) \subset F_0$, $h_1(S^1X_{\mathbf{t}}b\mathbf{x}1) = \omega_1$ and $h_1(SX_{\mathbf{t}}B^2\mathbf{x}1) \subset F_1$.

As an analogy of DEFINITION 1.4, we may have DEFINITION 3.2.

3.2 DEFINITION. The homology non-orientable handle

$$\label{eq:model} \begin{split} \mathbb{M}_0 \mathbf{O} \, \mathbb{M}_1 &= \, \mathbb{M}_0 \mathbb{U}_{h_0} \, \mathbf{S}^1 \, \mathbf{X}_{\mathbf{t}} \mathbf{B}^2 \mathbf{x} [\, 0, 1 \,] \mathbb{U}_{h_1} \, \mathbb{M}_1 \, - \, \mathbf{S}^1 \, \mathbf{X}_{\mathbf{t}} \mathrm{IntB}^2 \! \mathbf{x} [\, 0, 1 \,] \\ \text{is called a circle union of } \, \mathbb{M}_0 \, \text{ and } \, \mathbb{M}_1 \, . \end{split}$$

It is not difficult to check that for two circle unions $M_0 > M_1$, $M_0 > M_1$, $M_0 > M_1 \sim M_0 > M_1$. Further, we can prove that $M_0 \sim M_1$ if and only if $M_0 > M_1 \sim 0$ as an analogy of LEMMA 1.7. Thus, we sketched that the set $\Omega(S^1 \times S^2) = C(S^1 \times S^2) / \sim 0$

forms an abelian group under the sum $[M_0] + [M_1] = [M_0 M_1]$. This group is called the <u>non-orientable \widetilde{H} -cobordism group</u> of 3-dimensional homology non-orientable handles.

Every non-zero element of $\Omega(S^1X-S^2)$ has order 2, by construction.

Further, $\mathbf{R}(s^1\mathbf{x}_{\mathbf{t}}s^2)$ is not finitely generated. Actually, the following is obtained.

3.3 THEOREM.
$$\Omega(s^1x_{\tau}s^2) \approx \widehat{\Sigma}_{\dot{\alpha}}^{\dot{\alpha}}z_2^i$$
.

To prove THEOREM 3.3, the Alexander polynomial is useful.

The <u>Alexander polynomial</u> A(t) of $M \in \mathcal{C}(S^1X_{\mathbf{C}}S^2)$ is simply defined to be the characteristic polynomial of the linear isomorphism $t : H_1(\widetilde{M}; \mathbb{Q}) \longrightarrow H_1(\widetilde{M}; \mathbb{Q})$. (See Kawauchi [6].)

Then THEOREM 3.3 follows from LEMMA 3.4 (, which is somewhat analogous to THEOREM 2.4).

3.4 LEMMA. If $M \in \mathcal{C}(S^1 X_{\overline{t}}S^2)$ is \widetilde{H} -cobordant to 0 then the Alexander polynomial A(t) of M has a type of $f(t)f(-t^{-1})$ for some rational polynomial f(t).

3.5 PROOF OF THEOREM 3.3. By Kawauchi [6], the irreducible integral polynomial $A_n(t) = nt^2 + t - n$ ($n = 1, 2, 3, \ldots$) is realized as the Alexander polynomial of some $M_n \in \mathcal{C}(\mathbb{S}^1 \mathbf{x}_{\mathbf{t}} \mathbb{S}^2)$. Then it is easy to see that M_1, M_2, M_3, \ldots represent a set of linearly independent elements of $\mathbf{\Omega}(\mathbb{S}^1 \mathbf{x}_{\mathbf{t}} \mathbb{S}^2)$. This completes the proof.

3.6 PROOF OF LEMMA 3.3. Since $\mathbb{N} \sim 0$, there exists a compact connected 4-manifold \mathbb{W} with $\mathfrak{J}\mathbb{W}=\mathbb{M}$ and such that for some infinite cyclic connected covering $(\widetilde{\mathbb{W}},\widetilde{\mathbb{M}}) \longrightarrow (\mathbb{W},\mathbb{M})$, $\widetilde{\mathbb{W}}$ is orientable and $H_*(\widetilde{\mathbb{W}};\mathbb{Q})$ is finitely generated over \mathbb{Q} . Then from the exact sequence $H^1(\widetilde{\mathbb{W}};\mathbb{Q}) \xrightarrow{i*} H^1(\widetilde{\mathbb{N}};\mathbb{Q}) \xrightarrow{\mathfrak{S}} H^2(\widetilde{\mathbb{W}},\widetilde{\mathbb{M}};\mathbb{Q})$ we obtain the short exact sequence $0 \longrightarrow \operatorname{Im} i^* \longrightarrow H^1(\widetilde{\mathbb{M}};\mathbb{Q}) \longrightarrow \operatorname{Im} \widetilde{\mathfrak{S}} \longrightarrow 0$. Thus we have $A(t) \doteq B(t)C(t)$, where B(t), C(t) are the characteristic polynomials of $t: \operatorname{Im} i^* \longrightarrow \operatorname{Im} i^*$, $t: \operatorname{Im} \widetilde{\mathfrak{S}} \longrightarrow \operatorname{Im} \widetilde{\mathfrak{S}}$, respectively. Since the square

$$H^{1}(\widetilde{M}; \mathbb{Q}) \xrightarrow{\mathcal{S}} H^{2}(\widetilde{\mathbb{W}}, \widetilde{M}; \mathbb{Q})$$

$$\approx \downarrow \wedge \mu \qquad \approx \downarrow \wedge \overline{\mu}$$

$$H_{1}(\widetilde{\mathbb{M}}; \mathbb{Q}) \xrightarrow{\hat{\iota}_{*}} H_{1}(\widetilde{\mathbb{W}}; \mathbb{Q})$$

is commutative, we obtain the dual isomorphism $n_{\mu}: \text{Im } \kappa \approx \text{Im } i_{\kappa}$. Using the identities $(tu) | \bar{\mu} = -t^{-1}(u) \bar{\mu}$ and $\text{Im } i^* = \text{Hom}(\text{Im } i_{\kappa}, Q)$, this dual isomorphism gives the equality $C(-t^{-1}) \doteq B(t)$. This proves LEMMA 3.3.

§ 4

FURTHER DISCUSSIONS AND QUESTIONS

The most basic and interesting problem on this paper is the following question.

4.1 QUESTION. Whether or not are the homomorphisms m, ϕ , ϕ in THEOREM 2.13 isomorphic ?

This question also asks the difference between H-cobordism and

H-cobordism.

Usually , for compact closed oriented n-manifolds N_1^n , N_2^n , if there exists an oriented compact (n+1)-manifold H^{n+1} with $2H^{n+1}=N_1^n\cup -N_2^n$ and $H_*(H^{n+1},N_1^n;Z)=0$ (= $H_*(H^{n+1},-N_2;Z)$), then N_1 is said to be H-cobordant to N_2 . Also, such a concept is called H-cobordism.

4.2 QUESTION.In $\overrightarrow{C}(S^1XS^2)$, are H-cobordism and H-cobordism strictly distinct?

For example, it is not difficult to see that two H-cobordant homology oriented handles are H-cobordant.

In $\mathcal{C}(\mathbb{S}^1\mathbb{K}\mathbb{S}^2)$ or a class of more general manifolds it seems difficult to define a non-trivial H-cobordism group. However, for the class of homology oriented n-spheres, the H-cobordism group $\mathcal{H}(\mathbb{S}^n)$ is defined in the natural way. In the piecewise-linear category, it is not so hard to see that $\mathcal{H}(\mathbb{S}^n)=0$ for $n\geq 5$. At n=4, the author does not know whether $\mathcal{H}(\mathbb{S}^n)$ vanishes or not. At n=3, Kato pointed out that $\mathcal{H}(\mathbb{S}^3)$ is non-trivial, that is, there exists a homology 3-sphere which is not the boundary of any homology 4-ball. In fact, the dodecahedral space $\overline{\mathbb{S}}^3=\mathbb{S}^3/\mathrm{SL}(2,5)$ is such an example.

4.3 QUESTION. For any homology 3-sphere \overline{S}^3 , is the connected sum $S^1XS^2\#\overline{S}^3$ \widehat{H} -cobordant to S^1XS^2 ?

Note that for the dodecahedral space \bar{S}^3 , $S^1\chi S^2\#\bar{S}^3$ is not H-cobordant to $S^1\chi S^2$.

Let $\mathbb{Z}^{3,n}$ be the class of compact oriented 3-manifolds having the integral homology of the connected sum $\#^n S^1 X S^2$ of n copies of $S^1 X S^2$. Similarly, let $\mathbb{Z}^{3,n}_Q$ be the class of compact oriented 3-manifolds having the rational homology of $\#^n S^1 X S^2$.

4.4 QUESTION. In $\overline{\mathcal{C}}^{3,n}$ or $\overline{\mathcal{C}}_{Q}^{3,n}$ (n \geq 2), can a \widehat{H} -cobordism theory be developed ?

It seems that for $n \geq 2$ all things would become extremely difficult.

In $\overline{C}_Q^{3,1}$, the \widetilde{H} -cobordism group $\mathfrak{A}_Q^{3,1}$ is actually defined as an analogy of $\mathfrak{A}(S^1xS^2)$. (This group is so related to the Levine's rational matrix cobordism group $G_{\underline{C}}^{Q}$.)

Now suppose the \widetilde{H} -cobordism groups $\mathfrak{P}^{3,n}=\overline{\mathcal{C}}^{3,n}/\sim$ and $\mathfrak{N}_Q^{3,n}=\overline{\mathcal{C}}_Q^{3,n}/\sim$ are obtained. Let $\mathfrak{N}^{3,0}=\mathcal{K}(S^3)$ and let $\mathfrak{N}_Q^{3,0}$ be the rational H-cobordism group of rational homology 3-spheres. The direct sums $\mathfrak{N}^3=\mathfrak{N}^{3,0}\oplus\mathfrak{N}^{3,1}\oplus\mathfrak{N}^{3,2}\oplus\ldots$ and $\mathfrak{N}_Q^3=\mathfrak{N}_Q^{3,0}\oplus\mathfrak{N}_Q^{3,1}\oplus\mathfrak{N}_Q^{3,2}\oplus\ldots$ would have ring structures under the connected sum operation.

In the higer dimensional case, we can also define the $\Re(S^1 \times S^{n-1})$ and $\Re(S^1 \times S^{n-1})$ of n-dimensional homology oriented and non-orientable handles, respectively.

The following seems not so difficult for $n \geq 5$.

4.5 QUESTION. Is $\mathfrak{A}(S^k x^{n-1})$ isomorphic to the piecewise-linear (n-2)-knot cobordism group C^{n-2}_{PL} ? Also, is $\mathfrak{A}(S^k x^{n-1})$ isomorphic to $\overline{\mathfrak{D}}_{\mathfrak{S}}^{\infty} Z_2^i$ if n is even, or to 0 if n is odd?

REFERENCES

- 1. D.Erle: <u>Die quadratische Form eines Knotens und ein Satz über Knotenmannigfaltigkeiten</u>, J. reine angew. Math. (1969).
- 2. R.H.Fox and J.W.Milnor: <u>Singularities of 2-spheres in 4-space</u> and cobordism of knots, Osaka J.Math.3(1966),257-267.
- 3. M.W.Hirsch: The imbedding of bounding manifolds in Euclidean space, Ann. of Math. 74(1961), 494-497.
- 4. M.Kato: <u>Higher dimensional PL knots and knot manifolds</u>, J. Math. Soc.Japan 21(1969).
- 5. A. Kawauchi: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. (to appear).
- 6. : Three dimensional homology handles and circles,
 Osaka J.Math.(to appe@r).
- 7.J.Levine: Polynomial invariants of knots of codimension two,
 Ann. of Math. 84(1966), 537-554.
- 8. <u>Knot cobordism groups in codimension two</u>, Comment. Math.Helv.44(1969),229-244.
- 9. _____. <u>Invariants of knot cobordism</u>, Inventions math.8(1969), 98-110.
- 10.J.W.Milnor: <u>Infinite cyclic coverings</u>, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston Mass. 1968.
- 11._____ and D.Husemoller: <u>Symmetric Bilinear Forms</u>, Springer 1973.
- 12.H.Schubert: Knoten und Vollringe, Acta math. 90(1953), 131-286.
- 13.H.F.Trotter: On S-equivalences of Seifert matrices, Inventions math. 20(1973)173-207.