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1. Introduction

Given a set or sets of multivariate data which are to be
interpreted by means of reyression analysis, we proposed to
carry out a simultaneous analysis of all linear models plausi-
ble in the circumstances where data were ccllected and then
determine an adequate model, if any, from among the set of
- models, keeping in mind the hierarchy among them. (cf. [5}],
(6]1)

For the purpose of demonstration, we use the data in
Table 1, where 70 male and 115 female graduates from a certain
university are summerized in the 2x2x3x3 tables. The four
rows are in terms of performances in general education (Yl=l
or 0 ) and major field (Y2=l or 0 ). The nine columns are
in terms of high school (H.S.) grades and college entrance
examination (C.E.E.) grades, both of which are of three levels:
A, B and C.

The main concern in this paper is to demonstrate the
methodological and/or logical aspects in determining an ade-

quate model, with the hypothesis in mind that Y, and Y

1 2 are

independent.

In Section 2, we shall present a schema of analysis by
using a tetranomial logistic model. We shall also analyse
the data assuming that Yl and Y2 are independent. As the
outcomes of the analysis assuming independence do not fit
our data, we shall investigate, in Section 3, how Yl and Y2

are associated. 8o far as the present authors are aware,



there does not seem to exist any serious trial for investi-
gating the structure of association bh2tween two binary re-
sponses. Our investigation will be of some interest in this
respect. Section 4 is devoted to the discussions in the

logical aspects inveolved in this analysis.

2. Logistic Regression Analysis
Let the individual graduates be associated with two

binary variables

1 if performances are excellent in general

v - education,
1
0 otherwise,
1 if performances are excellent in major
field,
Y2 =

0 otherwise,

and as independent variables in the regression model, the
following four are defined

Xy = 1 (A dummy variable taking constant 1)
{0 if male,

1 if female,

1 if high school grades A,
x3 - 0 if " " 11 B,
-1 if (1] " 1] C,

1 if C. E. E. grades A,
x4 - 0 if n " " n B,
-1 if " " " " C.
And let
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Pr[Yl=0, Y2=0 | Xor Koy x4] = Pyr
Pr[Yl=0, Y2=J l Xy Xgy x4l = Pl’
Pr[Yl=l, Y2=O l Xor ¥gs x4] = PZ'
PrlY,=1, Y, =1 | X1 Xqi x,1 = Py,

To regress Pa’ a=0, 1, 2, 3, on Xor X3 and X, we shall
follow Bock [1], Cox [2], [3]), Mantel [7]}, Mantel & Brown ([8]

and Ito & Kudd [5] and use a tetranomial logistic linear model:

r 4
A, = log Pl/PO = Z Byy Xy’
u=1l
4
1 X, = log P2/P0 = 2 Boy Xy 7 (2.1)
u=1
4
Ay = log P,/P, = Z Bay Xy’
L u=1
or in terms of vector notation,
4
A=) ox, By - (2.2)
u=1

The vectors §2,§3 and §4 may be interpreted as the effects of
sex, high school grades and college entrance examination grades,
respectively. As regards to the existence orAnon—existence of
these effects, or equivalently being nonzero or zero of these
vectors, there are 3==8 possibilities. This gives rise to
the notion of a hierarchy of the models.

In order to express the model in our hierarchy, we shall
use the notation (al a, a, a4), where ai=0 or 1 (i=1,2,3,4)
with B.=0 for ai=0 and ?i #9 otherwise. By the very

~1 ~

nature of dummy variable Xy al=l. These 8 models are
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shown in the left two columns of Tables 2 and 3.

With (2.1) as the least simple model indicated as (1 1 1 1)

Al = log Pl/PO = Bll X5
| Ao = 109 Poy/Pg = Byy Xy (2.3)
A3 = log P3/PO = 831 Xy

is the simplest model indicated as (1 0 0 0).

Now returning to Table 1, there are six nonzero colums
in male and eight in female, and these nonzero colums are
subscripted by i=1,2,..., 14. We analyse these data as
fourteen tetranomial data. Let n, be the sum of the i-th

nonzero column and let

Yoi graduates with Yl= 0 and Y2 =0,

rii " " " .0 and " 1,

Yoy " " " 1land " O,

Tas " " " 1land " 1,
with n;= Zrai' Then (rOi’ Y157 Toir r3i) follows a tetranomial
distribgtion with the parameters n, and‘Poi, Pli' P2i' P3i’

The log-likelihood function of the parameters in (2.1)

or the model (1 1 1 1) in Table 2 is given by
L = constant + ] t,. Biy * ) tou By t L ta, Bay
u u u
- g n; log {1+ exp( EBluXiu) +exp ( §82uxiu)

+ exp( XBBu L) } (2.4)
u



where

t. = ) r_. x, , a=1,2,3; u=1,2,3,4. (2.5)
: ‘

The log—likélihood function (2.4) shows that the set of statis-

tics { tour 2°1,2,3;5 uw=l,2,3,4 } forms z set of sufficient
statistics for the model (1 1 1 1) involving twelve parameters
{Bau’ a=1,2,3; u=1,2,3,4} .

The log-likelihood function ( and the sufficient statistics)
in the models simpler than (2.1) in the present hierarchy are
given merely by deleting appropriate terms in each of the
summations in (2.4) (and in (2.5) ). Because of the nature of
our hierarchy, the terms with u=l always remain in each of the

summations.

When it is assumed that the variables Yl and Y2 are
statistically independent to each other, then

P0 P3 = Pl P2 {(2.6)

and in the logistic linear model (2.1), the number of parameters
is reduced by the following relations,

Bouw = 3u (uv=1,2,3,4) (2.7)

Under the assumption of independence, the log-likelihood function
"of (2.4) is reduced to the one involving eight parameters

{ Bau ; a=1,2 u=l1l,2,3,4 }

LI = constant + E tluslu + E t2u 82u + % t3u(Blu+ BZu)

~ Z n; log { 1+ exp ( é Blu Xj -

o) toexp ( ) Boy Xiy)
i u

+ exp ( E(Blu+82u)xiu) } (2.8)



The sufficient statistics are reduced correspondingly. The
log-likelihood functioun (and the sufilcient statistics) in the
models simpler than (2.1) in our hiercrchy are obtained in the
same nanner as in the casz of a general tetranomial model.

The maximun likelihood estimateﬁ «f the unknown parameters
in the models in our hierarchy with and without the assumptioﬁ
of independence can be obtained by the usual iterative method
of Newton-Raphson. The goodness of fit of each of the models
can be tested by the usual x2 " statistic, where the degree of
freedom is, in our present case, 3x14 —(number of parematers
estimated). [9]

The algorithm for computing the maximum likelihood
estimates are essentially common all through the models in our
hierarchy. Only difference lies betwsen those with the assump-
tion of independence and those without it. This feature is
evident in the formulae of the ‘first and the second derivatives
of log-likelihood functions presented in the appendix:

The outcomes of fitting tﬁe 8 models to the data without
and with the assumption of independence are shown in Tables 2
and 3, respectively, in terms of goodness of fit x2 and
log-likelihood. From these tables it is noted that in the
hierarchy of models, no model is considered adequately fitted
to the data under the assumption of independence, but model
(1 0 1 0) is an adequate one under no assumption of inde-

pendence, whose maximum likelihood estimate is given by

89
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A; = log Py/Py = =2.107 + 0.665 xg,
A, = log P /P, = -1.712 + 2.278 X, (2.9)
L Ay = log Po/P, = -2.182 + 1.307 x4.

Thus it may be concluded from (2.9) that the effect of

high school grades upon a pair of binary-responses Yl and Y

is significantly exhibited, while no significant effects of

2

sex and C.E.E. grades are present. Table 2 also shows that
in a hierarchy where the model (1 0 1 0) is the pivotal model,
no less simple models exhibit significant decrease in xz .

As to the determination procedure of an adequate model, we

will discuss it again in Section 4.

3. Association between a pair of binary random variables

The analysis in the previous section indicates that no
model is found to fit adequately to the data under the
assumption of independence. We therefore would like to know

how the components of a pair of binary random variables Y

1
and Y2 are related to each other.
Let
(0) _ - -
P = Pr [ ¥, =1]Y, =0]
(3.1)
P = pr v, =1y, =1

and corresponding to the pair of probabilities, we consider

a pair of logistic linear models



’

A0 210 (0, 1 L Oy g Bu(o) x,
u
(3.2)
Z (1) log p (1) / (1 - P(l))u ) Bu(l) %,
L u

The data in Table 1 are intexpreted, in this section,

as two series of binomial data. The first two rows correspond

to the probability P(l)

(0)

and the last two rows to the proba-

bility P , and these two probabilities are dependent on

the variables x X X and x which were defined in the

ll

pPrevious section.

27 737 4’

Following [5}, we shall interpret the association by
means of a combined hierarchy of all pairs of logistic
linear models associated with (3.1) and (3.2). This hier-
archy is shown in Table 4, where the models are denoted by a
a

guadruple of integers (al a, a with ai=0,1,2, where

Ry
()

1

3

(0) = 0 ( and # 0), thus it

ai=0 (and =1 ) mean Bi B
means that the effect of Xy is non-existent ( and existent
homogeneously in the two series of binary data). a, = 2
means that the effect is existent and heterogeneous in the
two.

In Table 4, the level indicates the number of variables
included. As in the previous section, the dummy variable
should be always included whether they are homogeneous (al=
1 ) or heterogeneous (al=2). Thus in Table 4, there are two

models in level 1. 1In level 2, there are 2x2x_.C, =12 models,

371
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and in levels 3 and 4 the numbers of models are 2><22><3C2 =24

and 2xz3x3c3=16, respactively. Table 4 exhausts all possible
models plausible in the probability model (3,1) with (3.2) as

the least simple one.

In this combined hierarchy, the null models, correspond-
ing to the null hypothesis of statistical independence, are |
(o090, (LooO1), (2 010), (1100, (L0111, (L101),
(1 110) and (L 11 1).

The set of the null models itself forms a hierarchy and
is isomorphic to the hierarchy in the previous section, and
we call it the major hierarchy. To each one of the non-null
models there are associated one or more models in the major
hierarchy, which can be obtained by simplifying the model,
and amomg them there is one which is the least simple one
and is called the pivotal model. 1In other words, the combined
hierarchy is partitioned as the sum of disjoint subsets,
each one of which is represented by its pivotal model and
forms again a hierarchy. The relations in the same subset
are called the minor hierarchial relations and among them
those involving the pivotal model the pivotal relations.

The hypothesis of independence justifies our nomenclatures
and gives rise to the following rule. - At first examine the
relations in the major hierarchy and then proceed to the minor
hierarchial relations, and among the latter we should begin
with the pivotal relations and go to the rest of ‘them.

Now let us return to Table 4. In the first part, all
the models in the combined hierarchy down through (1 1 1 1)

are listed to examine the goodness of fit xz and also the



decreases in X2 due to the inclusion of new variables. All of
the models in the major hierarchy are rejzacted because of their
high XZ values for testing the goodness of fit statistics.
Further let us proceed to the second part of Table 4,
where all the models with {1 1 1 1) as the simplest one are
listed and examined. All the pivotal relations are significant
except for the one down to (1 1 1 2), which is also rejected.
Among those with 19 degrees of freedom, the model (2 1 1 1)
has the smallest X2 value and the largest log-likelihood
value, and all the minor relations down from it are not sig-
nificant. Thus we may conclude that the model (2 1 1 1) is
the most appropriate one. -The significant outcome in the test
of goodness of fit for (1 1 1 2) may be judged as spurious
because of two reasons. At first the decrease in the xz
value is not significant, and it attains the maximum x2 value
among those with 19 degrees of freedom in this minor hierarchy.

The maximum likelihood estimates of the logit transforms

for the model (2 1 1 1) are given by

MO = 10g@ 0 /(-2 0)) 22,531 + 0.171x, + 0.228x, - 0.513x

(3.3)

A cisge M a-p P yyasa.531 + 0.17ix, + 0.228x, - 0.513x

The outcomes in Table 4 are not discordant with those in
the previous section. The distinction between the major and
minor hierarchies is based on the hypothesis of independence.
Without this distinction, we would be in a confusing situation,

as the model (2 0 0 0) and many of its less simple ones,

93
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including (2 0 2 0), corresponding to the model judged as ade-~

quate in Table 2, appear to be equally adequate.

4. Discussions

The main purpose of this paper is to demonstrate the
logical aspects of determining one or more adequate models,
after performing all plausible analyses, which amount to guite
large in number. We used the terminology "hierarchy", which
needs soﬁe more discussions here.

Given a family of sets of linear models, such as (3.2),
involving the same independent variables, where the regression
coefficients on an independént’variable are heterogeneous'or '
homogeneous or non-existent, we have a natural partial order
among thém. In a pair of sets of models, one may be dbtained
from the other by deleting some part of the parameters and by
assuming the homogeneity among the coefficients to some other
set of variables, and in fhié case the one is said to be
simpler £han the other. The terminology "simpler” introduces
a partial order. It is easy to verify ﬁhat the family forms
a lattice, including the maximum and the minimum in it. The
~use of the terminology "hierarchy" is based on the partial
order with an associated test of decrease in the X2 values of
the models in a pair.

In our present case, we have a compound‘hypothesis, which
corresponds to a sub-lattice, and we called it the major hier-
archy. For any element in the hierarchy, there corresponds

uniquely an element in the major hierarchy which is the least
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simple one among those simpler than it. This mapping creates
a partition of the lattice. Each 7 the set in this partition
forms again a sub-lattice and the partial orders in these
sub-lattices are minor hierarchial welations. Among the minor
relations, those between an element of the major hierarchy and
another in its minor hierarchy are called the pivotal relations.

The rule we are suggesting in this paper may be enunciated
in the following: {a) It is the fundamental requirement that
a model to be judged as adequate should be as simple as possible,
in other words, the degrees of freedom should be as large as
possible. (b) Examinations of the outcomes of the tests
of goodness of fit are to be made in the order of (1) the major,
(2) the pivotal and (3) the minor hierarchial relations. (c)
Starting from the simplest model, significances in the tests
of goodness of fit are to be examined successively towards the
less simple ones in the order stated in (b), until we arrive
at a model which exhibits no significance. (d) While examining
the goodness of fit, attentions should be paid to the decreases
in the x2 values due to going to the less simple models,
although it plays the secondary role in the judgement.
(e) It is also to be kept in mind that in a series of tests,
dependent as well as independent, with the same degrees of
freedom, the maximum x2 tends to exhibit significance and
the minimum non-significance.

The above stated rule still leaves a large amount of
possibility of being unable to arrive at a conclusion and/oxr

arriving at a multiplicity of possibly adequate models. Also
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this rule may have to be supplemented by scme nore regquirements
and may even be revised. As a matter of ftact, this rule has
occured with us not from logical reasonings, but from empirical
observations of various data including the one in this paper.

In spite of these shortcomings, the prescent authors feel
that the rule deserves to be spelled out here. The situation
like the one stated at the end of the last section has occured
with us not infrequently. It is also the belief of the authors
that before we worry about establishing a complete and final
rule, we should be more concerned with the quality and the
limitations of the data such as in Table 1 and with the adequacy
of the fundamental assumptions which generate the family of
models concerned.

Further it is noted that no account has been taken of
the correction for continuity in evaluating goodness of fit
xz statistics, in spite of the fact that all the ni's are
rather small for the data in Table 1. The smallness of the
data is the main reason for the rather conservative attitude
of the present authors. They decline to draw a decisive
conclusion out of this analysis. Needless to say that the
non-significance of the effect of C.E.E. grades as shown in-
(2.9) or (3.3) is meant to advocate neither abolishing nor
“continuing the college entrance examinations currently existing
in our country. Neverfheless they feel that.it still sérves‘
as a good demonstration of the ﬁethod éf analysis.

- Finally the following issues are ignored or tacitly

assumed in this paper. (cf. [4]) (1) Whether does the system of
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likelihood equations appearing in this paper have a solution or
not ?  (2) Is the solution, if =2xicgts, unigque ? (3) Does the
solution really maximize the likelihocd function ? (4) Does
the iterative method of Newton-Raphson really lead us to the

zolution ? (5) What is an efficient computor algorithm for

computing all the statistics concerned ?
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Appendix

n.x. P_.
171u ai

g nixiuxivpai(l_Pai)
n.x. x. P .P .
i“iuTiv ai bi
a,b=1,2,3, a#b; u,v=1,2,3,4
+ t3u - g nixiu(Pal + P3i)
g nixiuxiv(Pal * P3i)(l - Pal - P3i)
a,b =1,2, aZb; u,v=1,2,3,4
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Table 1. Numbers of College Graduates According to
Performances in Terms of Sex, High School
Grades and College Entrance Examination

Grades
Male
H. S. Grades A B C
C.E.E.Grades A B C A B C A B C
(1, 1) 0 0 0 0 1l 1l 0 0 0
(1, 0) 0 0 0 0 1 2 0 0 0
(0, 1) "0 0 0 1 1 1 1 1l 1
(0, 0) 0 0 0 6 11 5 9 11 18
Total 0 0 0 7 14 9 9 12 19
Female
H. S. Grades A B C

C.E.E.Grades A B C A B C A B C

(1, 1) 0 0 0 2 0 4 0 1 1
(1, 0) 2 0 1 6 1 0 1 0 1
(0, 1) 0 0 0 1 1 3 1 1 1
(0, 0) 1 0o 1 13 12 12 14 13 21
Total 3 0 2 22 14 19 16 15 24
Note: 1) Yl= 1 if performances are excellent in

general education,

0 otherwise,

Y= 1 if performances are excellent in
major field,

0 otherwise.

2) The data were obtained from the registrar
of a certain university for 1970 graduates
from the faculty of arts and letters.
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Table 2. Outcomes of Logistic Regressign Analysis
in Terms of Goodness of Fit X2 and Log
Likelihoed under No Assumption of Indepen-

dence
2 ' Hierarchicql relations, signif%cance of
Level Model X d.£. decreases in X2 and Log-Likelihood
1 (10O 0)‘ 60.29% 39 X =-135.18
(1 00 1) 54.49% 36 N X ~132.32
2 =(L010) 26.59 36 s I . —124.24
(1 100) 53.77% 36 N I I X -133.05
(1011 22.86 33 S S N I . —121.86
3 (1101) 53.33% 33 N N I N I X -130.35
(L110) 23.59 33 S I N S I I . -123.11
4 (L1111 21.19 30 S S N S N S N . =120.77

Note: 1) In this table and in what follwos ., X, XX and XXX
indicate that goodness of fit x2 are not significant,
significant at 5%, 1% and 0.1% levels, respectively.

2) Each column in the lower triangle of the right portion
of this table shows the relations of partial ordering,
where S or N designates the decrease in x2 from the
model corresponding to the top of the column is
significant or not significant, and I designates that
there is not a relation of partial ordering.

3) Numerical values for log likelihood are all minus the
same constant.

4) ——» indicates that the so designated model is an
adequate one.
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Table 3. Outcomes of Logistic Regression Analysis
in Terms of Goodness of Fit x2 and Log
Likelihood under the Asgsumption of Indepen-

dence
5 Hierarchical relations, significance
Level Model X d.f. of decreases in x2 and Log-Likelihood
1 (L 0 0 0) 99.53*%%% 40 XXX =142.72

(1 0 01) 94.54%%*% 38 N XXX -141.48

2 (1 01 o0) 66.29%* 38 S I XX =~131.90

(L1 0 0) 90.38*** 38 S I I XXX -140.29

(L 011 61.23%%* 36 s 8 N I XX -130.58
3 (1 101) 85.77*** 36 S S I N I XXX -139.08

(111 0) 54,90% 36 S I S X -130.59

(42}
[y
L]

4 (111 49.80%* 34 s S s S s S N X -129.24
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Table 4b. Outcomes of Logistic Regression Analysis for Assessing the Asso-
ciation between Y, and Y, in Terms of Goodness of Fit x2 and
Log Likelihood

Model xN d.f. Hierarchical Relations and Significance of Decreases in xN
(1 111) 36.64% 20 X =45.40
(2 11 1) 13.94 19 s . -40.74
(1 21 1) 17.49 19 s 1 . =41.67
(L1 2 1) 23.09 19 s i i . =42.61
(1 11 2) 33.85% 19 n i 1 1 x =44.01
(2 21 1) 13.84 18 s n n i i . =40.74
(2 1 2 1) 11.28 18 s n i s i 1 . =39.66
(211 2) 12.95 18 s n i 1 s i1 1 . =40.14
(12 2 1) 13.72 18 s i n s 1 1 i i . -40.42
(L 21 2) 16.11 18 s i n i s i i i i . -40.52
(L 1 2 2) 20.91 18 s i i n s i i 1 i i . -41.84
(2 2 2 1) 11.23 17 s n s s i n n i n i i . =39.67
(2 21 2) 12.96 17 s n n i s n i n i n i i . =40.07
(21 2 2) 10.28 17 s n i s s i n n i i s 1 i . =39.26
(1L 2 2 2) 12.18 17 s i n s s i1 i i n s s i i i . -39.68
(2 2 2 2) 10.24 16 s n n s s n n n nn s n nn n, . =39.25

For the sake of convenience in printing XX and XXX are printed as X.
Capital letters are used for the major relations, and small letters for
the others.



