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§ 1. Transformation group with codimension one orbit

1.1. Let us first recall some basic facts about differentiab;e
transformation groups.

(1.1.1) Let G Dbe a compact Lie group acting differentiably
on a manifold M. Then by averaging an arbitrary given Riemannian

metric on M, we may have a G-invariant Riemannian metric on M.

(1.1.2) Let x €M, Then the isotropy subgroup G acts,on

K,_/

a normal vector space NX of the orbit G(x) at x ; orthogonally

we call it the slice representation of Gx at x and denote by
Px : GX———é-O(NX), where O(Nx) is the group of orthogonal
transformations on N .

(1.1.3) (Differentiable slice theorem) Let E(VY) be the

normal bundle of the orbit G(x) = G/Gx' Then

E(y) =G X N
G

where GX acts on Nx via /ox' We note that G acts naturally
on E(Y) as bundle mappings and we may choose small positive
real number £ such that the exponential mapping gives an
equivariant diffeomorphism of the £ -disk bundle of E(Y ) onto
an invariant tubular neighborhood of G(x). (cf.[3],Lemma 3.1)
(1.1.4) Let H CG be a closed subgroup. Denote by (H),
the set of all subgroups of G which is conjugate to H in G.
We introduce the following partial ordering relation " <" by
defining (Hl) <:(H2) if and only if there exists Hl € (Hl) and

H2 € (H2) such that Hl(::Hz. If M is connected, then there

4
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exists an absolute minimal (H) among the conjugate classes

{ (Gx) | x € M‘}, moreover the set

M(H)={xeM[GX€(H))z

is a dense open submanifold. The conjugate class (H) 1is called

the type of principal isotropy subgroups, and the orbit G/H is

called principal (cf.[&31,(2.2) and (2.4)). An orbit G(x) is
called singular if dim G(x) < dim G/H.

Combining (1.1.3) and (1.1.4), we have the following result.

Lemma 1.1.5. f M 1is connected, then the slice representation

of G, at x €M is trivial if and only if Gy is a Qrincigalr

isotropy subgroup.

Corollary 1.1.6. f M and G are connected and G(x) is

an orbit of codimension one, then G(x) 1is a principal orbit only

when the normal line bundle of G(x) in M is orientable.

1.2. Now we prove the following result.

Lemma 1.2.1. Let G be a compact connected Lie group. Let

M be a compact connected manifold without boundary and assume

Suppose that G acts differentiably on M with an orbit G/K

of codimension one. Then G/K is a principal orbit, and M has

just two singular orbits G/Kl and G/K2 (equivariantly diffeomor-

phic or not). Moreover there is a closed invariant tubular

neighborhood X of G/KS (s = 1,2) such that

&
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M=X1UX2 and xl/\x2= ax1= 8X2.
Proof. Let N be a closed invariant tubular neighborhood

of G/K in M. Consider the following commutative diagram :

HO(G/K;ZZ) —ﬁ——> gl (N,BN;ZZ) <« = 4l (M,M-intN;2,)

.wl

: * %
Hl(G/K;Zz)<——s—— nl(n ; Zz)é—-l-—-———H1(M ;%) -

Here 95 is a Thom isomorphism and Wy is a first Stiefel-Whitney
class of the normal line bundle of G/K in M. Then Hl(M;Zz) =0
implies wy = 0, and hence G/K 1is a principal orbit by Corollary
1.1.2. Next, if M has no singular orbit, then M has just one

isotropy type (K), and hence there is a differentiable fibration

G/K 5> M P 5 m*

where M* 1is the orbit space which is a circle. Then the homo-

morphism
Py * Hy (M 5 2)—>H,(M* ; Z2) £ 3

is surjective, because G/K 1is connected. This fact contradicts

Hl(M ; 2 = 0. Therefore M has at least one singular orbit.

2)
Then we can easily seen that M 1is a special G-manifold (in the
sense of Hirzebruch-~Mayer) with the orbit space M* = [1,2] by

the differentiable slice theorem (1.1.3). Let p : M—> M* be

1
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a natural projection. Then p_l(s) is a singular orbit for s = 1,2
and M(K) = p—l((l,2)). Moreover, let
G -1
X, =p ([1,3/2]) and X, =p ([3/2,2]).
Then XS is a closed invariant tubular neighborhood of G/KS = p—l(s)
for s =1,2. g.e.d.

§ 2. Cohomological aspect

2.1. Let M be a 2n-dimensional compact connected orientable
manifold without boundary and assume
H*(M ; Q) = Q[u]/(un+l), deg u = 2.

rational cohomology complex projective

We call such a manifold M
be 2n-dimensional compact connected sub-

n-space. Let Xl' X2

manifolds of M such that

H* (M ; Q)———-;>H*(XS ; Q) be the homomorphism induced

XS———a-M for

.

Let f* :
S
s = 1,2. Then we have

by the inclusion map fS

the following result.

be non-negative integers such that

Lemma 2.1.1. Let nl, n2

n ns+l
£%(u Sy # 0 but £* (u ) =0

n = nl + n2 + 1.

for s = 1,2. Then we have

Proof. By the following exact sequence

7
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f*

B (x_r0) 255 B (M,%_50) —= B (4;0) —S—> B* (x_;0)

|
Hk(X3_S,:)X3_S;Q)

we have the following equations of Poincaré polynomials :

. - * .1 i .
P(X3_or OXq_git) = P(ker £% ;t) + P(im H_ it),

. -1 .
H = * . -
P(XS it) P(im fs it) + t 7 P(im é;s ;t).

Thus we have
. - . = * . - : £% .
(2.1.2) P(X3_S,Z)X3~s,t) t P(Xs,t) P (ker fs ;t) t P(im £% ;t)

for s = 1,2. By the Poincaré duality for X, » we have

2n

P(Xs, oxs;t) =t P(XS FA vl
. _ .2n R S
P(xs it) =t P(XS,Z)XS,t ).
Then we have from (2.1.2)
. _ . 2n . -1 % -1
P (ker fi ;) - t P(im ff ;E) = £ (P (dim f§ ;t T)—-t Pl(kex f2 ;7)) .
By the assumption on the integers ny, n, we have
2n
R 2 s
P (im f; ;t) =1 + £+ ... + ¢t ’
2ns+2 2n
P (ker f; ;) =t + ... + t .
Therefore we have
2n.+2 2n
T L R
-2n -2n.,—-2 _
= t2n(l + t 2 + ...+t 2 -t (t 2 + ... + t 2n)).
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Put t = 1. Then we have n = ny + n, + 1. g.e.d.

Remark. Let V = @ Vn be a finitely generated graded
nz0
module over the rational numbers Q and bn = dim Vn . Then the

polynomial

£+ bot? 4+ ...

P(V;t) = bO + bl 2

is called the Poincaré polynomial of V. If V = H*(X;Q) for a

topological space X, then simply denote

P(X;t) = P(V;t).

2.2. From now on, we assume that M 1is a simply connected.
rational cohomology complex projective n-space and G is a compact
connected Lie group which acts differentiably on M with a
codimension one orbit G/K. Then by Lemma 1.2.1, there are just
two singular orbits G/Kl and G/K2 (we can assume K C:KS for
s = 1,2), moreover there is a closed invariant tubular neighborhood
Xs of G/KS (s = 1,2) in M, such that

M=XxUZX, and XN X, = Dxl= 'axz.

Let n,, n, be non-negative integers defined in Lemma 2.1.1, and

let

‘k_ = 2n - dim G/K
s s

I

for s 1,2. Then it is clear that

(2.2:1) 2 Sks < 2(n - ns), (s =1,2).
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Because :)XS = G/K as G-manifolds, the fibre bundle

pS
K /K G/K G/K

S

is a (ks—l)—sphere bundle.

Lerma 2.2.2. If k2:> 2, then G/K1 is simply connected and

hence Ky is connected.

Proof. If k2:> 2, then TCI(G/KI) = 7Cl(M) by the general

position theorem. Thus G/Kl is simply connected by the assumption

that M is simply connected. Let Kg be the identity component

of Kl' Then G/Kg is a connected finite covering space over a
simply connected space G/Kl. Thus ’Kg = Kl' g.e.d.

2.3. First we assume that G/Kl and G/K2 are orientable,

and we have the following result.

Proposition 2.3.1. _Assume that G/Kl and G/K2 are orientable.

= 0 (mod 2), then G/Ks is a rational cohomology

(i) If klzz k2

complex projective n_-space and ks = 2(n—ns) for s =1,2.

(ii) The case klzz kZEE 1 (mod 2) does not occur.

(iii) If k;=0 (mod 2) and k,= 1 (mod 2), then k; + k, = n + 2

2 1

and there are two cases :

(a) n, =n, and

P(G/Kl;t) = (1 + t Y(L + t° + --- + t ),
kl—l 2 2n2
P(G/K,it) = (1 + t Y(L + t% + --- + £ ).
() ky = 2(n, +1), k, =n; - n, +1 and

/70
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n,-n n.+n
P(G/K1 ;) = (1 + t 1 2)(1 + t2 + ... + t i 2),
n 2 2n
P(G/K2 ;) = (L + )1 +¢t° + ... + t ).
Proof. We have
ks
1?(xs,9xs it) =t 7 P(G/K, it)
by Thom isomorphism and
P(XS ) = P(G/Ks st) .
Thus we have from (2.1.2),
kz—l 2 2n1
(2.3.2)1 P(G/Kl ;) =t ]?(G/K2 sE) + (L + &7 + ... + t )
2n,+2
T T e
. kl—l 2 2n2
(2.3.2)2 P(G/K2 it) = t P(G/Kl ) + (L + 7+ ...+ t )
2n.+2
R
Because n = n, + n, + 1, we have from (2.3.2),
k.+k. -2 k.+2n 2n
(2.3.3); (1-t 172 YP(G/K, it) = (1-t 2 2y + e+ ..+t N
k.-1 2n,+1 2n
2 Y hya et Lo v e Yy,
k,+k,-2 k.+2n 2n
(2.3.3), (-t 12 e/, ) = e F o has e a e D
k.-l 2n.+1 2n
+ el e 2 ya+ 2 Ll v e Y.
Put t = -1 in (2.3.3). We have

//
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k+k, k,
(1 - (-1) ) X(G/K)) = (1 - (1) “)(n + 1),

I

kl+k2 kl
(1 - (-1) ) X(G/K,)) = (1 = (-1) ") (n + 1)

I

where )f(G/KS) = P(G/Ks;—l) is the Euler characteristic of G/Ks'

In particular, klEE k2 (mod 2) implies klEE kZEE 0 (mod 2) by

(2.3.4).
(i) 1If klzs szs 0 (mod 2), then
X (G/R,) # 0
for s =1,2 from (2.3.3). Thus
0
rank Ks = rank G
for s = 1,2 and hence

(cf.

il
o

1%9%e/k) 5 0 = PPt/ 5 o
k

[/],Theorem 26.1) , where Kg is the identity component of Ks'

Because the induced homomorphism

H*(G/K] ; Q) —> H*(G/K ; Q)

is injective, the Poincaré polynomial P(G/Ks ; £t) is an even

function for s = 1,2. Then we have from (2.3.2),

for

2 2ns
P(G/Ks s ) =1+t 4+ ... + t

s = 1,2. Therefore G/Ks is a rational cohomology complex

projective n_-space and k_ = 2(n - ns) for s =1,2.

s
(iii) Next, if k, = 0 (mod 2) and kZEE 1 (mod 2), then

1

XAG/Ky) =n + 1#0 and X(G/K,) =0

/2
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from (2.3.4). Thus P(G/Kl;t) is an even function, and we have

from (2.3.3),

2n k,-1
P(G/Kl;t) =1 + t2 + ... + t 1 + t 2 (1 + t2 + ... +
(2.3.5) ky+k, =2 k,+2n, , 2n)
t P(G/Kl;t) = t (1L +t°+ ... + t )
2n.+1 2n
vt T eede v Y.
Thus we have
k.+k.-2 k. .+2n 2n
(2.3.6) e 2 8202 0+
2n.+1 k.+2k_ -3 2n
T e R
Recall that k; - 2 <2n, from (2.2.1) and Lemma 2.1.1.
(iii)a First assume kl - 2 <f2n2. Then we have
kl + k2 -2 = 2n1 + 1
and 2n
2n.,~k.+1 2 1
(L +t+ ... + ¢t 2717+ 4+ ...+t )i
k.-2 - 2n
= (1 +t+ ... + ¢ 2 Y (1 + t2 + ... + t 2)

from (2.3.6). Put 't = 1. Then we have

(2n2 + 2 - kl)(n1 + 1)

(k2 —1)(n2 + 1)

(2nl + 2 - kl)(n2 + 1),

. Moreover

il
o]

and hence nl

k, + k, = 2n, + 3 = n + 2.

/3
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(iii)b Next assume k., - 2 = 2n,. Then
2n, + 1 =k, + 2k, - 3
from (2.3.6), and hence

k1 = 2(n2 + 1) and k2 =n; -n, + 1.

Moreover

k, + k, =n

1 2 + n

+ 3 =n + 2.

1 2

The Poincaré polynomial P(G/Kl;t) is obtained from (2.3.5), and
P(G/Kz;t) is obtained from (2.3.2) and the polynomial P(G/Kl;t).

g.e.d.

2.4. Now we assume kl = 2 and consider certain relation
between H*(G/Kg ; Q) and H*(G/KS ; Q), where Kg is the
identity component of K- The following argument is essentially

due to H.C.Wang [4].

Remark. If G/K2 is non-orientable, then we have k1 = 2

from (2.2.1) and Lemma 2.2.2.

Lemma 2.4.1. If kl = 2, then the induced homomorphism Rﬁ
is an identity on H*(G/K0 ; Q) for every k € K. Here the right

translation R, on G/K0 is given by Rk(gKo) = ngo.

Proof. (i) First assume k2:> 2. Then K, is connected from
Lemma 2.2.2 and the coset space Kl/K is a circle. Therefore

there is a connected central subgroup T of K such that

1

¥
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K C K, = r.x0

Hence for each k € K there is u € T/\K such that Rk = Ru
on G/Ko. Because T 1is connected, there is a continuous mapping
u : [0,1]——>T such that u(0) 1is the identity element and

u(l) = u. Because each u(t) commutes with each element of K,

a homotopy

H @ G/Ko-—% G/K0

can be defined by Ht(gKO) = gu(t)KO, where H, is the identity

0
= = * i 3 1
and H1 Ru Rk' Therefore Rk is an identity.
(ii) Next assume k2 = 2. Let XS be the invariant closed

tubular neighborhood of G/KS in M (s = 1,2) such that

M=xUZX, and XN X, = I Xy = BXZ-
Let is : Xl/\ X2~—~> X_ be an inclusion mapping. Then the induced
homomorphism

ige ¢ M (X MR —> TCo (X))

is surjective for s = 1,2 from the general position theorem.

Thus there is a natural surjection
h 7Cl(xs)————%> ﬂ&(xl/ﬂ\xz)/(ker 11*L(ker 12*)
for s = 1,2 such that the following diagram is commutative :

i
} 1*
T, (X N\ X)) ——> 7Cl(xl)

i h
e

TC, (%,) 2> T (X N\ X))/ (ker ip,)-(ker i,,).

<



107

Then there is a surjection
T (X U X)) —> T (XN X))/ (ker ip,)-(ker i,,)

by van Kampen's theorem. But M = Xl\J X2 is simply connected

and hence
TCl(Xl/\ X,) = (ker i,,)- (ker 12*).

On the other hand, the inclusion is : Xl/\ X2—~—> X is homotopy

equivalent to the projection Py G/K———>~G/KS. Thus we have
(2.4.2) TC(G/R) = (ker pj,)- (ker p,,).
From homotopy exact sequences for the principal bundles
G —> G/K and G —3> G/K

we have a commutative diagram

0

TCl(G) —> T, (G/R) ——> K/K0

id ps* 2s

i

) S 0
T, (G) —> Ty (G/K) —>K /K

where 9 and Qs (s = 1,2) are surjective. Thus we have

from (2.4.2),

|

K/KO _ 9('ﬂﬁxG/K)) = Q((ker pl*)'(ker Pz*))

4 (ker Pys) - g (xer Pys) < (ker Zl) - (ker 22) - K/KO-

]

Therefore

/6
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(2.4.3) K/KO = (Kg N K/KO) . (Kg N K/KO) - (Kg/KO) . (Kg/KO) ’

because ker Zs = Kg/“\K/KO. Then the proof of Lemma 2.4.1 for

k, = 2 is done similarly as for k2:> 2. g.e.d.

Now we consider a commutative diagram of natural projections

e/ — 9 S gk
0
(2.4.4) Pg Pg
0 9
—_—
G/KS G/Ks
for s =1,2.
Lemma 2.4.5. _If kl = 2, then

H*(G/K] ; Q) = gRH*(G/K_ ; Q) + (ker pJ¥)

for s = 1,2 (direct sum or not).

Proof. Because Ks/K is a (ks - 1) -sphere, Ks/K is connected

and hence the natural mapping Kg/KO———>-KS/K is surjective. Thus

(2.4.6) K_ = Kg-K (s = 1,2).

Hence for each a & Ks there is k € K such that R; = Ri on

H*(G/Kg ; Q). By Lemma 2.4.1 and a commutative diagram :
0*
* 0 Pg - 0
H (G/KS i Q) ———=> H*(G/K~ ; Q)

—_ * = 1
R; R}’; Rk id
0 *
0 Ps 0
H*(G/Ks ; Q) ——— H*(G/K~ ; Q),

/7
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we have

(2.4.7) po* (u) = pO* (RX (u))

for each a & KS and each u € H*(G/Kg ; Q). By averaging (2.4.7)

on a finite group KS/Kg , we have

o* 0. = 0 * .
p.* HY(G/K. ; Q) = p*q* H*(G/K, ; Q),

because

0
Ks/Ks

qy B (G/K, ; Q) = H*(G/K] ; Q) :

-

Thus we have

Q) = gt H*(G/K_ ; Q) + (ker pg*). g.e.d.

0
*
H (G/KS

-.

2.5. Denote by J = {B.;k ’ Jk = q§ Hk(G/K2 ; Q). Then J is
k

a graded subalgebra of H*(G/Kg ; Q). Because

0

p
Kg/KO — >kl —2 G/Kg

is an orientable (k2 - 1) -sphere bundle, its rational Euler class
e(pg) can be determined up to sign. Then
Lemma 2.5.1. ker pg* = J-e(pg) + J-e(pg)2 .

Proof. From a Gysin sequence for a sphere bundle and Lemma

2.4.5, we have
0, _ 0 . . 0, _ .. 0 04y . 0
ker pz* = H*(G/K2 : Q) e(Pz) =J e(Pz) + (ker P, ) e(pz).

Hence

/8
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0,2 O\N

0 + ...+ J-e(pz)

ker p,* = J-e(pg) + J-e(p,)

for sufficiently large N, as submodules of H*(G/Kg ; Q. For

each k € K, we have a commutative diagram :

R
ek — kK 5 /KO
0 0
P2 P2
R

0 k 0
—Eﬁ
G/K2 G/K2

which is a bundle mapping. Thus we have
R¥ e(pg) = e(pg) or -e(pg)-

Here Ri e(pg) = -e(pg) occurs when R, reverses an orientation

of the sphere bundle. Therefore

RE (e (0D ?) = e(p?

for each k & K. Because

K

J = q§ H*(G/K, i Q) = H*(G/K) ; Q) 2 = H*(G/Ky ; Q)N
by (2.4.6), we have |
(2.5.2) e(p))? € 3
and hence
ker pg* = J-e(pg) + J-ekpg)2 . g.e.d.
Lemma 2.5.3.  dim(ker pg*) < dim J + dim(J N\ ker po*).

Here the equality occurs if and only if

/7
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0,2

J-e(pg)/\ J-e(pz) =0, J~e(pg)2 = J M\ ker po

*
2

and E : J —> ker pg* is injective, where E 1is defined by

E(x) = x-e(pg).
Proof. By (2.5.2), we have
J-e(pg)2 < J N\ ker pg*
and hence we have from Lemma 2.5.1
dim(ker pg*) < dim J + dim(J N kex pg*) .
Moreover we have the condition on which the equality occurs. qg.e.d.

2.6. Now we assume that G/K2 is non-orientable. Then we

have kl = 2 from (2.2.1) and Lemma 2.2.2.

Lemma 2.6.l.v_;£ G/K2 is non-orientable, then

k

P(G/Kg (1 + t Z)P(G/Kz it),

z
i

2k.-1
p(G/K’ ;t) 2

(1 + t )P(G/K2 ;) - P(nl,n2 ;t) .

Here P(nl,n2 ;t) = 0 for nl;> n, and

2nl+l 2nl+2 2n,
P(nl,n2 it) = t + t + ... + t

for nl-< n,.

Proof. From a Gysin sequence :

- 0 0*

2 X, .,.0 X, . ,.0 k+1-k
H (G/KZ;Q)———-——,*H (G/KZ;Q)_—>H (G/K";Q) ——>H

2(c/x9:0)

20
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we have
0 .0 0
P(G/K2 ;) = P(im p2* ;) + Plker p2* ity ,
0 -k, 0
(2.6.2) P(G/K, ; t) =t P(ker p,* ;t) + P(imD ;t),
k.-1
pe/k” st) =t 2 P(in§:t) + Plim pO* ;).

By Lemma 2.4.5 and the definition J = q§ H*(G/K2 ; Q),

P(im pg* it) P(Pg*(J) i t)

P(J ;t) - P(J N\ ker pg* it),

n

and hence

0 0

(2.6.3) P(im py* ;t) = P(G/K, it) - P(J/\ker p,* ;t).
Because G/K2 is non-orientable, there is k € K2 such that the
right translation Rk on G/Kg reverses an orientation of G/Kg.
Then

(2.6.4) 2.dim H*(6/K, ; Q) < dim H*(G/K) ; Q)

by Poincaré duality (c£.[21). By Lemma 2.4.5, we have
(2.6.5) dim H*(G/K) ; Q) = dim J + dim(ker py*) - dim(J N\ ker po*).
Then we have
dim J <« dim(ker pg*) - dim{(JI N ker pg*)
from (2.6.4),(2.6.5) and dim J = dim H*(G/K2 ; Q). Thus we have

dim J = dim(ker pJ¥) - dim(J /\ ker pg*)

2/
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by Lemma 2.5.3. Moreover we have

k

0y ;) = t 2 P(J ;t) + P(U/ N\ ker p

(2.6.6) P (ker P, 0

* .

2 it)
from Lemma 2.5.1 and Lemma 2.5.3. Combining (2.6.2),(2.6.3) and
(2.6.6), we have

%2
(1 + £ 9)P(G/K, it),

P(G/Kg it)

2k.-1
p(G/K° ;t) 2

(1L+t 2 )P(G/K, 58) - (1 + £ PN ker pO* ;

It remains to show

0

(1 + t—l)P(J/ﬁ ker p2* k) = P(nl,n2 ;).

Consider the following commutative diagram :

*

p
H* (G/K, ; Q) ——2—> H*(G/K ; Q)
a3 q*
PO*

H* (G/K) ; Q) —2—> H*(6/K’ ; Q).
Because * 1is an isomorphism from Lemma 2.4.1, we have
P(J N ker pg* ;t) = P(ker p§ it).

Recall that p, * G/K-————)—G/K2 is homotopy equivalent to
i2 : Xl/\ Xz———> Xz, and consider the following commutative
diagram

£*
HY (M,X; 5 Q) —>H¥(M ; Q) — L H*(X, ; Q)

fad £% i*lf
i3
H*(Xz,xl,/\ X, ;Q)—>'H*(x2 ;Q)——————>~H*(xl/\ X, ;Q) .

22
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Then we have

t + ... + t (if n, < n,)
P (ker pg* ;t) = P(ker i3 E) = 1< M2

Thus we have

2 .
0 t + ...+ t (if n; < n,)

(1 + t ™ hyp(3 A ker Po*

2.7. Now we can prove the following result.

n is even,

Proposition 2.7.1. _Assume that G/K2 is non-orientable.

(i) If G/Kl is orientable, then G/Kl is a rational cohomology
A

complex projective (n - 1l)-space and G/Kg is a rational cohomology

n-sphere..

(ii) If G/Kl is non-orientable, then n = 3 and

P(G/R_ it) =1 + £2, P(G/Kg s t)

n

(1 + t3)2

Proof. Because G/K2 is non-orientable, we have
k, = 2 and dim G/Kl = 2n - 2.

(i) First assume that G/Kl is orientable. Then by the
Poincaré duality for G/K,, we have from (2.3.2),

1 2n,+1

2n-1 ) = P(G/K, it) +t

_ 2 2n
(2.7.2) t P(G/K2 it

(1L +t°+ ... + t

2n
-1+t .+t N

23
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By the Poincaré duality for G/Kg ,» we have from Lemma 2.6.1,

2k2

2n ) =t 2 R(e/K, it).

(2.7.3) %" p(G/K, .

Combining (2.7.2),(2.7.3) and (2.3.2) with kl = 2, we have

2k 2k +2n

2n
(2.7.4) (1 - t Z)P(G/Kl it) = (L-t 2 ZHa+eda .t Y

2k, -1 2n, +1 2n
+ (t 2 -t 1 )y (1 + t2 + ... + t 2).

In particular we have
X (G/K)) = P(G/K; ; -1) # 0.

Therefore P(G/Kl ;t) is an even function by the same argument

as in the proof of Proposition 2.3.1 (i). Hence we have from (2.7.4),

(2.7.5) k,=n, +1 and P(G/K, it) =1 + €2 + ...+ 2072,

Then we have from (2.3.2) and (2.7.5),

2 2n,
(2.7.6) P(G/K2 ;) =1+t + %+ ... + t

Thus )C(G/Kz) # 0 and hence P(G/K2 :t) is an even function.

Therefore

n, =0 and P(G/K2 it) = 1

from (2.7.6), and hence n; =n - 1 by Lemma 2.1.1. Then
P(G/Kg i) =1 + t°

from Lemma 2.6.1l. Consequently G/Kl is a rational cohomology

complex projective (n - 1l)-space and G/Kg is a rational cohomology

n-sphere. Moreover X(G/k,)#0 /'I»f/ies n=0(mod2),
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(ii) Next assume that G/Kl is non-orientable. Then

From Lemma 2.6.1l, we have

P(G/KY it) = (1 + t2)P(G/K, it),
(2.7.7)

p(c/Kk? ;t)

(1 + t3)P(G/K2 it) = P(ny,n, ;t).

Similarly we have

P(G/KS 5t) = (1 + £)P(G/K, it),
(2.7.8)

p(c/x? ;t)

H
>
+

3
t )P(G/Kl ;t) - P(nz,nl i) .
Here P(a,b ;t) = 0 for a_>b and

t2a+2 2b

+ + ... + t

for a <b.

If n, < n,, then we have from (2.7.7) and (2.7.8),

2n. +1 2nl+2 2n

t L4t + ..+t 2 =0 (mod 1+ t3).
Thus n; = n, {mod 3) and
(2.7.9) P(G/K, it)-P(G/K, it) = t2nl+l(l+t+t2)(l+t6+t12+...+t2(n2-nl—3))
Then
(2.7.10) X (6/k,) - X(G/K)) = (ny - n,)/3 < o.

If )C(G/Ks) # 0 for s =1,2 then P(G/KS ;£) is an even

function for s = 1,2 and this contradicts (2.7.9). Thus
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X(G/R)) #0 and X (G/K,) =0
from (2.7.10), and hence

(2.7.11) rank Kg = rank G # rank Kg

On the other hand,
rank Kg = rank K0 + 1

for s = 1,2 because Ks/K = Sl. This contradicts (2.7.11).
Therefore the case n, <:n2 does not occur. Similarly the case
n, <:n1 does not occur.

Finally if n, = n2, then n = 2nl + 1 and we have from
(2.7.7) and (2.7.8)

P(G/Kg it) (1 + tZ)P(G/KS it),

(2.7.12)

P (/K ;t)

(1 + t3)P(G/Ks ;€)

for s = 1,2. Let Xs be the invariant closed tubular neighborhood

of G/KS such that
M=X1UX2 and xlf\x2=3xl=ax2.

Consider the Mayer-Vietoris cohomology sequence of a triad

M ; 'XZ)' Then we have

X
2n,+1 5 2n

LYy +¢2+ ...+t 1

P(G/Kl it) + P(G/K2 ;t) - P(G/K ;t) = (1-t
Because P(G/K ;t) = P(G/K0 ;t) from Lemma 2.4.1, we have
from (2.7.12),

2n1+l 2 2nl

(2.7.13) (1 - t3)P(G/K1 st) = (1 - t YL+ t2+ ...+t 1y
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Thus ;K(G/Kl) = n, + 1 # 0 and hence P(G/K1 ;t) is an even

function. Therefore we have from (2.7.13),

n, = 1 and P(G/K1 ;) =1 + t2.

Consequently, n = 3 and

P(G/Ks k) =1 + t2,
P(G/Kg ;) = (1 + t2)2
for s =1,2 from (2.7.12). qg.e.d.
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g3 Examf/es

(B 1) memems+r & LT, Pulc)=PE" o) =
D Un+1)xUbnav1) o BEBIEREFRL 3. SoiER3,
AAR L o 5Tt

X = sty v 05,0 [ DhoPevor b= ol e) o, £

< B <fin e, BBRIE

PuC) = (ot -1 thyi 03 - 0)f

Pa(CO={ (01 -0 Vo s G
tHo. U+ xUnv) o dp4 Q@ v, X <TEF385<
FR T3¢0 c>w2 ERAHTE3, 43, £3200
(A)-ti) o3BT Hd. |

@2 HR(Cc)= P(k”*’%é’) o SO(+)o BI&E(E

REAZLS. & (0i--:0:t: ) B13 4y Foe—pf
E He & BT,

Ho = S(Ory=x OC), H, = SOG-1) % SO(2),

He = SOR-1)x2Zy , (0<t</)
LYy, ARRELoBB L3, SO(+1)/H, =R (R) T3,
B2, n=itmd2) ot %, 2320 0 (A)-li)-(8) o HBA
T, A=0(mod2) ot %, (B)othhvs3d., t55075
t., h=2 b=n=m+l, m=0 tl,T P,
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(513> m=zpti tL T, B(C)=P(C"eC') ro
SUGp+1)x SUC2) o T>Y LfE1cd 3 BRBIERLEE LS.
t-eoe + Gues, KERhFTEo /D —RFE He Lt &
7T,

He = S(Ttpx V) x ST« Tt1)

H, ={/* O__)XA,'IJ/=/} ’ Httf(; 4;)3(,4" [Al=1. A GS.(U(DXU(I))}

0 AA
O<¥</ .
L), Arrnlobtdito. kI ZRO0Oo (4)-

G)-&) A THY ., k=2p Fa=3 A=2p+l. n=t=p &
Tso Tw5b, '

3 4)  @p = SO(n+2)/Soemyx SO@) 1=, ki< &
"7 SO+1) S 4EB TS,

o /! (]

Ae’—’( et o suf € SO(n+2)
~Sin@ o cosh
wEH TEALE BT 4y Foe-ML H, £ BT,

H, = SOM), Hg = SO(n-1) xSO(2)

Ho = SOMm-1), 0<b< 5
ey, AR loaBt sHo.  x »H T, v+l 0L ¥,
Q sEBfrnainhR R Eo2-HEFW2M TSy,
T (@n)=2, 753, chi3, B30 o (A)-D)-8) o
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/‘é\z"é’), =2, Bp=7=9+], =0 £J5> 21 3,
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