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Irregularity of characteristic elements and

construction of null-solutions

By Hikosaburo Komatsu

Let P(x, ) be a linear partial differential operator with
real analytic coefficients. We definé for each non-singular
characteristic element (xO, goua of P(x, 9) its multiplicity
d and irregularity 6§ 21 so that 6=1 if and only if P(x, 2)
satisfies E. E. Levi's condition at (xo, §Ou®.

Then, we construct null-solutions for each characteristic
surface S of constant multiplicity. If S 1is regular, i.e.
€ = 1, there exists a null-solution with an arbitrarily prescribed

regularity or singularity. If 8 1is of irregularity ¢ >1, then

for each 1< s £¢/(o - 1) there exist an ultradifferentiabl null-
solution of Gevrey class {s} and an ultradistribution null-solution
of Gevrey class (s). In any case there are infinitely differentia-

ble null-solutions.

Lastly; we prove that there is a homogeneous solution whose
singularity spectrum coincides with a given real bicharacteristic
strip (or with a given real element of a certain type of complex
bicharacteristic strip) and having a given regularity or singularity

as in the case of null-solutions.

L. Hormander [10], [11] has shown that there is always an

infinitely differentiable null-solution for any linear partial
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differential operator with constant coefficients and any charac-
teristic hypérplane. As far as we know, however, no proofs have:
been published of the existence of infinitely differentiable null-
solution in the variable coefficient case even for simple charac-
teristic surfaces.l)

We employ S. Mizohata's method in [22] where he constructs
finitely differentiable null-solutions for simple characteristic
surfacgs. The method may be traced back to J. Hadamard [5],

§§ 49-53, P. D. Lax [18] and D. Ludwig [20]. We construct a formal

solution of the form

(0.1) U(x) = j%:.muj (x) ﬁj((f(X)) ,

where uj(x) and ?(x) are analytic functions and ‘§j(t) “is

a sequence of functions of one variable satisfying

d

(0.2) ac

B (6) = B, (0) ,
and then we prove the convergence of (0.1) in a suitable topology
by estimating the coefficients uj(x). Interesting is the fact
that uj(x) do not depend on the sequence Ej(t).

When P(x, 9) satisfies Levi's condition relative to the
characteristic surface S (or the characteristic function 3>(#)),
we may put uj(x) =0 for j <0 and can estimate uj(x) much
more easily than the irregular case. Actually this case has been
discussed by J. Vaillant [26] when the multiplicity is at most
double and by J. -C. De Paris [3], [4] when the multiplicity is

arbitrary and the estimates of uj we need are already known.

-2 -



106

Originally Levi's condition was introduced by E. E. Levi [19]
and A. Lax [17] in the case of two independent variables for the
purpose to characterize such weakly hyperbolic linear partial
differential operators P(x, 3) that the Cauchy problem of the
equation P(x, d)u = 0 1is correctly posed in the category of
infinitely differentiable functions. Their result has been general-
ized to the case of n independent variables by S. Mizohata -Y. Ohya
[23] under the restriction that the multiplicity of characteristics
is at most double and then by J. Chazarain [1] without the restric-
tion as far as the sufficiency‘part is concerned.

In order to apply to the construction of formal solutions (0.1)
we need a decomposition of the operator P(x, 9) into a polynomial
of differential operators due to J. -C. De Paris [2]. The defini-
tion of irregularity relies also on the decomposition. The decom-
position is global in the cotangential variables g . When a
characteristic element (x, Eoo), a characteristic surface S or
a characteristic function ? is given, it is desirable, however,
to formulate the decomposition microlocally in the sense of |
M. Sato -T. Kawai -M. Kashiwara [25]. J. Vaillant [26] makes an
attempt by use of the algebraic localization. We prove with the
aid of a version of Ritt's lemma (cf. Hervé [9]) that a microlocal
decomposition implies a global one as far as the characteristic
element is a non-singular point on the chafacteristic variety.

In the irregular case we estimate the coefficients uj(x) by

Y. Hamada's ingenious method in [8].

Null-solutions are solutions with minimal supports. In the
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last section we construct solutions with minimal singularity
spectra generalizing results by M. Zerner [28], L. Hormander [12]

and T. Kawai [13]. 1In particular, we obtain a necessary condition

for analytic hypoellipticity.

The author wishes to thank Prof. Y. Hamada and Dr. K. Ueno

for valuable discussions.

1. Irregularity of non-singular characteristic elements. Let

- «
(1.1) P(x, 9) = >, a,(x)2d
l«jSm
be a linear partial differential operator of order m with coef-

ficients a«(x)_ real analytic on an open set §L 1in Rn. The

ay(x) may be complex valued. We employ the notion
N :
1

1 - ¢

1.
(r.2) %= 5t 3 = (afaxp) e (dlax )"

to avoid confusion with Hormander's
« &
D% = (-i ¥/3x) Tee (<1 W) .
Since the coefficients a (x) are continued analytically to
~a complex neighborhood V of §) in Cn, P(x, d) 1is also con-

sidered to be a linear partial differential operator with holomorphic

coefficients in V.

The principal part of P(x, 3) 1is denoted by p(x, 9):

(1.3) p(x, 3) = 5 a x)d

et =m

We always assume that P(x, 9) 1is non-degenerate or that p(x, §)

# 0 for any fixed x € V.
A point (xo, §0° in S*Q, = (T*f\ J’l)/m_,_ or in
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P*V = (T*V\V)/C' is said to be a characteristic element of

P(x, 9) if
p(xy, £y) =0 .

( §0°° denotes the class of E(r) It is said to be non-singular

if it is on the non-singular part of the characteristic variety

N = {(x, Ee) € P*V; p(x, }) = 0}.

Then the multiplicity d 1is defined as usual; under a suitable

coordinate system there are holomorphic functions f(x, g) and
1) 2 .
A(x, g ) on a neighborhood of (xo, go) so that p(x, E) is

decomposed as
(1.4) PG, B) = P x, §)(§; - Ax, ¥

with f(XO’ ;0) # 0 and ‘go,l-A(xo, EJ) = 0. Here ¥'
denotes ( §2, cees gn). Since p(x, }) is ﬁomogeneous in g ,
so are the factors ‘f and 'gl_- A (x, g').

In order to show that decomposition (1.4) is realized by
polynomials in g , we make a few preparations.

We denote by & the ring of germs of holomorphic functions
‘on a neighborhood of X and by C}[‘E] the ring of polynomials
in g = (3 EREEE ;n) with coefficients in (& . Since ¢ 1is
a unique factorization domain, so is ([ § 1.

Let K(x, §) be an irreducible polynomial in O{AE] which
is non-degenerate in the sense that the principal part k(x, E)
does not vanish at Xge
generality that the coefficient of § f is one. 1If (xO, ;O) is

We may assume, then, without loss of

a non-singular zero of K(x, ;), K(x, ;) is decomposed as
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(1.5) K(x, ) = m(x,5)(%,; - Alx, §"))

with holomorphic functions M and A defined on a neighbor-

|}
hood of (xo, §0) such that /u(xo, go) # 0 and ‘5'0,1 -)\(xo,'fo)
= 0. In this case the multiplicity is always one. For, otherwise,
the discriminant of K with respect to EI would be identically

zero so that K(x, §) would be divided by a polynomial of lower

order.

Lemma 1.1. Let K(x, § ) be a non-degenerate irreducible

polynomial in (3[¥ ] with the decomposition (1.5). If a non-

degenerate polynomial A(x, §) in (@[ §] 1is divisible by

;1- A(x, g') as a holomorphic function in a neighborhood of

(xo, EO)’ then it is divisible by K(x, ;) in o[ ¥1.

Proof. Clearly the function

F(x, ¥) = A(x, ¥ )/K(x, %)

is defined and holomorphic outside the variety N(K) = {(x, gj)e Czn;
K(x, g) =0 }. By the‘assumption, F(x, §) is holomorphic on a
neighborhood of (xo, EO) which lies on the non-singular part of
N(K). The analytic continuations of the numerator and the donominator
prove that F(x, g) is holomorphic on the connected component of
(xo, 20) in the non-singular part.

On the other hand, since K(x, §) is irreducible, it follows
that the non-singular part of N(K) 1is connected when x 1is
restficted to a suitable neighborhood V of X (cf. Hervé [9]).
Hence F(x, g) is holomorphic on vx ¢ outside an exceptional

set of codihension 2 and hence on Vx¢" by Hartogs' continuation
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theorem. Then it is easy to see that F(x, §) el E].

Proposition 1.2. If (x4, gou@ is a non-singular characteristic

element of multiplicity d of P(x, 9), then there are a homogeneous

polynomial Q(x, ;) and an irreducible homogeneous polynomial

K(x, ;)‘_12 Gl g] such that
v d
1.6y p(x, §) = QUx, § JK(x, )
with Q(xo, EO) # 0.
Proof. Let
T Vj
P(X, §) = TT' Q.(X, ;)

.=1 J

J
be the irreducible decomposition in 0-[;]. Since p(x, ;) is
non-degenerate and homogeneous, so are the irreducible factors
. - ' 2
Qj(x, g). The factor ( ;1_ A (x, ; )) in (1.4) dlvides the
right hand side and hence a factor K(x,';) = Qj(x,jg) as a holo-
morphic function in a neighborhood of (xo, ;0). Applying Lemma
1.1, we find that K(x, §)° divides p(x, §) in O[¥]. Let
Q(x, g) be the quotient.

We call K(x, ;) the irreducible factor associated with the

characteristic element (xo, ;Ooo).

Remark. Our method applies also to the proof of equivalence
of two definitions of hyperbolic operators of constant multiplicity,
which was originally proved by S. Matsuura [21] by making full use

of the hyperbolicity.

Theorem 1.3 (Cf. De Paris [3] [4]). Let (xo, ;Oeo) be a non-

singular characteristic element of multiplicity d of P(x, 9)
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and let K(x, ¥) be the associated factor of (x . Then
and let § pP(x, Then

there are non-negative integers or +00 do, dl’ ...,dm =d and

linear homogeneous differential operators Qi(x, ?2) with holomor-

phic coefficients on a neighborhood U of X0 such that

m -d,
(1.7) P(x, 3) = Z‘D, Q; (x, 3)K(x, 3) 1
1=

and that
Qj(x,3) =0 if d; =+0,
and
_ d.
ord(Qi(x, )K(x, 3) 1) = 1
and

Q;(x, ) #0

on a neighborhood of (xo, §0) in the zeros N(K) of K(x, f) if

d. < .
1

Proof. Using Q(x, g) in (1.6), we define Qm(x, 2) = Q(x,9).

Then

R(x, 3) = P(x, 3) -Q,(x, 3)K(x, 2)*
is an operator of order € m-1. If the homogeneous part
Rw-l(x, o) of order m-1 1is zero, we define dm-l = 60 and
Qm-l(x, d) = 0. Otherwise, let dm-l be the largest integer sqch
that ( gl.- A(x, ?s"))dm.1 divides Rm-l(x’ ;) as a holomorphic
function on a neighborhood of (XO? go). Then it follows from

Lemma 1.1 that there is a homogeneous polynomial Qm-l(x’ ;) € 0~[§ ]

such that

d
R SN DICH Dl
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If Qm-l(x’ 2) vanishes on a neighborhood of (xO, §0) in the
zeros of K(x, E), we can raise the exponent dm-l by 1 contrarily
to the definition of dm-l' Hence it does not vanish identically.

We can repeat the same procedure m times to obtain di and

Q{x, 2).

Definition 1.4. We define the irrggulérity 6~ of the

characteristic element (xo, §0u0 (or the associated factor K(x, }))

of P(x, d) by
(1.8) & = wmax {1, (d-d,)/(m-1); 0Si<m |

that is, the maximal slope of the Newton polygon associated with

the graph {(j, di); i=0,1,...,m } (cf. the definition of the
irregularity of singular points of an ordinary differential operator
in [15]).

di and Qi(x, d) 1in the decomposition (1.7) depend on the
coordinate system but it is easy to show that the irregularity ¢
does not.

When ¢ =1, we say that the characteristic element (xo,bfooﬂ

(or the associated factor K(x, g)) is regular or that P(x, d)

satisfies Levi's condition at (xo, ﬁjuﬂ. (Cf. E. E. Lévi [19],
A. Lax [17], S. Mizohata -Y. Ohya [23], J. Vaillant [26],
J. -C. De Paris (3], [4] and J. Chazarain [1].)

When ¢ > 1, we say that (xo, ;opo) (or K(x, ;)) is

irregulax.

We consider only non-singular real analytic characteristic

surfaces S in JL. Namely S is defined by ?(x) = 0 with

-9 -
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a real valued real analytic function $(x) defined on a neighbor-
hood of S such that grad ?(x) #0 on S, and (x, grad ?(x)qo),
X €S, are non-singular characteristic elements of P(x, a), It is
easy to see that the multiplicity d and the irregularity ¢ of
(x, grad ?(x)é are constants on each connected component of S.

We call them the mqltiplicity and the irregularity of the component.

The surface S = {x € ; ?(x) = 0} is characteristic if
.(1.9) p(x, grad ?(x)) = 0 whenever ?(x) =0 .

If we can choose more strongly a real valued real analytic

function ? with S = {?(x) = 0} such that

(1.10) p(x, grad (r(x)) =0,

then we say that S 1is a totally real characteristic surface.

This means that S 1is imbedded in the one-parameter family St =
{x; ?(x) = t‘} of characteristic surfaces.
A function ? satisfying (1.10) will be called a charac-

teristic function of P(x, 2).

We admit that the coefficients aq(x) are complex valued.
Therefore, a real characteristic surface S 1is not necessarily

totally real. We have, however, the following.

Proposition 1.5. For each non-singular point X0 in a real

characteristic surface S we can find a holomorphic charateristic

function ? defined on a complex neighborhood V of X such

that S is the zeros of ? in V and that grad p never

vanishes on S. Moreover, for each 0 >0 we can find V and

? such that either |arg, <)0(x)\<9 _(_):_ larg ¢ (x) - 7l<06 _whenever

- 10 -
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x is . .- . .. :. in the real neighborhood V(\.Q of x

0"
Proof. For the sake of simplicity we assume that Xg = 0.
Suppose that S 1is defined by '%(x) = 0 with a real valued real
analytic function HP on a neighborhood of S such that
grad y4x) #0 on S.
Since (0, grad #(0)«9 is é non-singular characteristic element
of P(x, d), we have the decomposition (1.4) of p(x, §) such
that (x, grad Y(x)) are zeros of the factor El - AGx, Y.
Clearly a solution ‘f(x) of the first order non-linear differen-

tial equation
(1.11) 2p00) _; (x, 22&)y - g
axl ?x

is 'a characteristic function. We solve this under the initial
condition
(1.12) (0, x') = (0, x").

As is well known ﬁhe solution is oBtained by integrating

Hamilton's canonical equations
dx dx

1 J IN(x, p")
( 'E—=1s dc - s J=2,...,n3
dt t ij
P '
(1.13) < \dtJ = a)‘(;‘;{‘?) , 3=1,2,...,0;
J
. (ai-t?,=p1-A(x’ P') ’

under the initial conditions

xl(O) 0; xj(O) = yj s, 3 =2,3,...,n;
p,(0) = A(0,y'; p'(0));

(1.14) '
Pj(o) 'a;—xt.(oay')’ ji=2,3,...,n;

%(0) )P(o,y')

- 11 -
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and then eliminating t and y'. It is known that Py - A, p")
29X,
i

j=2,...,n, are constants on each

| trajectory of (1.13). Since the initial values are chosen so that
they vanishes on the initial surface t = 0, it follows that pj =
'8?/3x and that ? is a solution of (1.11) and (1.12). Then
So(x) is constant along each trajectory. Hence the zeros of ?(x)
are exactly the union of all trajectoriés of (1.13) passing through
elements (0, y', grad y/(O, y')) with \}J(O, y') = 0.

On the other hand, suppose for the sake of simplicity that
3\{'(0)/9x1 # 0 . Then the equation \l{(x) =0 of S can be
solved with respect to Xys SO that we have x; = Xx'). It is

easy to see that X satisfies the equation

(1.15) 1+ k(x‘, x', Ix/9x') =0.
Since the "momenta" qj associated with this equation may
be written -pj/pl, it is easily shown that every trajectory of

(1.13) passing through an element on S satisfies the canonical
equations of (1.15):

a5 (x,x',q")

ji=2,3,...,n;

dt ' ’
13
’ dq. ak( > ') ') 9 ’ ', !
(1.16) dtJ = aXXJ!X q +a, )\(X;xx1 q') 522, ... n
dX = < AN, x',q") Vo
=-2.4, =-A(X,x',q").
e S B X
with x=x1.

Since S 1is covered by those trajectories, we find that both

- 12 -



116

of the holomorphic functions 50 and '\,L have S as simple zeros.
Hence '/L(X) = @(x)/ %(x) is a holomorphic function on a neigh-
borhood 6f S. By (1.12) we have l/L(O, x') = 1. Consequently,
for each 6 > 0 we can find a complex neighborhood V of 0 on
which ? is defined and such fhat
larg ¢(x)| = |arg w(x)| < 8

on VA S..

Remark. If A(x, p') 1is a real valued function, the charac-
teristic function ? constructed above is also real valued. Hence

it follows that S 1is a totally real characteristic surface.

A solution (x(t), p(t)) of the first two sets of equations

in (1.13) such that p, - A(x,p') = 0 1is said to be a bicharacteristic
\ 1 _

strip of (the factor E]_- A(x, g') of) the operator P(x, 2).

- 13 -
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2. Construction of formal solutions. Let A(x, 2) be a
linear partial differential operator of order m and let P be
a smooth function of n variables. Then, we can find by Leibniz'
formula linear partial differential operators A;(x, ), j=20,1,

.,m, of order € j such that for any smooth functions u and

» of n variables and one variable, respectively, we have

(2.1) A(x, 9) (u(x) 3( ?(X)))
| o (m-3)
;; A%(x e - 3" Cpen .

A simple calculation shows that

(2.2) A(j),(x, 3) = a(x, grad ¢(x))

1 <. a(x, grad %) 9
2.3 A , =
(2.3) (f(x 2) k2:1 o, Xy

2
- 3 a(x,grad @) _97¢
+ (A" (x,grad g) + 3 Z 1,

where a(x, ) is the principal part and’ Auhl(x, 2J) 1is the

homogeneous part of order m-1 of A(x, J).

Proposition 2.1 (De Paris [3]). Let B(x,2) and C(x, d)

be linear partial differential operators of orders m and n

respectively. Then for the product

A(x, 9) = B(x, 9) C(x, 9)
we have

(2.4) adx, 9) = Z (x 3 el 3).
? £= ?

Proof. We have

- 14 -
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B(x, 2)C(x, 2) (u 8(¢))

n
B(x, )¢ 5 ¢fx, ) u- I(“'”qa))
2=0 ?
2k L — (mn-k-4)
- B5x, 3) 5 ctx, 3)uw) @ ().
f:o ¢ 4?>'='(') if ¥

Theorem 2.2. 1If ? is a regular characteristic function

of multiplicity d of a linear partial differential operator

P(x, 3), we have

0 1 d-1
(2.5) Po(x,8) =P _(x,9) = -+ =P _ (%, 9)
* ¥ f

(]

0

and P;(x, o) 1is an ordinary differential operator of order d

along the bicharacteristics on the characteristic surfaces 9:(x) =

const.

Proof. Let K(x, §) be the irreducible factor of p(x, §)

associated with (xo, grad ?(xo)ﬁé. 1t is decomposed as (1.5).

Hence we have by (2.2) and (2.3)

(2.6) Kjf,)(x, 2) =0
1 P nooA 2 )
2. = -
(2.7) K‘f (x, 9) b(X)<9x1 k§=5 3%, (x,gradj’(X))—-axk)+C(X),

where b(x) and c(x) are holomorphic functions and b(x) never
vanishes on a neighborhood of X4 In view of (1.13) we find that
the differential operator in the parenthesis is exactly differen-

tiation d/dt with respect to the parameter t along the bicharac-

teristics.

Let (1.7) be a decomposition of P(x, @). We have by

Proposition 2.1

- 15 -
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] m d . k-
plix, 9) = S0 (@ (x, )Kx, ) O3 "
(f =m-j ?
(2.8)
m R M /Md
=>. 2. Qlf (x, 3K (x,3) ---K?k(x,a).
K=m-j fHpuf=i+k-n 7 Tt
Since dk 2d-m+k and 'K;(x, @) = 0, we have (2.5) and
: d
P;<x, » = S x grad o) Kglx, ) <.
dk=d-m+k

By (2.7) this is an ordinary differential operator along the bi-
characteristics. Since Qm(xo,grad ?(XO)) # 0, the order is
equal to d.

Remark. Suppose that the irregularity ¢ of the irreducible

factor K(x, §) is greater than 1. If we choose the least k

with (d'-dk)/(m«-k) = ¢ and let e = m-k4-dk, then we have
e <d and
e 1 dk
P?(x, ) = Qk(x,grad ?(x))K?(x, 9)  + lower order term.

Here Qk(x, E) # 0 1in the zeros of K(x, f). Hence if we choose
a suitable characteristic function ? we obtain a converse of
Theorem 2.2. We note, however, that for a fixed 7* /(2.5) does
not imply the regularity. For example, ((0,0,0); (0,1,1)) 1is an
irregular characteristic element of multiplicity 2 of
(912+ 322—332).24- 313 but we have P; ;P}f-e.o for Lf(x) =
x24-x3.

Now let §j(s), j € Z, be a sequence of (ggneralized)

functions of one variable satisfying

d éj(S)

(2-9) ——E;——-'= §j_1(s) .

- 16 -
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We want to find a solution U(x) of
(2.10) P(x, 3)U(x) =0

of the form

Do
(2.11) Ux) = Z u, (x) _§.(<‘>(x)).
te—eo J J
J [

First we consider the case where ¢ is a regular charac-
teristic function of multiplicity d. 1In this case P. D. Lax [18],
D. Ludwig [20], S. Mizohata [22] and C. De Paris [3], [4] constructed
a formal solution (2.11) in the following way. Applying (2.1)
formally, we have by Theorem 2.2

=, d 4
P(x, 2) jZ=.6uj(X) §j(<f(X)) = P? (x, ) ug(x) B __ 1 4(P ()

+ [‘P?c,l(x, e (x) + Pdgl(x 73 E gy (P D)
+ o
d d+1

AT SCPENORS PRI CREPENICY
+ -~-+P5‘.f‘<x, %5 gl B 5 ra( )
+ ..
Hence U(x) 1is a formal solution of (2.1) if uj(x) satisfy the

following equations:

Pg G, 3) ug(x) = 0,

d _d+l
(2.12) P?(x, D)ul(x) = I’? (x, Q)uo(x) R
P(;}(x, 2)u () = -Pd;?(x; ) uy g (x) -
- p;(x, s g GO

- 17 -
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Since P;(x, 2) 1is an ordinary differential operator of order d
with non-degenerate principal part, these equations have certainly
holomorphic solutions uj(x) in-a certain neighborhood V of X
independent of j. We may also impose d initial conditions. We
adopt the following initial conditions

uO(O, x') =1,

(2.13) leuo(o, x') =0, k=1, ...,d-1,

(]
o
(&
[l
Pt
N
~
L]
o
[
Q.
'
[

k '
31 uj(O, x")
We have therefore the following theorem.

Theorem 2.3. If ¢ is a regular characteristic function of

——

of P(x, d) on a neighborhood of Xg» then there is a formal
solution

=
(2.14) Ux) = 2 u.(x)$ .(Sv(x))

j=0 J J

2£ (2.10) with holomorphic coefficients wu,(x) on a neighborhood

3

of X which are independent of the sequence of functions '§j(s)

satisfying (2.9).

We note that the same method applies to the equation
(2.15) P(x, 3)U(x) = V(x) ,
where V(x) has the formal expansion
oQ
(2.16) Ve = 20 vi() B(g)
j=-m+d J
In the case where ? is an irregular characteristic function

we employ Hamada's method in [8]. Namely we write

(2-17) P(X, 3) = P(x, 3) “R(X, 3) .

- 18 -
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Since ? is a regular characteristic function of p(x, 3),
there is a formal solution Uo(x), of
(2.18) p(x, )0 =0

of the form

0 2 0 §
(2.19) U'(x) = jgﬁ uj(x) j(yix)).
Let e = max{k-—dk-rn4-d} . Then we can solve the equations
(2.20) p(x, 2)U5(x) = R(x, )0 x)
recursively in the form
(2.21) e = 3 WEWE ()
j=—ck 3

We will impose the following initial conditions on u?(x):
ug(0, x') = 1 ;

(2.22) fuoo(o,x') =0, £=1,2,...,d-1;

31K 0,x) =0, (1, 3) 40,0, L=0,1,...,d1.

As we will prove in the next section, the coefficients of the formal

sum

®x
Ux) = 57 U (x)

converge and this gives a formal solution of (2.10). We remark
again that the coefficients \J}(x) do not depend on the sequence

of functions a%(s).
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3. /ngimates of the coefficients of formgl_gglg&igﬂi. To
estimate the coefficients uj(x) in (2.14) and u?(x) in (2.21),
we employ the majorants of C. Wagschal [27] and Y. Hamada [8].

Our estimates are no more than a slight improvement of Hamada's.
However, since‘the.details of [8] have not been published yet, we
give all the proofs for the sake of the reader's convenience.

We always assume that 0 < r <R'< R. When a(x) and b(x)
are formal power series, a(x) « b(x) means that each Taylor

coefficient of b(x) bounds the absolute value of the correspond-
ing coefficient of a(x).

Proposition 3.1 (Wagschal, Hamada [8]). Let C)(t) be

a formal power series in one variable t such that ()(t)‘2> 0 and

(3.1) R'-t)@ () » 0 .

Then for the derivatives C)(j)(t) =‘(d/dt)j()(t), j=0,1,2, ...,

we have
(3.2) 6w « @9V ,
(3.3) e VO < @V o .

ggggg. Differentiating (3.1), we have
0K A(t) K R'"-t)B'(t) K R'@'(v)
This shows that (3.2) holds for j = 0 and that éa'(t) satisfies
the same assumptions as C)(t). Hence we have (3.2) for any j.

(3.3) for j =0 follows from

_1 1 _R' -6 @)
R‘R'@(t)-R-t @(t) = (R‘R')(R"t) >> 0.
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From now on we put

(3.4) t = }>x1+'x2+;---|~xln

with a constant f 21 to be determined later and assume that

@(t) satisfies conditions of Proposition 3.1.

Proposition 3.2 (Wagschal [27]). Let

(3.5) B(x, ) = 2_ b_(x)
o, £m
1™
%1€ m

be a linear partial differential operator with coefficients by (x)

holomorphic on a neighborhood of the polydisk {x € Cn; D %41 < R}.

Then there is a constant B independent of @(t) and P21 such

(3.6) w) « P
then
(3.7) BGx, 3)utx) < B yml &™)

Proof. Let o<=(c(1,o(') with « éml and |x]|sS m. We

1
have by (3.4) and (3.2)

. P .
3%ut « 3@Ww - p @Y (o

m .
& p tenm Mg
Since there is a constant M such that. bo((x) <« MR - t)-l,

we obtain by (3.3)
m

b0 3%t « p LRHT @R TPI™ (o).

Thus it is sufficient to take

- 21 =
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(3.8) B = Z(R')m"""(k R M.
%1=M
fX|Sm

Proposition 3.3 (De Paris [4]). Let

(3.9) C(x,d) = >, co(x)d™
aI<d '

\x|sd

be a linear partial differential operator with coefficients c“(x)

holomorphic on a neighborhood of the polydisk (xedln; |xi| < R}.'

Then there are constants f 21 and B1 independent of @(t)

such that if

(3.10) v(x) & @(j+d)(t) ,

then the solution u(x) of the initial value problem

afuw, xy=0, 4£=0,1,...,4d-1,

ald u(x) = C(x, 3)u(x) + v(x) ,
(3.11) {
~satisfies

(3.12) ux) « 3, @9 (0) .

Proof. We choose a constant M so that ca‘(x) & M(R-t) -1.

Then it suffices to find constants )O and B1 such that

5@, @Y ()
(3.13) |
»> MR - £) T > g"‘(B1 @(j)(c)) + @(j+d) (t) .
%< d
lx)sd

For, we can then prove that
¢ 2 (i
1 j)
3, u(0, x') By @ (©)
inductively by the initial conditions and the equations obtained
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from (3.11) by differentiation.

It follows from Propositions 3.1 and 3.2 that there is a
constant M1 21 such that the right hand side of (3.13) is
ma jorized by (M1B1j>d-1+-1)()(j+d)(t). Hence if we choose f
and B1 so that $>> M1 and Bl,; f-d+1(fa-M1)-1, we obtain‘
(3.13).

The following power series were introduced by C. Wagschal [27]

for k2 0 and by Y. Hamada [8] for k< O:

&, « k% Gl ] ,
(3.14) 6 7 (t) = Y N S HE T i k20;
t
(3.15) 6™ () = T | 0™ o (@ as

_ e GHgl

2. =T . ,
j=k j. pItktl

k< 0.
The notation is compatible with the fact that

4
(3.16) £ 6 ) - 6D o)
dt v

If k20, B(k)(t) satisfies the conditions of Proposition

3.1 and therefore may be used as Cj(t) in Propositions 3.2 and

3.3. Actually Wagschal and De Paris provedtthe propositions

in that form. In the case where k < 0 we have the following

important inequality.

Proposition 3.4 (Hamada [8]). If R>2r and k< 0, then

we have
-k
(3.17). - 6 (1) « A 6 (¢y.

Proof. To make the computation easy we write -k instead of

- 23 -



Writing £ = k+h, we have for 0€ i Sh

s+

(f-x-i)! 4! Kk
TESEROE = A+ A+ -
S (1+ )(1+———)
_ (lfk>gzi+k.
1
Hence
R (k) RS _2_r)i (L-K)!
=070 « £Z=f<i.2=_6(R E
X2 A (k)
T R-2r 6 (t)

Since ﬁ(k)(t) itself does not fulfill the conditions of

Proposition 3.1, we employ
k
(3.18) O (®) = =i 6()(1:)

instead according to Hamada.

We note the following facts :

Proposition 3.5. (a) If k < [,

(3.19) AP « @™ ;

(b) 1If k 20,

(3.20) o0 « O « T

- 24 -
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(¢) If k< 0 and R'D> 2r,

(3'21) 6(J+k) (t) K @(J)(t) << 2 k-Rzr 6(J+k) (t)

Now let P(x, 9) = p(x,9) -R(x,9), so(x) and §§j(s)‘ be
as in §2. We choose R > 0 so small that the coefficients of
P(x, 9) and p?(x '2) and the inverse of the coefficient of 9d
in p?(x, 92) are holomorphic on a nelghborhood‘of the polydisk
{x € cn; ¢xirg R}. Except for the first stage the coefficients
of the formal solution of (2.10) are obtained by solving the
equation

to fad
(3.22) P(x, 3) 2 uy(x) 2;(p0) = _2_J vy ) E,(9G)
j=c j=d-mt

under the initial conditions

(3.23) afuj(o,x') -0, 0f£A<d.

Proposition 3.6. There are positive constants f> 21, C0

and C1 independent of C)(t) such that if

(3.24) v « QU )5 2 deme,

with a constant C 2 CO, then the solutions uj(x) .gf_(3.22) and
(3.23) satisfy
j-em(j-9 .
(3.25) uj(x) K ¢,C ® (), j2c.
Proof. Without  loss of generality we may assume that
¢ = 0. As we have seen in é 2, uj(x) are solutions of the

equations
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[oN

P? (x, 3) ug(x) Vo)

- pdg’l(x, 3) ug () +vy g ()

[a 1)

p?(x, o) ul(X)

S SCEPENRIOREE

d
P? (x, 2) uy (x)
m L '
R 3) gy (4 Vg ()
under the initial conditions (3.23).

It follows from Proposition 3.3 that there are constants f 21

independent of éD(t) such that

0,0 < B, @D ) .

and B1

Hence (3.25) holds for j =0 if C, 2 B,.

Suppose that (3.25) holds for uo(x), ..;,uj_l(x). Then we
have by Proposition 3.2

“p (e D) uy ) - TP 3) Uy g () 49y OO

< deﬂclcj ’1@(j+d2t)+~ "+ Bfmclcd'“*j@(jﬁ)(tﬂ cj@(j+d)(t)

Consequently we have

e el oLl 3y AG)
u; () & Bi(Bf cla-cHT+ch@ Y@ .

1 1
for uj(x). This completes the proof.

Let C, = 2B, and C0 = max{ZBf“kﬁ,'Z}. Then (3.25) holds

We write the decomposition (1.7) of P(x,9) as

(3.26) P(x,9) = p(x,2) -R" T(x,3) - -2, ),
where

i ’di
(3.27) R7(x, @) =-Qi(x,2)K(x,3)

is of order i or identically zero. To make the computation

i"'d

d _
easy, we multiply Qi(x, 2) by K(x, )) if necessary and
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assume that di £d for all 1i.
) . . 0 2 0,.,=
First we consider the solution U (x) = 2>, uj (x) ij(jn(x))
‘ =0 ‘
of (2.18). It follows from the Cauchy - Kowalevsky theorem that
if r 1is sufficiently small, there is a holomorphic solution

ug(x) satisfying 0
g

where we choose R' so that 2r <(R'<{ R. Then we can prove in the

« A@O(O) () ,

same was as above that ] )
(3.28) u?(x) & ac3@ vy .

Next we consider the solution Ul(x) of

(3.29) p(x, 9)U (%) = R(x, 3)0%x).

The right hand side may be written

0 -l 0
Reo 2000 = 3w, 23070
1=

=
=

o0
- < By 1
z j=2-'i’+divi’3‘(")§i(7(x” ,

-

where

1 i, 0 i,dg 0
Vi,j —R? (x,g)uj(x)+...+R? (x,Q)uj_'_i_di(x).

We have by Proposition 3.2
1 i (it+i) j+i-di (i+j)
vy, ;&) < BAC By “fer - +BAC @y )

j+i-dj it+j . ..
« Bact gDy 5 2 cpea

with a constant B'. Hence it follows from Proposition 3.6 that the

solutions ui .(x) of

) 1 2 1

(x, 3) . - L 0P

p(x, 3 _E:Ldiumm 2(g ) .=%_i_,+divl’_](x)£j($a(x))
+m-d
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under the initial conditions

al'zuij(o,x')=0 for all j and 0S/0<d

are estimated as

j¥i-d; -mkd  (j+i-d; -mHd)

1 L
(30) ui’j(x) « C;B AC di_d (t)
 j*i-dj-mhd _ (j+i-dy -m+d)
= AC,C 4 -d (t)

i
Her: we employed Proposition 3.5 (a).
For a sequence I = (il, ...,ik) with 0 € il < m-1 we

define u;(j(x) as the coefficients of the solution of
- k —_
p(x, ) Tup’ ;00 Z ()
N
=R “(x, 3) Dufr 6 E (5 6)

with the zero initial conditions, where 1I' = (il’ ""ik-l)' Then

we can prove by induction that

k k j'HI"ldI"k(m'd) (j+'I|-ldIl-k(m'd)) (t
u (x) & AC, C @dll-kd )

’

where |I| = i+ +i and |d;| =d; +---+d; . Thus it
1 k
follows from Proposition 3.5 (c) that

 JHIHd gl -k (m-d)

(j*+)1}-km)
(3.31) ‘ulkj(x) &Kacc 6 I (v)

for a constant C3.

Theorem 3.7. Let (F(x) be a non-singular characteristic

function of a linear partial differential operator P(x, d) and

let d and ¢ be the multiplicity and the irregularity of i,(x).
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For each x,. we can find a sequence of holomorphic functions uj(x)

0
defined on a common neighborhood V "of X, such that
(3.32) luj(x)l < qJ+1 it for jZo,

R A P e VT I MAS R A
(3.33) )uj(x)|{

=0, =1, for j <_O,‘

on V with a constant C > 0 and that
[02]

(3.34) U®) = X uj(x>§j(<f(x))

.=—m

is a formal solution of P(x, B )U(x) = 0 for any sequence of func-

tions §§j(s) satisfying (2,9). Under a suitable coordinate system
uj(x) are so chosen that they satisfy the initial conditions:

uo(xo‘l, x') =1,
{ aﬁuj(XO 1° X')=0, (‘Q, j)*(O, 0)90§£<d,

(3.35)

as functions of x',

Proof. First we note that

(3.36) d - d, S c(m-4i), i=0,1, ..., m-1.

We use the notation [a] to denote the greatest integer less than

or equal to a.

We have to prove that
k
(3.37) uj ) = Zup ()

converge and satisfy (3.32) or (3.33), Here the summation ranges

of 0£i € m-1.

over all sequences I = (11, ...,ik) ¢

We consider all terms with a fixed |I|-km = -p. From the
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proof of (3.31) it follows that uggj(x) vanishes unless
j+|1] -ldI] -k(m-d) 2 0. Therefore the terms with a fixed p

contribute to the sum (3.37) only if

: k
j2p+|d|-kd = p+12:1 (dil-d)

k
zp+r?=_jl,(i£ -m) = (1-6)p .

In particular, we have uj(x) =0 for j< 0 if &6 =1. Since
j 1is an integer, we have actually the inequality
j2-[(6-1)p]

and for such a term u;(j(x) we have the majorant
bl

qu,j (x) < A C;{ Cj+{ (e~1)p] a(J -p) (t)

If we consider all sequences I = (il, cees ik) of -s < iz

< m-1, then

— P /p-1 k
2 k=‘“‘( )C < (C,+1)P .
km-}Il=—’pC3 %';i k-1/ 3 3

Consequently we obtain

oo . '3
(3.38) us () &K A _Z‘_, (C; +1)P CJ+[(D"-1)P]B(J'P)(t)’
p=p (j)
where
0 if 20 or =1,
p(3) ={
-{3/(e-1)] if j< 0 and 6> 1.

If 0£t< r/2, we have the inequalities
(3.39) 8 )y ¢ @/, k2o,

(3.40) 8¢y € 2r ek sk, k0.
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Let V be a neighborhood of Xg = 0 on which ﬁ]x1|+[x2|+

. +{xn|< r/2. If j 2 0, then we have for x € V

] .
RO c%z»:0 c,P /)P - py:
=

o0
+ >, c,? 2: 1P I - N
p=j+1

3 Cht
. 1
Alc5 (g +1)! + e ).

nn

Since j ¢ ZJ, (3.32) holds on V for C sufficiently large.

If o> 1 and j< 0, then we have for x € V

lu, Gy ¢acd > e PP - gy
J _ .
p=p (j)

SA

. .\ C vl
. c C6p(J)eét P73, 06) - )

where p(j) = - [3/(e-1)]. Hence we obtain by Stirling's

formula (3.33) for C sufficiently large.
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4, Ultradifferentiable functions and ultradistributions.
AN PN N N D T

Let Mp’ p=20,1,2,,be a sequence of positive numbers and let
SL be an open set in R". An infinitely differentiable function

f(x) on J{L is said to be én ultradifferentiable function of’

class {Mp} (resp. of class (Mp)) if for each compact set K 1in
§L there are positive constants C and h (resp. if for each

- compact set K in fL and h >0 there is a constant C) such

that
(4.1) sup |5 fG) ) < cun™m , w|=0,1,2, ...
xeK J)
{M_} M)

é P9 (resp. £ P (L)) denotes the space of all ultradif-
ferentiable functions of class {Mp} (resp. class (Mp)) on JL .

We assume that the sequence Mp satisfies the following

conditions:
(M.0) MO =1;
(M.1) (logarithmic convexity)
Mng Mp-lMp+1’ p=1,2,...;

(M.2)' (stability under differentiation) There are constants
A and H such that

(402) Mp+l g AHpMp p = O) 1’ 2’ * o 00 ;

3

M.3)' (noen-quasi-analyticity)

b6 .
4.3 ST M M < w»
(4.3) p;:l p_l/\p .

We write m_ =M /M By (M,1) and (M,3)' m_ is an in-
pp/p y (M,1) ()p

-1
creasing sequence of positive numbers satisfying
o0
(4.4) 2, 1/m < oo
p=1 P
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We consider also the following stronger conditions:

(M,2) There are constants A and H such that

M < AHP min MM, p=0, 1, 2,

e e

(M.3) There is a constant A such that

o M M
-1 P
(4-6) z 13[ ,_.<Ap M y P = 1, 2’ Y
g=p+l q p+l

If s > 1, the Gevrey sequence

S
= 1
Mp (p!)

satisfies conditions (M.0), (M.1),(M.2) and (M.3). In this case, we

will write {s} and (s) for {Mp} and (Mp) respectively.

Lemma 4,1 (cf, Lemma 11,4 of [14]). We set for Re z < 0.

1 (» -2 -1
@D T@ = gep [ A+ PTIT (15 ) ey
0 p=l P
Then P(z) 1is a holomorphic function which can be continued ana-

lytically to the Riemann domain {z s -TC/2 < arg z < 51(/2} .

On the domain {z ; 0 Larg z & ZR:} we have the uniform

estimates:
G 3w <ilu. p-o0. 1,2
. dzp = 4 p, b ] 3 ] LIy ()
In particular, the boundary value
(4.9) ‘//(x) = J(x+1i0) - F(x - 10)

is an ultradifferentiable function of class {Mp\ vanishing on the

negative real axis,

We have, further,

00
(4.10) Yoo 20 and [ ¢oax =1,
' ‘ 0

- 33 -



137

When Mp satisfies (M.2) and (M.3), %(x) is not an ultra-

differentiable function of class (Mp) on any neighborhood of the
origin,

Proof, Because of (4.,4) T[(L + ‘f/mp) converges absolutely
and represents an entire function in 'S . As we have shown in [14],

we can find for each € >0 and 0« 6 < 7T a constant C such that

¢! +‘§)'1Tf(l + w;/mp)'l < cef 13\ , larg 5| £ 6 .
Hence integral (4.,7) converges absolutely for Re z < 0, Rotating
the path of integration into the ray from 0 to Ooeid‘ for -1 <L
ok £, we obtain an analytic continuation to the Riemann domain
{ z; -TC/2 < arg z < 5TC/2 }. |
If Imz > O,vwe can choose the positive imaginary axis as the

path of integration, Since the integral may be differentiated under

the integral sign, we have

P

l jzp Z |

LIS

oo
—2—175[0 laHPTTA + uz/mp)'ll |1+ 191 2ag

nn

1 [® 2, -1
mlmz..-mp ﬁfo (l+OZ) d?l

Mp/4,

The proof is similar in the case where Im z <0, Since
dpiﬁ(z)//dzp is continuous, we obtain (4,8) for the closed Riemann
domain {z; 0 £ arg z & 27[}

By the continuity we have also

L [” -2 . -1 ixz
e =g | Qi TNA +ig/m) e ey
7]

Since each factor
- 34 -
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1+ 1 /m =m 500 e- pxe-ixfld
TImp =M ), x

is a positive definite function, the product (1 + iqr)-zTr(1+iq’/nb)-l
is also a positive function in ‘7 . Hence its Fourier transform
lf’(x) is non-negative and the integral j\#(x)dx coincides with
the value 1 of (1 + '172)-2]']'(]_ + i’l/mp)-l at 7% =0,
When Mp satisfies (M,2) and (M.3)
| | 2 Z -1
P(d/dz) = (1 + d/dz) ]T (1 + m_"d/dz)
1 P

p=
is an ultradifferential operator of class (MP) (see Proposition

4.6 of [14]). On the other hand, we have clearly

P(/d2) T (@) = 3%

1

N L

and hence

P(d/dx) Y (x) = $§(x).
Thus Y’(x) can not be an ultradifferentiable function of class (M ).
p

Lemma 4,2, Let s >1 and set for z with 0 <arg z < 27T

L

(7Y
4.11)  P(2) = 5o7 Jo fo d exp (-x 571y,

Then @ (z) is a holomorphic function which can be continued ana-

lytically to the Riemann domain {z # 0 ; -o0 L arg z < 0o S .

If 0<% 6 < (s-1)Tt/2, we can find constants B and h such that

we have the uniform estimates:

aP

(4,12)
dzp

§<z>\ < BhP (pN)®

on_the Riemann domain {z; -9 L arg z & 27C + 9} .

The boundary value ‘f'(x) defined by (4.9) is an ultradifferen-

tiable function of class {s} but not of class (s) and satisfies (4.10).
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Proof, First we consider the function
L
F(z) = exp ( -z s-1 )
on the domain {z € Cj; larg z| < (s - 1)7t/2-} and prove that on each
subdomain {z et ; |arg z| <'6} with 0< @8 < (s - 1)m/2

there are constants B and h such that

dP

(4.13) |== F@ | < mP e

dzp

Choose a sufficiently small positive number k so that the
disk with center at z in the subdomain and of radius kjz| is in-
cluded in the sector {z ; |arg z | £ (s - 1) 90} for a 90 < /2,
Then we have by Cauchy's integral formula

4P

SF@) | < p! k)zDF swp  JFW)|
dz |w-z|ek)z|

1

———

$p! (klzDP exp (<(QL + W) 12D cos B).

Hence the estimate (4.13) follows from the inequality

-1

sup £ P exp (-Lt S-l) = (%i}?(s-l)p p(s-l)p

O<t< 0
< &hEDP st

We have further

. 1

-p “g-1 s-1

J; t © exp (-Lt )dt = G- (D r((s‘l)(P'l?).

Consequently the function
dF(x)/dx, x >0,

yoo - {
: 0, x £0,
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satisfies

Jj &P \p<x)/dxpuL2(R) <cPepH®, p=0,1,2, ..,

for some constants C and Kk,

If y # 0, we have

P - o e 3 P
"% (x + iy) = L —( s t2 112 d” ¥ (t) dt
azP -0 (x - t)" +y aeP

and therefore we obtain v

(fwl VP x+ iy 2ax) 2 <o), =0, 1, 2, L

Nc;:: (4,12) for 0 < arg z < 2n follows from Sobolev's inequal-
ity and (M.2)', |

The integrand of (4,11) is a holomorphic function on the Riemann
domain {z ; -ta ¢ arg z < se} , Hence we can continue ¥ to the
Riemann domain by Aeforming the path of integration, Let ‘}[/+(z)
(resp. Q-(z)) be the branch on the domain éz ; - /2 ¢ arg z < ZJL}
(resp. {z ; 0 < arg z < 57(./27] ). Then we have for -m/2 € arg z <

/2

(4.14) F'(z).

In view of (4.13) we have therefore the estimates -(4,12) on the
domain {z ; -6§argz§2n:+6} for every 0 < & < (s - 1)m/2,
L .

Since exp. (-x S-]‘) increases from 0 to .1 as x varies
from 0 to & , it is clear that \f(x + 10) - § (x - i0) = \P(x)
satisfies (4.10).

L . . (s)

Lastly to prove that \‘J(X) is not in £ (-¢, &), we
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assume to the contrary that for each h > 0 there is a constant

C such that

WP sanPp! °, xe e, €).

Since 1
F(x) = exp (-x ° °)
X _ P
= j —ﬁx—p——ﬁ— y(p)(wdy, x >0,
0 .
we have

p+1
IFx) | < ¢ i;f (?551_T7T hp(p!)i)
p+l s-1
< < inf ]:_(xh)s'1 (p+1):] , 0<x <€,
p

1

—

Let p+ 1= [(xh)-s-l ] . Then we have
s-1 L s-1 _.l_
IFeo 1< =) 2 [ ] ? exp(=(s - 1) L) 571])

for sufficiently small x > 0, This is impossible, however, if

h<(s- 1%t
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{M5} M,
The vector space L () (resp. & (n)) of all ultradif-
ferentiable functions of class {Mp} (resp. of class (Mp)) and with
compact supports has a natural locally convex topology. The elements

' M)!
in the dual space JQGMP}(JI) (resp. & P (fl)) are called ultra-

distributions of class {P%h (resp. of class (Mp))' (For the theory
of ultradistributioﬁs see Roumieu [24], Bjorck [0] and Komatsu [14].)
{M} M

€ p(Sl) (resp. 8( P)(IL)) has also a natural locally
M)

convex topology and the dual EﬂMp}(JL) (resp. Ef P (fl)) 1is identified

The space

with the space of all ultradistributions of class {Mp} (resp. of class

(MP)) and with compact supports in J .

Lemma 4.3. Suppose that Mp ~satisfies (M, 0), (M, 1), (M, 2)

and (M, 3). Then

p= |4

is a holomorphic function on the punctured plane {zeim; z # 0} and

the boundary value

(4.16) p(x) = §x +i0) - ¥(x - i0)

in the sense of hyperfunction is an ultradistribution of class (Mp)

which is not of class,{Mp} .

Proof. By Proposition 4.6 of [14]

T /3
Q) = TT a + 2Lz
p=1 P
is an ultradifferential operator of class (Mp). Hence it follows

from Lemma 11.3 of [14] that ‘Y(z) ~is holomorphic on {z € €; z # 0} .
.Since |

11 -1 1
Y& = Q5T 3 T 2md xo10)

=Q(?)é (x) ,
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it is clearly an ultradistribution of class (Mp) with the support
at the origin.

If.it were an ultradistribution of clasg {Mé}, the convolution
of V(x) and the ultradifferentiable function ¢(x) constructed in
in Lemma 4.1 would be an ultradifferentiable function of class {Mp}
by Theorem 6.10 of [14]. However,

Y(x)* P(x) = Q(3) 8 (x)* P(x)

J(x)xQ(3) ¢ %)

1 eix7Z
TN Xm(1+i:z)2 47

is not differentiable at the origin.
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5. Construction of null-solutions.

We are now able to prove our main theorems. We assume that
the linear partial differential operator P(x, ?), the characteristic
surface S and the sequence Mp of positive numbers satisfy the
assumptions in the preceeding sections.
A solution u(x) of
(5.1) P(x, d)u(x) = 0

is said to be a null-solution on a neighborhood of x in S if it

0

is defined on a neighborhood of Xg» vanishes on one side of S and

never vanishes on every neighborhood of Xg*

Theorem 5.1. Suppose that the characteristic surface S 1is

regular and totally real. Then for each sequence Mp and point

X in S we_can construct an ultradifferentiable null-solution u(x)

of class {Mé} on a neighborhood of X If Mp satisfies (M, 2)

and (M, 3), then the null-solution u(x) is not an ultradifferentiable

function of class (Mp) on any neighborhood of x

0

Proof. In this ;ase we can choose the characteristic function
Y(x) as a local coordinate function. Since the classes {MP} and
(Mp) are invariant under real aﬁalytic coordinate transformations
by Théoréme 13 of Roumieu [24], we may assume without loss of gene-
rality that f(x) =X and that x, = 0.

0
Employing y(x) of Lemma 4.1, we define

S
j-1
%—j—'—%— Y(e)de ,  § >0,
(5.2) 3,6) = { )
(g5 e, iSo
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Clearly the sequence Qj(s) satisfies (2.9). Moreover, we have

the estimates

e 3 - <4
G-y s
(5.3) 1373, Cf0N|E
by
Mm-j’ (X1 £ ]
In fact, if & = ( “1,..., an) contains a non-zero component other

than un’ the left hand side vanishes. If it is of the form & =

(0,..., 0, &), then a"‘(éj( P(x))) =<§J._M(y’(x)) satisfies the
estimates because of (4.8).

We write £,(x) = éj( ¢(x)). Then

3° (ZuJ<x> . (e

j=0
(5.4) _
= 2 ((3)3(3“ % F £, ).
j=0 0%pix
(Bl+k=]

Suppose that the polydisk of radius & and with center at x 1is

included in the neighborhood V of x, of Theorem 3.7. Then it

0
follows from (3.32) and Cauchy's inequality that
+ -
(5.5) 19 ol ¢ ks ""'1/3;:

If §>0 is sufficiently small, those x form a neighborhood of X

We also note that

(5.6) > (%) < 4h
=4 F L
In case 0 < j < |x], we have by (5.3) and (5.5)
(5.7) = 0% 2P u " g |
0Lpd«
IpHk=j
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(G -k M-

(WA

Mu.
7~~~

-
1
=~

g

(@]

clai' 53 M

J k! k
-3 2 Tal- 3+ 07 €9

By (7.11) of [14] we can find for each H>0 a constant A
such that
(5.8) it £ anl Mj
(M, 0) and (M, 1) imply

<
5 Me-3 = M

Hence if §¢< C-l, the right hand side of (5.7) is bounded by

AC ol H \j
T (G5

i
Consequently
«| -
(5.9) 56 SIS 3Pu 0 3P g 0o |
J=
{. _AC H [«
= T-cs(1+5) My
In case j>|x , we write i = j - |«}.

Then we have

o( o3
(5.10) o;zpl(@) WPu 0 37T (0 |
IBHk=j

o . | i
£ Care s e - o A
=0 *

. i
Cotle s g (up L
Hence if |?(x)!<r0 ((ZC)-I, we have
©o
511 3 S 2Pu 0 35 g0 |

j=ta+1
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<cic+ §HNY (¢ ro)i o Wi
i=1

<c@ ¢+ 8 HY e

= 1 - 2Cr0

Combined with (5.8) and (5.9), this proves that if r, is
sufficiently small, then (5.4) is majorized on the domain ’QO =

Lxe.ﬂ ;x| <r, } by a sequence whose sum does not exceed Cf“r+1 MIN)

for a constant Cl' Therefore
(5.12) a@) = 2, w00 8 ¢kx))
. j=0 J

converges in the topology of E{MPR(IZO) (see [14]). Then it is
clear that u(x) is a solution of (5.1) on "QO and that u(x)
vanishes when ©(x)< 0.

Taking into account the initial conditions (3.35) of uj(x), we
see that

u(0, x') =&, (0, x")) = Yx)

It follows from Lemma 4.1 that the right hand side does not vanish
when Y(x) = x 2 0. In particular, Xy = 0 belongs to the
support of u(x).

If Mp satisfies (M, 2) and M, 3), ?(xn) is not an ultra-
differentiable function of class (Mp) on any neighborbood of 0.

Hence wu(x) 1s not either.

Theorem 5.2. Suppose that S 1is a real analytic characteristic

surface of irregularity ¢>1. Then for each 1 <s £¢/(o~- 1) and

point X, in S _we can construct a null-solution u(x) on a neigh-

borhood ﬂo of X, which is an ultradifferentiable function of

—Gevrey class_ {s} _gn__ﬂ% but not of class (s) _on any neighborhood

of x

0. - 44 -
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Proof. Let ‘((x) be the holomorphic characteristic function
onstructed in Proposition 1.5, where we choose a 6>0 smaller
han (s - 1) /2,

Then we define the sequence Qj (z) of holomorphic functions on

he Riemann domain g= {z#0;, -0¢<arg Qj(z) <21 +07% by

¥4 .
-w)dL
X S%‘Tﬂ%‘g—‘y(w)dw, ji>o
5.13) @J.(z) = 0
Y@, sso0,

here {"(z) is the function constructed in Lemma 4.2. We denote by
ﬁ;(z) (resp. Q 3(2)) the branch of éj(z) continued from the
ipper half plane (resp. the lower half plane).
If we choose a sufficiently small complex neighborhood V of
< the functions
(5.14) Fi) = @,(¢@)
ire defined and holomorphic on (a covering space of) V\S.To distinguish
:wo branches of Fj (x') we will also use the notations
(5.14)" ORI HE (N
Firstly we have to prove'that the derivatives of Fj are

>stimated as follows: For each r.> O there are constants B and L

0
such that LrO is bounded as rO——>O and that if ze€e VN S and
1$(x)}| < ry then
oWl
B L G I UL
(3 - )
(5.15) 1a% Foeo L €

ol + 13 ey 1S .
BLI m(m—s)f y 12 3.

Since we have (4.12) on the Riemann domain Z‘G’ (5.15) holds

for |kl = 0 when L is greater than h.
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To prove it for |«|> 0, we follow Roumieu's arguments in [24].
Let x and y be two points in V. If V is sufficiently

small, we can find two constants R and M independent of x and

y such that

e - L T

where
t=(x -y + o+ (x -y
Similarly we have
N N N
§,(2) - & ()< -—}s+-—2—?-32+ +—qc,l s+ ...
where
s = z - W
and
g VG-, 9 <
(5.16 N &
) q ’
Bhi @ -1, q Z;
Hence we have
Nl Mt Ng M t\q
(5.17) @j( ¢ (x)) -@j(‘(’(y))«T(R—_?H I q!(ﬁ) + oo
o0
=ZAK tp/P! ’
=0 P
where q
p N MY (p-1)! p!
Ky =20
q=1 q! R° (q-1)! (p-q)!
In case p =l«l>» j 2 0, we have therefore
j qd 1 ' .
o M* P! (p-1). 1 jq _1
F.(x)|< ; Br —
13 12 %1 RP 4+ (q-1). (p-q): 0 (G-
qe3+1 P 97 @ DT G-q)!
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3 op! (p-1)! 3
{ 2, q! (q-1)!

A y4 j  (p-q)!
-2 To Yo (G-q) ! (p-3)!

P p! (p-1)! 1
N q£§i1 q: _(Q‘l)f (p-q)

-i (p-q)!8(q-3)'"
M h)%d 2
2 M (p-3)'° }

_:\1S .
<B 52_1%;— 2P (K + 1)7P
R .

when

K 2 max { M/x, Mh, h 1},

ro,

The proofs in the other cases where p =[x|<j and j £0
are similar and easier.

Next we prove that

(5.18) S u,(x) F, (x)
£ J i
and
-1
(5.19) >, u.(x) F, (%)
, j==00 J J
converge in C}S‘( VNS ).

The proof of convergence of (5.18) is similar to that of
(5.12). In (5.7) Mw|-j has to be replaced by B L

Hence the right hand side of (5.9) becames
ol
ABCL a + LH )

]vdl“us

if § is sufficiently small.

l?(x)]i/i! in (5.10) has to be replaced by B Llr 1+i/i!

0
Consequently if |¢(x)I< ro < (2C )-1, (5.11) holds with the

right hand side replaced by

- 47 -
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BC (2 (CL Ty + § 7))

1 -2¢C ro

ject !

We now turn to the proof of the convergence of (5.19). We have

2% (2 ;) F_j ()
J=

= 2 () afu, @ w
j=1-14l 0£p< -
IB1-k=-j

It follows from Theorem 3.7 and (5.15) that if (x (< r - §,then

(5.20) OZ I(oé) apu_k(x) Qd-FF_k(x)\
lﬁlfk;j;

< Z. " )CJ+JI+1rr(j+1)

G+2)! " s LBl (s gy,

lZ> h|
where T = ¢/(6¢- 1).

T -
If 520, wehave 3! A'(3+4)! °S 1 and hence the right
hand side is bounded by

‘ -
p oIt I+ rBe s e 1™+ 3 )18 7 5:¢

Consequéntly

oo o -
(5.21) >, 2| G afu, 3 |

j=0 opza ' B

|B1-k==-j '
<35 ¢ L|o(|( c r'l'«g-l + l)mlldl!SZCij r'cj C(lx)+ §)!'S
loe] s
¢ BCQ SLexr®s ™t + 1)) g
'1.-2% LT

converges if r is sufficiently small.
In case 1 -|x|£ j ¢ 0, we have
-T
Ci+ 207 0 G+ )05 ¢ 2%,
Heﬁée
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| 3 v
(5.22) j=ZIJ_WZl( $)2fu_ 60 3% FF (o |

- _' - 1 |
Bl Le® (T8 0 8+ 1)) xS
1-CLr®

VAN

converges if r is sufficiently small.
Now we define wu(x) on QO = {x erR™; (x1<r} by
od .

(5.23) u@) = 32, u, ) (F’Jf<x) - F; ).

e
(5.21) and (5.22) prove that this converges in 6ﬁs}(120) and

represents a solution of (5.1). Since two branches F?(x)'coincide

‘when Re ¢(x) < 0, u(x) vanishes on one side of S. On the other

hand,
—+ -
u(0, x') = ¢O< P, x')) -$,(¢0, x'))

cannot vanish on any neighborhood of x' = 0. Therefore u(x)
is an ultradifferentiable null-solution of class {s} on a neighbor-

hood of Xq = 0.

By (4.14) w0, x') 1is equal to F'(¢ (0, x')) on the other

side of S, where 1
T s-1

F'(z) =d exp (- 2z ) / dz.

Thus we can prove that u(0, x') is not an ultradifferentiable

0 by the same

estimate of u(0, k') as in the proof of Lemma 4.2.

function of class (s ) on any neighborhood of x

Remark. We had to shrink the domain to make (5.11), (5.21)

and (5.22) converge. If we make use of
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. N3l
£ ) Bt — g o, >0,
0
(5.24) () =

el v, s<o,
instead of (5.13) for sufficiently small &£ >0, we have a wider
domain of definition of u(x).

Theorem 5.3. If the characteristic surface S _is regular,

then for each sequence Mp satisfying (M, 0), (M, 1), (M, 2) and

€ S we can construct an ultradistribution

(M, 3) _and for each X

null-solution u(x).of glass.(Mp) on a neighborhood of Xy

Proof. Let o0 :
(5.25) a(3/32) = [T(1-12z2,
p=1 P

and define the sequence @%(z) of holomorphic functions on the

Riemann domain {z ; - 6< arg z < 21t+6} for a 6>0 by

(5.26) $,(2) = 2;1:1. ) 2
_ 31 371 1
(5.27) QJ(Z) = 2 Q(az) ((J -1)! log z ( 1)!(1"'—*' --1)) ’

i>o0.

It is easy to see that the sequence Qj(z) satisfies (2.9). We will

prove that

(5.28) U(x) = 5::0 u, ) &, (¢ )
- converges on (the covering space of ) V \ S and that the boundary
value

(5.29) u(x) = f;ouj (x)(@jw(x) + 10) - @J.(cr(x) - 10))

is a desired null-solution.
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Since Q(d ) is an ultradifferential operator of class (Mp),
it follows from Lemma 11.3 of [14] that there are constants B'
and L' such that

| Q(3) F(z)|< B' exp M (L'/t) sup | F(w) |
’ W=zt

for every holomorphic function F on a neighborhood of the disk

|w - z}£ t, where

* P
M (f ) = sup logJLJl“ .
M
P
In particular, we can find constants B and L such that

j+1 i=2,. -1 *
(5.30) [ &(2)| £ BT (277G - 2,0 T exp ML /12))
for (zI<1. Consequently if [‘((x)1<ro < (B C)-l ,
we have

j%zluj(x}@j(‘f(:t))l

C 2 I BT 3G - e W /e D)
j=2

282 ¢ (1 -BC r) > exp ML/ [€G0)).

]

Making L a little larger, we can prove that

(5.31) 2 4,60 & (P Cp exp M (L /(PG
J=

o J
for a constant Cl' Hence by Theorém 11.5 of [14] the boundary

value (5.29) exists in the topology of S(Mp)'(.ﬂo), where JZO =
{xe.ﬂ 3 lx =%y 1< r}.

Since
(5.32) U, x') =@,(¢0, x")),
U) 1is not holoﬁorphic at X Therefore it follows from the
edge of the wedge theorem that X is in the support of u(x).
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Remark. In view of (5.32) we can easily prove that there
exists an L » 0 such that the estimate

sup | UGx + iy)| € C exp M (L /ly}])
xeK

dees not hold for any compact neighborhood K of X in 41 and

constant C. If Theorem 11.8 of [14] is true in the n-dimensional
%

case (and if Mpc: Mp p!), this implies that the null-solution u(x)

is not an ultradistribution of class {Mp} on any neighborhood of X

Theorem 5.4. If the characteristic surface S is of irregu-
larity ¢ > 1, then for each 1< s £ ¢/(e¢ - 1) _and point X, € S

_there is an ultradistribution pull-solution u(x) .of class (s)
on a neighborhood of Xg-

Proof. We employ the sequence éﬁ(z) defined by (5.26),

(5.27) and
(5.33) .2 = @78, 3 s 0.
s-T

%
Since M (r ) is equivalent to (s - 1)f in this case,

L

- *
exp fs 1 may be used in place of exp M (f’).

In view of (5.30) and Cauchy's inequality we can find constants

B and L such that 1

i+1 i .,-1 s-1 .
B9z 3T exp @ /12T, § 20,

.30 |§@] < )

BT iyt exe @ /12ptTh, i< 0
for |z\|< 1.
We consider the series
- 5)
(5.35) U = 2w ) @, (PG

j=-o ]
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The sum over the non-negative j has already been estimated.
To estimate the sum over the negative j, we first note that for
each a>0 and £€>0 there is a constant A such that

(5.36) S.t3 /12 <A exp ((@a+E)E®), o<t <00
120

Applying this to the case where a = (0 - 1)-1, we have

S, () @_, (00|
j=1

A
¢ 2 andsn™ O ee 1 Tt e asiqel 77
J=

1
<ABCexp](Ce-1 M) o x| @i
1
< C'exp (L'/I4G))%T
for constants C' and L' when Ix|< .

The rest of the proof is the same as that of the previous theorem.

We could also use the sequence

z 1
zZ - W -1

L(—j———)l_)—'- exp (-iw) s-.]' dw j > 0,
§ @ = ~i0

GO, 1g0.

Remark. When S 1s irregular, we have a gap between the
ultradifferentiable null-solution df class {a~/(0‘- 1)} and the
ultradistribution null-solution of class (0 /(o - 1)). We remark

that this is unavoidable in general. For example, consider the

differential operator

P(3) =32+ (PG - 43
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with { ¢m. The irregularity of the characteristic function
Y (x) = X is m/(m = 4). On the other hand, it is easily proved
that there is a constant A > 0 such that if é + i?le R™ + ian
satisfies

P (§+17)) = 0,
then

(702 Al :
Hence it follows that every ultradistribution solution u(x)  of
class {0‘/(6’- 1)} of

P(3)u(x) = 0
on an open set in R" is an ultradifferentiable function of class
{ o /(o - 1)} (cf. Bjorck [0] and Chou [2]). Therefore there are

actually no null=wsolutions with regularity or singularity in the gap.

-54-



158

6. Solutions with small singularity spectra.

Null-solutions are solutions with smallest possible supports.
In this section we are concerned with solutions with smallest singular-
ity spectra or singular supports in the sense of Sato-Kawai-Kashiwara
[25], p.284.

It is easy to see that the null-solutions u(x) constructed in
§5 are real analytic outside the characteristic surface S. More
precisely it is shown that the singularity spectrum
(6.1) S S u(x) = {(x, TdY o )es*ﬂo; L) = o} ,
which is a submanifold of S*fln of dimension n-1. When a character-
istic element (xo,‘gogn ) is simple and the principal part p(a,3d)
satisfies certain conditions, Zerner [28], Hormander [11], [12] and
Kawai [13] have proved that there is a solution u(x) whose singularity
spectrum is a zero or one or two dimensional sﬁbmanifold passing through
(xo,'§000). We extend their results to the case where the multiplicity
d 1is greater than one.

A curve b : (x(t), 'g(t)OO) in SffL is said to be a (real)

bicharacteristic strip of the operator P(x, @ ) if a representative

%
(x(t), S(t)) @ T L} 1is a solution of Hamilton's canonical equations

(6.2) il =...=dxn = —d€1=---=-dgn
| 2K 9K 3K 2K
8%1 ﬁgn axl 9x

and

(6.3)  K(x(t), ()

0
of an irreducible factor K(x, §) of the principal symbol p(x, €).
We always assume that bicharacteristic strips b are non-singular

or that every characteristic element (x(t), %(t)oo) on b is non-
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singular. Then, the representative (x(t), g(t)) is also a solution
of (6.2) with K(x, g ) replaced by a factor -gl - AN, 'g') of
K(x, 3 ) under a suitable coordinate system. Hence it follows that
the curve (x(t), g(t)) in T*{)l is real analytic and that the mul-
tiplicity d and the irregularity O- of the characteristic elements

(x(t), ?(t)OO) are constant on the bicharacteristic strip.

Theorem 6.1. Let b be a non-singular real bicharacteristic

strip of irregularity ¢ and let 1<s £€0/(0o"-1). Then for

each (xo, ?(f”) in b there is a solution u(x) of (5.1) on a

neighborhood of X whose singularity spectrum is included in b

and
contains (xo, 'gOOO) and which is ultradifferentiable of class {s }

but not of class (s) (resp. an ultradistribution of class (s)).

Proof. We may assume without loss of generality that Xq = 0
and that the representative (x(t), g(t)) satisfies (6.2) and (6.3)

-X(x, €'Y of p(x,¢t).
5 ; $
Then we can choose x1 for the parameter t. Since 2(x, g’) is

with a simple holomorphic factor K(x, 3 )

homogeneous in g', g' cannot be zero.
0

Now we solve the first order equation

6.0y BEHE e, 22015 L
X

under the initial condition
n 2
(6.5) F(0, x') = x's £ )+ i3] x|,

By the Cauchy-Kowalevsky theorem there is a unique holomorphic
s olution :f(x) on a complex neighbourhood V of % = 0. The

equation can also be solved by integrating the bicharacteristic equation
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(6.2) under the initial conditions derived from (6.5).

Since P(0) =0 and 98Y¥/0d x = 'g(') at the origin, ¢(x) van-
ishes on the bicharacteristic curve 7JCb : x(t) and grad P(x(t)) =
f(t) is real on Yb. By a simple calculation we have also on 7b

82‘30 _d.‘;l_ n dx d‘gk n dxk dxi 32')0

= - +
2 dt " dt dt kil= 2 .dt  dt %, X

ach dg_'L andxk 82y , i =2,3, -+, n
8xlé'> xj dt k=2 dt 9x. axk

and hence

n n 2 dx dx
6.7 37 Qa_}{%' £t = 35 '%Zl%% (€ - '&'Eli e (e -
i,j=1 A I K g=2 k- R

L a f1)-

Thus the Hessian of Im ¥ has at least one zero eigenvalue at every
point on the bicharacteristic curve. On the other hand, since it has
n - 1 positive eigenvalues at the origin because of (6.5) and (6.7),
the same is true on a neighborhood of the origin. Hence it follows
that there is a real neighborhood ;Q'O of Xy = 0 in V such that

f)o(x) restricted to {1 vanishes only on mb and Im¥(x) >0 on

0
Qo \ ®b.
Next we constract a holomorphic solution
- _
(6.8) Ux) = 22 u,(x)F,(Lx))
j=-00 3 J

of (5.1) as in the proofs of Theorem 5.2 and 5.4. U(x) 1is defined on

a covering space of V\S, where S is the zeros of Y (x). Then the

boundary value
[2acd

(6.9) u(x) = >, u, (x) Ij(‘f(x) + 10)

j=-0o
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of UK) on 110 gives a desired solution.

In fact, u(x) 1is clearly real analytic outside Tb and at
each point x(t) in Tb it is the boundary value of the holomorphic
U(z) defined at least on the domain Im ‘Y (z) > O. Since grad f(x) =
'S(t), the domain contains every subsector of the half space <Iﬁ12,'§(t»

> 0. Thus we have
SSu(x) C b.
On the other hand, since
u(0, x') = § (P, x") + 10)
is not real analytic at the origin, the singularity spectrum contains
(=g G-

The regularity or the singularity of u(x) are proved in the same
way as Theorems 5.2 and 5.4.

Remarks. If the bicharacteristic strip b is regular or the
irregularity ¢~ =1, then we have of course analogues of Theorems

5.1 and 5.3. If we start, in this case, with

k+1
, _z T AU | ~lt1
(6.10) P(z) = Y (log z 1 2 s ) or z ,
we obtain a proof of the existence of an exactly k times continuously

differentiable solution wu(x) or a distribution solution u(x) exactly
of order k whose singularity spectrum coincides with b. This fact
has been proved by Hormander [12], [12'] and Kawai [13] under the assump -

tion that the principal part p(x,®) has real coefficients.

If p(x, @ ) has real coefficients and if (xo, ‘g()ao) is a real

non-singular characteristic element, then we can find a real bicharac-
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teristic strip b passing through (xo, gooo). By Theorem 6.1 there
is therefore a solution u(x) of (5.1) whose singularity spectrum
contains (xO, SOOO)' This generalizes in a certain éense Theorem
4.1 of [16].

When p(x, 2 ) has complex coefficients, however, a real non-
singular characteristic element (xo, fooo) is not necessarily con-
tained in the singularity spectrum of a solution wu(x) of (5.1) (see
Mizohata [22] and Kawai [13']). We will gi&e here two sufficient con-
ditions.

When ‘ﬂ(x, %) and V(x, g ) are functions on T*fL homoge-

neous in 'g , we define the Poisson bracket { }&,;/} by

. n 3 Y oM oV
(6.11) LY (% ) =3 ( - )
| Lror) e & oy Texg ek oy

according to Sato-Kawai-Kashiwara [25] p.480. When /M(x, g ) is a

complex valued function, we write

(6.12) C(x, §) = - {/A,Fk(x, %)

according to Hormander [11l], [12], where }:(x,'i ) 1is the complex
conjugate of /k(x, g ). The following theorem is due to Hormander
[12], [12'] when the characteristic element is simple.

Theorem 6.2. Let (xo, ‘gdxo) be a real non-singular character-

istic element of P(x, & ) and let /»t(x, 'g) be either the irredu-
cible factof K(x, 3 ) of p(x, g ) in (1.6) or the holomorphic fac-
tor B, - AG, €' in (L.4). If

(6.13) C(XO’ ﬁlo) <0

and o~ is the irregularity, then for each 1< s< ¢/( g - 1) there
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is a solution u(x) of (5.1) on a neighborhood of X, whose singular-

ity spectrum coincides with the point (xo, ‘gooo) " and which is ultra-

differentiable of class { s} but not of class (s) (resp. an ultra-

distribution of class (s)).

Proof. By Lemma 6.1.3 of Hormander [1ll] there is a holomorphic
characteristic function & (x) defined on a neighborhood of X = 0

such that

n
(6.14) $G) = <xy §o> g D kg g%+ o(|x1%), x —> o0,
i,j=1
with a symmetric matrix O(ij whose imaginary part is positive definite.
Then the rest of the proof is the same as for Theorem 6.1.
Remark. The assumption (6.13) is used only to prove the existence

of a holomorphic characteristic function f(x)- on a neighborhood of

X, such that gradff(xo) = % o and Im $(x) >0 on a real neighbor-

hood of X except at X

function ff(x) exists for the generalized Levi- Mizohata equation

where ﬁ’(xo) = 0. Such a characteristic

5 L 2k+1 d
(6.15) (-5—;;- i) '9—2;_) ux) =0, k=0, 1, 2, -

at (0, dxna>). However, (6.13) holds only when k = 0. An invariant

b

characterization of such operators has been investigated by L. Niren-
berg and F. Tréves but we will not go into the details.

Lastly we generalize a result of Zerner [28] and Hormander [12],
[12'] and constract a solution with a two dimensional singularity spec-
trum.

Let (xo, ‘§OCb) _be a real non-singular characteristic element

and let M(x, g ) be as in Theorem 6.2. We consider the case where
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the real and imaginary parts of gradg/w(x, § ) are linearly independ-
Qnt'and
(6.16) C(x, E ) = 0.
We write the real and imaginary parts of [M(x, ), /Wi(x, <)
and j*z(x, % ). Then (6.16) is equivalent to

@17y {r, M0 =0

Let Hk be the corresponding Hamilton fields defined by

(6.18) H_E(x, §) =i {M, £}.

The vector fields Hk are tangential to the manifold M defined by
ft(x, A3 ) =0 in a neighborhood of (xo, ’go) and form an involutive
system by the Jacobi identity. Hence there is a unique two dimensional

integral manifold (X(tl’ tz), 'g(tl, t2)) passing through each point

6{,‘§) in T*M. The two dimensional submanifold (x(tl, tz)’

‘Q(tl, t2)00) of S*fL 1is again called a bicharacteristic strip.

We chocse a. local coordinate system so that the linear submanifold
{ Xy =X, = 0 } is transversal to the projection Wb of the bicharac-
teristic strip b passing through (xo, ‘3060). Then we can integrate
the equation
(6.19) J(x, grad P (x)) = 0
with the initial condition
(6.20) (0, 0, ") = <x", T+ ii; x?
by the Hamilton-Jacobi method (see Hormander [12']). Here x" =

(g 0y x).
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It is proved in the same way as in the proof of Theorem 6.1 that
the solution  (x) 1is holomorphic on a complex neighborhood V of
X vanishes only on b in V/](Rn and has positive imaginary part
on Vn tRn \. b and that grad j"(xo) = ’go. Hence we obtain the fol-

lowing theorem.,

Theorem 6.3. Let (xo, g Otn) be a real non-singular character-

istic element of irregularity o~ which annihilates the simple factor

fb(x, E ) of px, g ). If the real and imaginary parts of

gradgfk(x, 3 ) are linearly independent and if (6.16) holds on a neigh-

borhood of (xo, "?0), then for each 1< s €¢/(¢ - 1) there is a

solution u(x) of (5.1) on a neighborhoos of X whose singularity

spectrum is included in the two dimensional bicharacteristic strip b

passing through (xo,‘goaa) and which is ultradifferentiable of class

{ s} but not of class (s) (resp. an ultradistribution of class (s)).

Footnote
1) After the paper was completed the author was informed from Prof.
J. Persson that he proved in [29] the existence of an infinitely dif-
ferentiable null-solution for every totally real characteristic surface

of constant multiplicity.
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