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Compact thler Manifolds of
Nonnegative Bisectional Curvature
Mitéuhiro ‘ Itoh
0. It is conjectured that a compact positively curved

Kihler manifold is biholomorphically equivalent to a complex pro-~
jective space. This conjecture is animportant subject to solve
in the field of K3hler manifolds.: Positivity of curvature in the

conjecture is replaced by the condition that holomorphic bisectional

curvature is positive for any pair of holomorphic planes. These
are true for the following cases: the manifold is 2-dimensional,
the thlef*metric is Einstein, the holomorphic transformation

group acts trahsitively on the manifold.

We can also discuss the problem to classify compact K&hler
manifolds of nonnegative holomorphic bisectional curvature. It
is expected to solve the classification problem under condition of
isometrically biholomorphic equivalence. We consider here the
probiem except for biholomorphic equivalence.

Gauss-Bonnet formula shows that such a manifold of l-dimensional
is biholomorphically equivalent to the complex projective line Pl(c)
or 1-dim complex torus. {

Howard and Smyth [5] classified 2-dim compact Kahler manifolds

of nonnegative bisectional curvature by the aid of classification

theorems of compact complex surfaces:
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THEOREM (Howard and Smyth [ 51) Iet M be a cbmpact Kahler
surface of which’bisectional curvature is nonnegative everywhere.
Then one of the following holdé;

(i) M is biholomorphically equivalent\to thé complex projec-
tive plane PZ(C)‘

(ii) M is biholomorphically equivalent to the complex hyper-
quadric Q2(C).

(iii) M is flat.

(iv) M is a ruled surface ( i.e., Pl(C)-bundle ) over an
elliptic curve. And the universal co&ering space of M is

C X Pl(C) endowed with the product of the flat metric on C
and a metric of nonnegative bisectional curvature on Pl(C).

Relative to Einstein Kihler manifolds, Matsushima’s result

is known:

THEOREM (Matsushima [76]) Let M be an Einstein Kahler surface

of nonnegative bisectional curvature. . If the Ricci tensor is

nondegenerate, then M 1is hermitian symmetric space, 1i.e.,
isometrically biholomorph. equivaient to P2(C) or Qz(C).

We shall consider the case where the manifolds are higher
dimensional. It is natural to restrict the problem to the case
where the manifolds are irreducible in the sense of holonomy from

the following structure theorem together with Theorem 1.1 in §1:

THEOREM (Howard and Smyth [E1) Let M be an n-dim compact
Kihler manifold of nonnegative bisect. curvature, and r the
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maximal rank of the Ricci tensor. | Then there exist a flat Ké8hler
manifold N of (n-r)-dim and a holomorphic fibering 7 : M —> N
such that the metric on M is locally a product compatible with the
fibering. Moreover, the Ricci tensor of the fiber F has maximal
rank «r, and under the de Rham decomposition, F = le””. XFq,
each Fj is simply connected and has second Betti number equal to
one. |
Irreducible Hermitian symmetric spaces of compact type are the
examples of compact K8hler manifolds of nonnegative bisect. curvature.
In this paper, we shall discuss 3-dim compact K&hler manifolds

of nonnegative bisect. curvature.

g 1. Definitions and An Auxiliary Theorem

In the following, manifolds are assumed té be connected, - and
a K8hler manifold .( M, g ) with a K¥hler metric g is abbreviated
as M, unless otherwise stated.

Let P and P’ be two planes which are invariant by the complex
structure J of a Kdhler manifold M. Holomorphic bisectional
curvature H(P,P') of P and P’ 1is defined as H(P,P’) =

g(R(X,JX)JY,Y), where R is the curvature tensor, X and Y

are unit vectors of P and P’ respectively ( see Kobayashi and

Nomizu [©1). Holomorphic sectional curvature of a holomorphic
plane P coincides with H(P,P) by the definition. We have
from Bianchi’s identity, H(P,P’) = |XvY|-K(X,¥}) + |XvJay]-
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AK({X,JY}), where |XvY| denotes the area of the parallelogram,
K((X,Y}) sectional curvature of the plane spanned by X and Y.
Hence, the nonnegativity of the sectional curvature ( resp. the
bisectional curvature } implies that the bisect. curvature ( resp.
holomorphic curvature ) is nonnegative. |

Let ©preer€p, ei,...,e;, be an orthonormal basis of a tan-

gent space of M, where e; = Jea) a=1,...,n = dimcM. We

define complex vectors Z,» fa (o=1,...,n) by
Z = -l;(e —/=le* ) 7 = ~;~(e + /=le* ) and
o 2 o a 7 o 2 o a '’
denote g(R(Za’ZB)Zy'Zﬁ) by R§Yu§. _ Then by an easy calcula-

: ’ = - - = * r = %
tion, H(P,P’) RBBaa for P {ea, ea} and P { €gr eBE,
s(z ,z2) = :E:Rr = from the definition of the Ricci tensor S.

a’'%a 8 aaBB

Hence the nonnegativity of the bisectional curvature implies that
the Ricci tensor is positive semi-definite.
The following theorem plays an auxiliary role in the argument

of main theorems in § 2.

THEOREM 1.1. Let M be a compact irreducible K#hler manifold.

If M has nonnegative holomorphic bisectiohal curvature, then
(1) M 1is simply connected.
(ii) the first Chern class c (M) of M is positive.

hl,l

(iii) nP %) =n%'P) =0 (pzl)  and M) = 1.

Here we denote by hp'q(M) the dimension of the vector space -
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of (p,q9)-harmonic forms on M.

NOTE. M is algebraic from (ii), by the aid of Kodaira's
. n 0
imbedding theorem. The arithmetic genus of M, g:b(-l)P P (m)

is equal to one.
The combination of the following assertions completes the proof

of the theorem.

ASSERTION 1.2. nirloy = 1.

What we show is that an arbitrary (1,1)-harmonic férm is pro-
portional to the so-called K3hler form. A (1,1)-harmonic form

cl: is a sum of the real part of <P, ¢’ = -—]é'— ( 119 + Tﬁ) ‘and the
imaginary part \/qcf)" = —%- ( (‘P - $ ) : 95 = 4)' + ,/:I?S” . ¢’ and

(P" are real forms,  hence they can be written locally as

! ‘- B “ » o —
¢ = =3 ppdand? ¢'= I3, ¢ dz*adzt.
A8 o, p apg
( ¢;-5~ ) and ( 43;"(; ) are Hermitian symmetric matrices. The

complex Laplacian [] satisfies 1] =[] . (’)_' and ¢” are then
also harmonic. It suffices to show that an arbitrary real (1,1)-
harmonic form is proportional to the Kihler form.  We apply the
formula in [72] which is concerned with harmonic forms to a real
harmonic form 1:: = /:IZ (Pd?- dz“/\dzf We have

¢

-5=
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Our notation of the cdmponehts of the curvature is different
in the sign from that in [121. ' We denote by —-U'(¢ ’ ¢) the '

integrand of the right hand side, namely

v = 2 ffsfﬁ 3% — 5 V9™ Reurg bz P,

We shall show  U( Sb, ¢>) Z0 at any point p of M. = We can choose
a suitable local coordinate around p such that 94‘((9) = S,‘F,

Ch@(p) = (Pd 5'“‘3 oA 8= 1,...,n for some real numbers ¢1""'¢n'
Put Bug = SufSup — Rawgp ¢ them Ul ) =§PA°4§<P“¢>§.
From the condition on the bisectional curvature, ( Agp ) is sym-
metric and satisfies A“P §70 for o(=\=(3 and zﬁ Acf@ = 0. From
Lemma 1.3 below, ( Aotg ) is positive semi-definite. As p is

an arbitrary point, we have

02 g (% §7- V7 FF ) oo = - S U(g.¢rdv 50,

that is \73:%?- = 0. From Hermitian symmetricity of ( CPd;; ),
we have Vl¢e¢'§'= V}- @ﬁ- = 0. Hence V(P =0 ( (ib is parallel).
The irreducibility of M implies that ? is proportional to the

K8hler form.



62

LEMMA 1.3. Let A = ( Ayg ) be a real symmetric nxn matrix
which satisfies A0 for o 8 and Z A, Z 0 for any o .
B

Then A 1is positive semi-definite.

PROOF. It is sufficient to show that E ; AmexmxB Z 0 for any
' . o B
* = e o .
real x>. Set A o i= - A . off and A_ = %‘Aas - Then
— . . _— _ o~ . - Z
( AaB ) satlsfles..‘ AaB = ABa ’ ZAaS = A(m and AaB 0
for any a, 8. B

:Ez a_B _ :EZ a, 2 a_B
o7 Aan x = S Aaa(x )T+ Zz Aan X
7

o<B
AP IRICOREE D WS
[+ B ¢ o< B o
n —_— . —
=S-E xM? + > E x*xh2%zo0,
aa af’
o= a<B

since 7\;[3 Z 0 for all o, B.

ASSERTION 1.4. The first Chern class c;(M) of M is positive.

Note that the first Chern class cl(E) of a holomorphic vector
bundle E 1s called positive ( resp. neéative ) if and only if
there is a real d-closed (1,1)-form ’\/J = '/:—]‘_Z‘\'{/o(é d25d2f such
that '\{/ represents ¢, (E) and ( ‘%{P—) is positive
( resp. negative ) definite Hermitian symmetric. And a line
bundle L 1is positive ( resp. negative ) if and only if ¢y (L)

is positive ( resp. negative ).
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PROOF  Of ASSERTION 1.4. The first Chern class c,(M) of M
is represented by EA‘TFG‘, = /-1 ;_,@ S,‘—?-dz"‘/\dz_( ( see [&] p.83).
under the Hodge decomposition, we have :-Z—lﬁG‘ = cw + /-1 d3f
for some real constant ¢, vvfrom hl’l(M) =1, and W is the
Kdhler form, f is a real smooth function on M. The positi—
vity of constant c¢ completes the proof. Suppose that c¢
is not positive. Hence,
2
(3—};—6—2% = 5% (Sag) * (9 (ag)

is positive semi-definite from the nonnegativity of curvature.

This means that £ is a plurisubharmonic function, hence £ is

constant from the compactness. ( Su?' ) = ¢ | gi? )  for non-

positive ¢ implies that the Ricci tensor is flat. S(Za,Z2a) =

Rguaz T E Ibg*eg for an arbitrary 2,4 , all the holomorphic
xR

sectional curvatures vanish, that is, the curvature tensor is

flat. This contradicts the irreducibility of M.

ASSERTION 1.5. The maximal rank of the Ricci tensor is equal

. to the complex dimension of M.

Here the rank of the Ricci tensor S at a point p is defined
by the rank of the matrix ( SME') at p. |
PROOF . Suppose that the maximal rank of the Ricci tensor S is

less than the complex dimension of M. Then we have det(S;F)
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= 0 for any point bp. We have from the argument in Aagsertion 1.4
( 5-1&— )nj ¢ = ,vcngwnk > 0. By the way, & = (/~1)" n!

det(sdg) dzlAdzlA... = 0 at any point p. This is a contradic-

tion. ' o

ASSERTION 1l.6. Let M be a compact Kahlerqmanifold. . If the

Ricci tensor is positive semi-definite at any point and pOSitive'

]

definite at some point. Then hp’O(M) ;’hO:P(M) =0, p= 1.

This is a direct consequence of [13] p.93.

ASSERTION 1.7. Under the same situation as the above assertion,

the manifold M is simply connected.

PROOF. The universal covering space M of M is isometric to
ﬁ)(Rk ( Riemannian product ) from Cheegér and Gromoll [1].  Here

k

M is compact and R an Euclidean space. As the Ricci tensor

is locally positive definite, Rk is reduced to be a point,
namely, the fundamental group Trl (M) 1is finite. We have shown
that the arithmetic genus of M is equal to one. Hence, M is

simply connected by the aid of the argument in the proof of Theorems§

in Kobayashi [7].
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é 2. Main Theorems

In this section we consider 3-dim compact irreducible Kihler
manifolds which have nonnegative bisectional curvature. To deter-
mine these manifolds, we shall impose some conditions on them.

One is a condition relative to cohomology iings, another to infini-
tesimal isometries of them.

First we shall show a theorem which is considered as characteri-
zations of the 3-dim complex projective space P3(C) and the 3-dim

complex hyperquadric Q3(C).

THEOREM 2.1. Let M be a 3-dim compact irreducible K8hler

manifold of nonnegative bisectional curvature. If M satisfies

A

H*(M; 2) & ﬁ*(P3(C); Z2) ( resp. ﬁ*(Q3(C); Z) ) ~ (ring-isomorphic).
Then M is biholomorphically equivalent to P3(C) ( resp. Q3(C) ).

“ - 2k,
We denote here by H¥*(M; Z) the subring ZE:H (M; 2) of
: k
Z-cohomology ring H*(M; 3Z):= EE Hk(M; zZ).
; , "

Moreover, we have the following in the case where M is

Einstein:
COROLLARY 2.2, Let (M, g) be a 3-dim compact irreducible
Einstein K8hler manifold of nonnegative bisect. curvature. If

A
He(M; 2) = H*(P,(C); 2) ( resp. ﬁ*(Q3(C); z) ) ( ring-i -
isomorph ), then ( M, g ) 1is biholomorphically homothetic to

P3(C) ( résp. Q3(C) ) endowed with the canonical K8hler metric

-10-
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g, that is, there exist a biholomorphic map ? :t M — P3(C)

( resp. Q3(C) ) and & positive constant ¢ such that g = cqﬁg.

PROOF of COROLLARY 2.2. Above theorem shows that: M 1is homo-

geneous in the sense of the complex structure. The metric on M
induced by the canonical metric g has the scalar curvature constant,
hence is Einstein from Hz(M; Z) =7 and the so-called Ricci form
being harmonic. Matsushima [716] Theorem 3 shows that the metric

g 1is equivalent to the induced metric, in other words, ( M, g )

is biholomorphically homothetic to ( P4(C), g ) ( resp. ( Q;(C), g)).

PROOF of THEOREM 2.1. Since M is of nonnegative bisectional

curvature, . the tangent bundle of M is semi-positive in the sense
of Kobayashi and Ochiai [{0] Theorem 6.4. Therefore, by Theorem

4.1 in [10] we have
{e®an - 2 ¢y -c,00 + cyonfp0 Zo,

where ck(M) is k-th Chern class of M, and [M] the fundamental

homology class.

c3(M)[M] = +the Euler number of M = :E; (—l)p+q hp’q(M)==
P9
4 - > wP 9w < a. c, (M) *c, (M) [M] = 24, since the arith-
p+a=3

metic genus of M coincides with 3%-cl(M)-c2(M)[M] from theorem

of Riemann-Roch-Hirzebruch( 3 ]. We have then

-11-
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c13(M) Ml Z 2 c; (M)-c, (M) [M] - cy(M)[M] Z 44.

We have dim HP(M; & = ho'p(M) =0, p=1,2 from Theorem 1.1
in §1, where (9 denotes the sheaf of germs of holomorphic functions
on M. '~ Hence the multiplicative group of line bundles over M
is isomorphic' to H‘2 (M; 2)2 Z in assigning its Chern class cl(L)
to a line bundle L. Then we have a positive line bundle F
such that cl(F) is a positive generator of H2 (M; 2)¥Z.

We show first the followihg:

ASSERTION 2.3. £ H* (M; Z)_—.";ﬁ* (P3(C); Z) ( ring isomorphic ),

then M is biholomorphically equivalent to P3(C).

PROOF, It is sufficient to show cl(M) - tlc:L (F) 20 from
Kobayashi and Ochiai [1]1] which deal with characterizations. of

a complex projective space and a complex hyperquadric. - Z~cohomology
ring of Pn(C) is, as well known, generated by an element of -

Hz(Pn(C); Z) . Hence by the assumption, we have

B%(M; 2) = 2 + 2o + 7 8% + 7 a3, &= cq (F)

«L, o(2= XX and o(3= 0(2-0( are generators of HZk(M; z), k=1,2,3.
3

Put ¢, (M) = ro for some positive integer r. Then r

—

Bl = cl(M)3[M] Z 44, which shows r Z 4. 0. E. D.

- A
Now assume that % (M; 2) 2 H%(04(C); 2) = H*(Q3(C); 2). We
have  B*(M; 2) = Z + Z &+ % &, + 3 oy from Morrow [17] p320,
where o(k is a generator of sz(M; z), k=1,2,3, Ay = cl(F),

2 . 3 _ — :
g —20(2,’ and 0(1 —20‘3. If we set cl(M) =ro; in the

-12-
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| 3 3,3 _ .3
same manner as above, then 44 §:cl (M) [M} =~ dl [M] = 2r d3[M]

= 2r3, which leads r z3. | Suppose r Z 4, then we
obtain that M is biholomorphically equivalent to P3(C) from the
above assertion, which contradicts the assumption of the cohomology.
Hence we have r=3, i.e., cl(M) = 3 cl(F). We can conclude

from [711]:

ASSERTION 2.4. 1€ H*(M; 2) & H*(Q4(C); 2), then M is bi-

holomorphically equivalent to Q3(C).
These assertions complete: the proof of Theorem 2.1.

NOTE. (i) The irreducibility of M is redundant, since
B2 (M; 2) & 2.

(ii) Pé(C) and Q;(C) are the only known examples of 3-dim
compact irreducible Kihler manifolds which have nonnegative bisect.
curvature.

(iii) Theorem 2.1 is considered to be a generalization ofi

Howard [4]:

THEOREM ( Howard ) Let M be a 3-dim compact K#hler manifold of
positive bisectional curvature. If H*(M; 2) & H*(P,5(C); 2)
( ring isomorphic ), then M is biholomorphically equivalent
to P3(C).
Next we shall consider that +to what extent the existence of

infinitesimal isometries restricts the cohomology of M. We have

-13-
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the following by the aid of Howard and Smyth[ 51 together with

Frankel[ 2 ]:

THEOREM 2.5. Let M be a 3-dim compact irreducible K&hler manifold
of nonnegative bisectional curvature. If M admits a nontrivial

infinitesimal isometry,  then relative to Z-cohomology group,

2
N

Hk(M; Z) for even k,
ul(M; z) @ H2(M; 2) = o0,

72PZ.

"
o
0
e}

H3(M; Z)

COROLLARY 2.6. Let M be a 3-dim compact irreducible K&hler

manifold which has nonnegative bisect. curvature and positive holomor-
phic curvature. If M admits a nontrivial infinitesimal isometry,

then H*(M; Z) &£ H*(P3(C); Z) ( group isomorphic ).

It is expected to eliminate H3(M; Z) & 292 from the result
in Theorem:23.5.

NOTE. If M in Theorem 2.5 or Corollary 2.6 is furthermore

Einsteinian, then the existence of infinitesimal isometries is
redundant. It is necessarily guaranteed by Matsushima [714] and

Kobayashi and Ochiai [101].

PROOF of THEOREM 2.5. Let X be a given infinitesimal isometry.
Zero(X) = { peM; X =0 at p } is not empty from the following
consideration. M is algebraic ( that is, a Hodge manifold )

from NOTE for Theorem 1.1 in gl and the first Betti number bl(M)

-14-
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1

1,0 + ho’ = 0. X- /-1 JX is a holomorphic field and Zero(X) =

h
Zero(X- /-1 JX). Suppose that X has no zero points. Matsushima‘g
theorem [}5] shows that the first Betti number is not equal to zero.

This is a contradiction.

Let Zero(X) = L)Ni be the decomposition of Zero(X) into
its connected compone;ts. Each N, is a closed totally geodesic
submanifold from Kobayashi [6]. And we have the following due to
Frankel [2]: Each Ni is moreover K8hler submanifold and there

exists a real smooth function £ on M such that df = Jg, where
g is the 1-form which corresponds to X, and Zero(X) coincides
with the critical point set of f and in particular each N is a

nondegenerate critical manifold. And Frankel showed the following:

THEOREM ( Frankel)
(1) b (M) = %bk-)\imi)'

where Ai is the index, i.e., the number of the negative eigenvalues

of the Hessian of £ at any point of N, hence is an even integer

not greater than 2«COQimbNi.

(2) Zero (X) has torsion part if and only if M has torsion part.
(3) H2i+l(Zero(X); Z) =0 for all i if and only if H2i+l(M;Z)

=0 for all i.

Each Ni is totally geodesic, hence is of nonnegative bisect.

curvature. We consider three cases according to dim of Ni:

(1) Ni is 0-dim: N consists of a single point.

-15-
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(2) Ni 'is 1-dim: From the Gauss-Bonnet formula Ni is

bihol. equivalent to P,(C) or is a 1-dim complex torus of flat

metric.
(3) Ni is 2-dim: In this case, one of the following
holds [ E1: Ni is a) bihol. equivalent to Pz(c), b) bihol.

equivalent to Q3(C), c) of flat metric, d) a ruled surface

over an elliptic curve.

In 4), the ruled surface has positive first Betti number([Sﬂ)
Compact flat K3hler manifolds have trivial Chern classes. Hence,

2-dim compact flat K#8hler manifolds have the arithmetic genera 1 -

1,0 + h2’0 =0 from Theorem of Riemann-Roch-Hirzebruch. We

10 _ 5 4 2 n2/0, A 2-dim compact flat

h
have bl(M) = b3(M) =2 h
K3hler manifold has positive odd Betti numbers. Paying a regard
to these results, we shall prove the theorem.

If M has no torsion, then Z-cohomology group is isomorphic

to Z-homology group. It is shown in § 1 that bk =1 for even
k, b1 = b5 = 0. Hence, what we show is that M has no torsion
and b3 =0 or 2.

First we show:

ASSERTION 2.6. There exist neither 2-dim flat manifolds nor ruled

surfaces among Nis’.

PROOF. - Suppose that some 2-dim Ni is flat. The index Xi
=0 or 2, since Ai is not greater than 2 codichi.

i) )& = 0: Set k =1 in the formula (1) of Theorem

-16-
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(Frankel), then bl(M) = bl(Ni) + :E bl‘Aﬁ(Nj)
j i

(Y
|l

i) )y = 2: Set k =5, Dbg(M) =b3(N;) + E’ bs_)\j(Nj)

3
=z 1.
These are contrary to bl(M) = b5(M) = 0. In the same way
we can also eliminate ruled surfaces from Nis’. Hence the asser-
tion is obtained.
Now we assume that some N, is a 1-dim torus. The possible
values of the index )\i of Ni are 0, 2 and 4. We set )‘i = 0,

k =1 and }\i =4, k =5 resp. in Frankel’s formula (1) to obtain

by (M) = by (N,) + > by, M) Z 1,
j¥i J
b5(M) = bl(Ni) + E; bs_)\j (Nj) Z 1.

j¥i
These also contradict the requirement on the Betti numbers of M.

If /\i = 2, then we have, setting k = 2,

b2(M) = bo(Ni) + E bz_)\j (Nj) ’ which shows the following.
Jx1i

ASSERTION 2.7. If Zero(X) has a 1l-dim complex torus as its

component, then it has the index )\= 2, and Zero(X) has no other

1-dim tori.

-17-
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Furthermore we can conclude:

ASSERTION 2.8. If there is a 1-dim complex torus N of /\= 2
ASSERLIUN 2.0
among the components of Zero(X), then Zero(X) = NleNzLJN3

where Nl = {pt of S 0, N, = N and' N3 = (g} of ,A3 =6

‘for some points p and q.

PROOF . Put Zero(X) = U Ng v U NE v U Ni under the
- i o i, M1 i 2
0 1 2
decomposition of its components, where N? is of m-dim. Put
m
k=0, 2, 4 and 6 into the formula:
' _ 0 1
b, (M) = Z by, (97 )+ Z by, 05 )
1o o 11 1
2
+Z bk_ki(Niz) .
1, 2
Since hi =0, 2 or 4 and ?bi =0 or 2, and the even
1 2
Betti numbers do not vanish, Zero(X) = U Ni contains only N as
its components of dim 1 and 2. And the possible values of the
index A of 0-dim No are 0 and 6. Hence we obtain the above

assertion.
We proceed with the proof of Theorem 2.5.

M has no torsion from (2) in Frankel’s theorem, ' since none

of the components of Zero(X) has a torsion.

-18~
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If tﬁere exist no '1~dim complex tori, we can conclude b3(M)
= 0. by' K3Y'in Frankel’s theoremn, since there are no components
of positive odd Betti numbers among Nis” from Assertion 2.8.
Provided that there exists a 1-dim complex torus, we have bB(M)
= 2 from Assertion 2.7 together with (1) of Frankel’s theorem.

Therefore we obtain the requiremeﬁt on the Z-cohomology of M.

Corollary 2. 6 is easily'obtained. By the assumption on the
.hdlomorphic curvature, the Gauss-Bonnet formula eliminates the 1-dim

torus of 2.=-2 from Assertion 2.7.
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