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- 1. In this paper we study the KdV equation and a family
of the generalized KAV equations (the XdV series) under the
periodic boundary condition. The KdV series is firstly de-
rived by Lax by means of his principle for the unitary e-=.
guivalence of a one parameter family of selfadjoint opera-
tors. We ghall give another two derivations for the K4av
series, which works in the periodic case. One is based upé@n
a criterion for the existence of a t-independent monodromy
matrix for the Hill's equation whose potential u depends
smoothly on a parameter t. The other is based upon a char-
acterization of the invariance of éigenvalues of the Schro-
dinger operator L(t) = dz/dxg + u(x,t) with t regarded as
parameter ¥+ in terms of the Green's function of the asso-
ciated heat equation :

+ u(x,t)y, s > 0.

We shall show that the trace of the Green's function is é
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generating function for the constants of motion (the con-—
served functionals) of any member of the KAV series, that
is, the coefficients of the asymptotic expansion of the
trace of the Gree's function as s~ 0 yield the con-
stants of motion.

Among sufficiently differentiable solutions of the
K4V equation in the class of functions which tend to zero
rapidly as [x|—— 00, multi-soliton solutions plays an
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important role. NMulti-soliton solutions correspond to the

case when the associated Schrddinger operator L(t) has only
a finite number of discrete spectrums. We shall present a

family of special solutions which are periodic analogues of
multi-soliton solutions and correspond to the case when the
Hill's equation has only a finite number of instability in-
tervals. In this connection we establish the necessary and
sufficient condition in order that the Hill's equation has

only a finite number of instability intervals.

In the final section, we discuss the extension to more
general nonlinear evolution equations, including, in parti-
cular, the modified KdV equation, the nonlinear Schrddinger
equation, the sine-~Gordon equation and multi-dimentional
analogues of them.

At the Conference on " Solitons"™ held in July 1975
at the Reseach Institute for Mathematical Science ,Kyoto
University, I learned that Novikov and Dubrovin [7T1,
Its and Matveev [3 1, and Lax Ié] have done similar works
on this subject.

2. Derivation of the K4V series, I. Let u(x,t) be
a real smooth function which is periodic in x with period
1. We consider the Hill's equation with t regarded as a
parameter :

(2.1) by + (ulx,t) +2) =0, -o0lx, 5 +00.
Put B " 0 1 0 0
\t = , A(X’t) = ’ J = .
by -u(x,t) 0 -1 0

Then, the equation (2.1) is rewritten in the matrix form :

— — ‘/
(2.2) \_{;X = (A(x,t) + A}, —0x,t <+ .
Let X(x,t;\) be a fundamental matrix solution of (2.2) and

QX(t;A) be a2 monodromy matrix defined by



(2.3) X(x+1,t30) = X(x,t;A)QX(t;x).

Theorem 1. The following three assertions are equiv-
alent

1). There exists a fundamental matrix solution
X(x,t;A) of the equation (2.2) such that QX(t;k) does not
depend on t. ‘

2). There exists a 2X 2 matrix function H(x,t;\)
which is smooth, periodic in x with period 1 and
satisfies

(2.4) Ay = H_+ [A +AJ, H]z:(L

t
where the square bracket indicates the commutator.

3). There exists a smooth function p(x,t;A) which is
periodic in x with period 1 and satisfies

(2.5) + 4(u+7\)pX +2up = 2u .

pXXX

Remark 1. Let X(x,t;A) be a fundamental matrix
solution such that d QX(t;k)/dt = 0. Then, X satisfies

(2.6) Xt(x,t;h) = H(x,t;N) X(x,t;0).

Remark 2. Let Xo(x,t;x) be a fundamental matrix
solution of (2.2) with- Xo(o,t;x) = I, the identity, for
all t and A. Then,

(2.7) Xy = H(x,t;x)xo - XOH(O,t;k)
and

Proof of Theorem 1 may be asccomplished by utilizing
Fooquet's theorem (stated below).

We now show that the equation (2.5) can be reduced to
nonlinear partial differential equations for unknown u(x,t)
(which are (generalized) KdV equations) if we choose
“p(x,t;\) appropriately.

To obtain the KdV series, we must reguire that the
eguation (2.5) with suitable choice of p(x,t;\) does not

depend explicitly on A. Under this requirement, we shall
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give a method which leads us fto obtain the KdV series

recursively.
For an arbitrary positive integer N, put
N N X
(2.9) P (X,t;K) = 120 pN—k(X’t) ATy,
{=

where pN_k(x,t) are smooth functions to be specified belo-
Substituting (2.9) into (2.5), we get

(2.10) P + 4up + 2u_p = = 4Dy
N-kXXX N—kx X N-k N k+lX ’
, ) K = 1,2,%+,N,
2.11 D + 4up + 2u_p =2 u
NXXX NX x=N t7
(2.12) p, =0,

,

which is a recursion formula for the Py k =0,1,-°-,N.
Introduce the operator x

> .
(2.13) oZk = - %r §;§ - u(x,t) + %? S dx-ux(x,t)
+ Ck’

where Ck denote arbitrary constants. Then, from (2.10)
and (2.11), we have

k
(2.14) P = lzljinspo’ P, constant,
and
(2.15) U._b + 2 pN-.—l = O, N = 1’2’0-0’
X

where p, is & polynomial of u, u,, *°*, 32(k—1)u/gx2(k—l)

whose maximal degree is N. :
Let us take N = 1 and pl(x,t;x) = =2u(x,t) + 4r.

Then, we have the KAV equation :
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(2.16) up + buu, + u . = 0.

Theorem 2. The potential u(x,t) of the Hill's equa-
tion (2.1) evolves according to the (generalized) KdV equa-
tion (2.15), then there exists a fundamental matrix solution
X(x,t3;n) of (2.3) which satisfies (2.6) and the correspond-
ing monodromy matrix QX(t-x) does not depend on t. Further-
more, for every A, the characteristic multipliers f (N) are
constants of motion of (2.15).

3. The Hill's equation. Let @(X k) and ©(x;\) be the
solutions of the Hill's equation :

(3.1) ¢ + (u(x) + 2) = 0,

XX

satisfying the condition

(3.2) 9(052) = 0, 9. (051) =1 ;5 8(03n) =1, 6, (0;1) = 0.
Put ' o e
Xo(x;k) = .
Px ex
In this case, the monodromy matrix is
(3.3) QXO(M = Xo(15n).

The characteristic multipliers P+(x) (which are eigenvalues

of QXO(A)) are the roots of the equation
2

(3.4) p= - 24(\) p + 1 =0,
where

(3.5) 24(0) = o (152) + 8(150).
Hence, we have

(3.6) p.(0) = A0 T (4500

Floguet's theorem. If F+(x) % ‘p_(x), the equation
(3.1) has two linearly independent solutions

(3.7) o (x0) = PR X (en), o (xn) = pl X (x5,
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where ){+(X;K) and X (x;\) are smooth periodic functions
with period 1. If P+(k) = p_(x), the equation (3.1) has
a nontrivial periocdic solution with period 1 (when p,. =
p_ = 1) or period 2 (when p, 6 = p_=-1). ILet ¢p(x;x)
denote such a periodic solution. Then, another solution

¢*¥(x,t), linearly independent of @p(x;x), satisfies

(3.8) $*¥(x+15n) = p o*(0) + a4 (x50),

where a is a constant. In (3.8), a« = 0 if end only if

(3.9) @X(l;k) + 8(150) =+ 2, o(l.A) = eX(l;x) = 0.
The solution ¢+ and ¢_ can be written in the form

(3.10) b (x50) = 8(x50) + m (Mo(x;0),

and

(3.11) G_(x3n) = 8(x;0) + m_(N)o(x;n),

where

(3.12)  m,(A) = (1) Mo (150) - 8(1;0))/2

T ¢(1;x)“1J42(x) - 1.
Their Wronskian is

We,,0_) = 2 @(1.0)7F [22(0) - 1.

It is known that 4(\) is an entire analytic function
of oder 1/2, and accordingly, the functions A(A) - 1 and
A(\) + 1 have infinitely many zeros on the real axis with
no finite 1limit point. The zeros of 4(A) - 1 are denoted
by Ay (k = 0,1,°°*, the enumeration of increasing xk). They
furnish the eigenvalues of the selfadjoint boundary value
problem for (3.1) with the boundary condition
(3.13) G(x+150) = d(x30 ).

Similarly the zeros of A(N) + 1 are the eigenvalues of
the problem for (3.1) with
(3.14) G(x+130) = =¢(x350 ).
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We denote these by A, ( k = 1,2,°*+). These two sequences
of zeros are distributed on the real axis in the following
order : '

_ N "<A/ < . 0 N e
m<%§x1=x2\xl=x2\x3< .

The intervals of the type (A, ,Ao,-) 2nd (A, ,A )
; 2k 2k+1 21 2k-1

are referred to as the stability intervals. The intervals
of the type (- ,A,], [xgk_l,xgk],[xzk_l,xzk] are referred

to as the instability intervals. In general, it is possible
that some instability interval degenerates into a point.
When this occurs, two linearly independent solutions of the
Hill's equation (3.1) are of period 1 or 2. We shall call
this an instance of coexistence ( Magnus and Winkler Ly]).
In this connection we have

Lemma 1. The coexistence of periodic solutions of
(3.1) with period 1 or 2 occurs if and only if the equation
4(N) -1 =0 ord(A) +1 = 0 has a double root, which is
equivalent to the equalities (3.9) holds.

In the next section, we shall study the coexistence
problem in detail. ‘

The spectrum of I = dz/dxg + u(x) consists of the
closure of the stability intervals. We see that if A€
C \K]{stability intervals} , the resolvent kernel for L
at A is b_(x50)0, (7351) xSy

G(x,y5h) = —2lIA)
gjég(x) ~1 L4 Gande_(ysn) XD .

4. Coexistence. We shall characterize the potential
u(x) for which the Hill's equation has only a finite number
of instability intervals. Hochstadt [2] showed that (1) if
the Hill's equation (3.1) has only one instability interval
(-, xo], the the potential u(x) =-constant ; (2) if the
Hill's ecuation has only two instability intervals if and
only if the potential u(x) is a Weierstrass elliptic funcs

tion 3 (3) if +the Hill's equation has only a finite num-



64

ber of instability intervals, then u(x) isrinfinitely
differentiable. We generalize Hochstadt's results :

Theorem 3. The Hill's equation (3.1) has only n+l
instability intervals if and only if the potential u(x)
is a solution of the ordinary differential eguations of
the form :

n+l ' ]
(4.1) L C P, (u,u ven,a2(k-1)y /g2y g

=0 n+l-<k x’
with periodic boundary condition _
(4.2) u(x+1l) = u(x), -~ <{x < +00,
where P, = 1, each P (k = 1,2, ,n+l) is uniquely de-
termined by the formula (4.15), (4.18) (stated below) and
is a polynomial of u and their derivatives of order 2(k-1),

whose maximal degree is k, and Cy = 1, C) (k =1,2,°"",

0
n+l) are arbitrary real constants.
Proof of Theorem 1 will be partitined into several
lemmas.
Consider the following equation with a parameter o :

(4.3) by + (ulx+o) + 1) = 0.

Lemma 2. Let /Ai(G) denote the eigenvalues of the
equation (4.3) when subjected to the boundary conditions

(4.4) ¢$(0) = ¢(1) = 0.

Then, we have v

(4.5) M EP0) S Ry 0 S Mye) S agttn
and

(4.6) Mop-y = MR [on-1(8)s Aoq = max Mon-1(9)
(4.7) Noy_q = min./VZH(c), Aoy = m?x /uzn(c)

Note that /Mi(o) (i =1,2,°***) are periodic functions
of ¢ of period 1.

When we consider the case in which the Hill's equation
(3.1) has only n+l instability intervals, without loss of
generality, we can always assume that the first n+l insta-



bility intervals, that is, (-, AJ), [xl,xz},"',[;\n,xml

(n : odd) or (kn—l’xn] (n : even) do not vanish, if nec—
essary, changing the order of the enumeration of A, and A
Lemma 3. The Hill's equation (3.1) has only n+l

K

instability intervals if and only if

B on =M (o)
(4.8) ®(150,0) = (1) | —-——-—-jli
izl A - M, (0)

for all A€ € \{/‘1(0),“3 /VH(O)} ,

where ?_(l;h,c) is the solution of (4.3) with the initial
conditions
¢ (0;n,0) =0, ?Ex(o;x,a) = 1.

Here /“i(c) (i =1,2,°*",n) are [vhad periodic functions of
o of period 1.

Y

Lemma 2 and the necessgity part of Lemma 3 were proved
by Hochstadt [21] .
Lemma 4. The condition (4.8) is equivalent to

Z (x0) A (x50)

Ao=My(x)
1 A =/M00)

(4.9) ¢, (x50)0_(x31)

=]

i

1]

Lemma 5. Let ¢l and ¢2 be any two solutions of the
Hill's equation (3.1). Let 7 = ¢;¢, be the product of

these solutions. Then.'7 satisfies the equation
(4.10) 7XXX + 4(usn )], + 20 =0, for all A.

Equation (4.10) has at least one nontrivial periodic solu-
tion with period 1.

Lemma 6. If M is not a double root of 4?(%) -1=0,
then any periodic solution of (4.10) is a constant multiple

of ¢, (xM)d_(x50) (=x (x52) A _(x50)).
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Outline of the proof of Theorem 3. Suppose that
precisely n+l1l instability intervals do not vanish.

Then, from Lemma 3-5, we see that the function
n
(=) = JT;(K - M3 (0036, (x50 )¢ _(50)

is a solution of (4.10) and is a polynomial of A of degree
n. It is written in the form

n .
(4.11) 7 (x,A) = 'Zo P, (%) A,
1=

where po(x) =.1 and
(4.12) o (x) = 2 /Mil(X)/viz(X)"' /Vik(x),

in which the right hand side of (4.12) represents the fun-
damental etric functio of M. (x . cee . (x
symm ic ions /Mll( ), /vlg(x), /ulk( )

whose degree is k. Substituting (4.11) into (4.10), we
get

(4.13) P _- +4dup. . +2up. . =-4D . 4,
n-iox n-i_ X' n-i n 1+1X
(i = l,2,“‘,n)
and ‘
(4.14) P + 4 up., + 2 u.p_ = 0.
N n, X n

Introducing the operator

1 44 1 (*
I R

where Ck denote arbitrary constants, from (4.13) and

(4.14) we have

k
(4.15) P, = el o[ ‘1
k =1 n
and
(4.16) Pra1 = 0y
X

jo



where we define

n+1l JC
(4.17) Pp.y = TT‘ ;01
i=1
Put
(4.18) PL = pk

ClzCz-—--‘-:Ck = 0.
Then, Pk is uniquely determied by u and its derivatives
and (4.16) gives (4.1).

Proof of the sufficiency is accomplished by utilizing
Lemma 3,4 and 6.

Theorem 4. Let u(x) be a solution of (4.1). Then

(4.19) u(x,t) = u(x- Cnt/2)

is a solution of the generalized KdV equation
n+l

(4.20) ' up + r ¢ P = 0.

=2 n+l-k kX

Proof is easy.

5. Conservation laws of the K4V equatibn. Suppose
that u varies according to the KAV equation (2.16).
Let

be a fundamental matrix solution of (2.2) such that
a QX(t;x)/dt = 0. Then X(x,t;\) satisfies (2.6), Here,

u -2u + 4\
(5.1) H=| %
U+ 2(u+n ) (u=-20) - u, .

Hence we have

(5.2) by o= uby - 2(u—2k)¢i , i =1,2.

+t : X

[ 1
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Let 7 (x,t3;A) be any linear combination of the products

¢§, ¢1¢, and ¢§. Then, from (5.2) we have

(5.3) Ty =20 - 2uw-2n) 7 .

On the other hand, from Lemma 5, we get

(5.4) Mg + M) 7+ 2u = 0.
Combining (5.3) and (5.4), we obtain
(5.5) 7t+-6u7x-+ 7xmczo.

In virtue of the Floquet's theorem, we see that at
least one linear combination of the products ¢§, ¢1¢2,

¢g is periodic with period 1. For such a periodic ,
we have

. 1
(5.6) %—t §O7(X,t;7\)dx =0

1
Hence, fo 7(X;t;k)dx is a constant of motion of the Kav
equation. Since ’Z(x,t;k) is a solution of (5.4), we
have an asymptotic expansion

> )
(5.7) ql(x,t;k)'\szo P (%,%) A K aslxk—» o
where pk(x,t) are determined by a recursion formula :
(5.8) P + 4up, + 2u_p, = - 4p y P =0,
kxxx kX xtk k+1X OX

which is the same form as (2.10) or (4.13). TFrom (5.5),

(5.7) and (5.8), we obtain an infinite number of conser-
vation laws :

(5.9) P, - (12 p - 2p - 6 up,. ). = 0.
kt k+1 kxx k'x

Thus, we see that p, are conserved densities of the X4V
equation.

12
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Remark 3. In much the same way, we obtain the

conservation laws for the generalized KdV equation.

6. Special periodic solutions of the KAV equation.

We shall discuss an analogue of Lax's work for
muiti—soliton solutions of the KdV equation in the periodic
case.

Theorem 5. If at some time to the solution u(x,to)
of the X4V equation (2.16) satisfies the ordinary
differential equation (4.1) with (4.2), then for all t,
u(x,t) satisfies (4.1) with (4.2). 1In other words, at

some t., the Hill's equation with the potential u(x,to)

O’
has only n+l instability intervals, then for all +, the

Hill's equation with the potential u(x,t) has also 6nly

n+l instability intervals while u(x,t) varies according
to the KdV equation (2.16).

Remark 4. Detailed study has been done by Lax [§]
on these special periodic solutions.

Remark 5. Explicit forms of the solutions of (4.1)
‘with (4.2) may be found by solving the inverse problem
for the Hill's equatibn. (see Novikov and Dubrovin{?],
Its and Natveev [3] ).

6. The trace of Green's function and constants of

motion of the KdV equation.

In section 3, we see that the resolvent kernel for

the Schrddinger operator L(t) = d2/dx2 + u(x,t) on the
whole real axis is given by o (x3n,8)0 (x50 ,1)
- s/Ny PR
Q(13N,%t) *

XSy

G(x,73A,t) = ¢ (x3n,8)0_(x30,t) x>y,

ejgz(x,t) -1 "y

The trace kernel G(x,x;\,t) satisfies (5.4) and hence,
is a generating function for the conserved densities for
the KdV equation.



We now congider the neriodic eigenvalue problem

with a parameter t :
{ o +ulx,t)e = A

(6.1) (x+l) = ¢(x).

It is known that there exist a complete system of ortho-

normal eigenfunctions {¢j(x,t)} and eigenvalues ixj(t)%

which are the zeros of 4(A,t) - 1. If A 1lies in the
resolvent set of L(t) = d2/dx2 + u(x,t) with periodic
boundary condition, we have
1
(6.2) R, (t)g= (L(t)-AI) o= Io Gp(x,y;k,t)w(y)dy,
2
Vo ¢ 1%(0,1),

where 0o
(6.3) G (x,730,%) = = & —t—— $.(x,%)¢:(y,%).
P =0 A+ Ay 9 :

The resolvent Rx(t) lies in the trace class and its
trace is given by |

1
(6.4) tr Rx(t) = S G_(x,x;\,t)dx
= d 1ln D(A)/dr,
where (+9]
(6.5) p(A) = I (1 + M)
j=0

is the Fredholm's denominator. Since Aj(t) does not

depend on t if u(x,t) evolves according to the K4V equa-
tion, tr Rx(t) is a constant of motion of the KAV equation.

Theorem 6. We have an asymptotic expansion
1l ~

(6.6) R, (t) = ggo (-1)F aTk-1/2 fo P, (x,t)dx

and hence,

S‘l N
P (x,t)dx
0 ko

are constants of motion of the XAV equation.

1%
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We have the asymptotic behavior of eigenvalues for
large n :
-2 ~_ =2
(6.7) Nopshon_1 N (2Rn)° + cy + cl(Z/Ln)

— —4 o e
+ 02(2/Ln) + .

From Theorem 6, we obtain

Theorem 7. We have

(6.8) m(m'l/z) gl (x,%)
6. T Tfc  eeec = P (x,t)dx

r=1\ ¥ G Oy o ™
where summation Z7 is taken over al + ceeq ar = m-r.

Remark 6. .Lax's formalism says that if a one parame-
ter family of selfadjoint operators L(t) are mutually
unitary equivalent, the spectral structure of L(t) do not
depend on t. If this takes place, the resolvents Rx(t)
are also unitary equivalent and, furthermore, if Rx(t)
has the trace, then trRx(t) does not depend on t.

Remark 7. Let wu(x,t) be a smooth function which
decays rapidly as |x]—> 0 . Consider the Schrbdinger
operator IL(t) = dz/dx2 + u(x,t) on the whole real axis.
Although, in this case the resolvent Ré(t) does not lie in

the trace class, R, (%) - RS (RS - (d%/ax° - \)™L) nas

the trace for arg A = 0 and A = xj (eigenvalues) and
(6.9) sr(R, (8) - B)) = - a 1n a(ln)/an,
[

a(lr) =1 - j_f%‘ L:l % u(s,t)e(e,N,t)ds,

from which we can derive an infinite number of conserved

where

densities of the KAV eguation (see Zakharov and Faddeev [Y]).
Theorem &. The eigenvalues of (6.1) are independent
of t+ if and only if for all t and A\ € C\Qeigenvaluesl

1
(6.10) 50 u (%,4)6 (x, %50, 5)dx = 0.

15
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7. Derivation of the XdV series, II. We consider

the following theta function

00 “A.(t)s
(7.1) G(x,738,t) = 'Zo e 9 ¢ (x,8)¢.(y,%),
J: (3 o)

which is a Green function of the heat equation of the form :

GS = Gxx + u(x,t)6
lim G(x,y;s,t) = X(X-Y>,
(7.2) a0

G(x+1l,y;s,t) = G(x,y;s,%t).

Theorem 9. We have the asymptotic expansion as s\O,

(7.3) G(x,x38,t) ~ OT? si"(l/2)Bi(x,’c),
i=0
where Bi are uniquely determired by u(x,t) and its deri-
vatives. _
Theorem (Menikoff). The eigenvalues of (6.1) are
constants as t varies if and only if u(x,t) satisfies

1
(7.4) YO ut(x,t)G(X,x;s,t)dx =0 for all s> 0 and t.
Using the asymptotic expansion (7.3), we get

(7.5) ! .
: j B, (x,t)G(x,x;s,t)dx = 0, 1 = 0,1,2,°°".
0 X :
Since B. is a constant multiple of P,, from (7.4) anad
(7.5), we have again the KdV series :
(7.6) u, = £ C. B. .

K finite * *x
Hence, if u(x,t) varies according to the (generalized)

KdV equation, then +the eigenvalues of (6.1) are constants

(which we denote by {Aj} ) and we get

00 -\ .8
(7.7) LI e 3(¢j(x,t))2m

T si'(1/2>Bi(x,t).
3=0 ‘

i=0

/{



8. Extensions. We first consider a linear periodic

system with t as a parameter

(8.1) ¢, = (A(x,t) + AT Do, -0zt {+ 0,

where © = ¢(x,t;)) is a complex n-column vector, A(x,t)
a complex nX n matrix function, A 2 parameter'and J is
a complex n xn constant matrix. We assume that A(x,t) is
infinitely differentiable and periodic with period 1.
Then, we have

Theorem 10. There exists a fundamental matrix solu-
tion X(x,t;N) of the equation (8.1) such that the monodromy
matrix QX(t;X) does not depend on t if and only if there
exists a n n matrix function H(x,t;A) which is smooth,

periodic in x with period 1 and satisfies

(8.2) A, - H_+ (4 +27, 5] = 0.

From (8.2), we obtain an infinite number of nonlinear

evolution equations of the form
(8.3) A't - [Hky - & Hk_]’ k=1,2,

where Hk are determined by the following recursion formula :
ls, 8,) = o,

8.
(6-4) - M+ [, B )+ 5, 5,1 =o.

The Modified Korteweg-de Vries equation, the nonlinear
Schrddinger equation and so on, are the special cases of
the equation (8.3). They are naturally derived when one
considers the case in which A(x,t) + AJ 1lies in the Lie
algebra of SL(2;C).

We next congider multidimensional analogues of the
KdV geries. Let M be an oriented C compact Riemannian
manifold without boundary, dim I = n. The volume element
of I willbe denoted by dvol. Let E be a complex vector



bundle over I provided with an Hermitian inner product
( , ). C%E) denoted the smooth sections of E. LZ(E)

is the completion of C¥(E) in the ngrm
1/2
Lo = (f (¢,0) avor)™?,
ik )

Let L(t) LZ(E)-9IL2(E) be a positive self-adjoint

elliptic operator of order 2m such that L(t) = Ly +
U(x,t), where U(x,t) EC“kEXRl) and L, has the symbol
2m
oLy = iil ai(x,§ ) e T;M~—%»Hom(EX?EX).

Let {mj(x,t)} and {xj(t)} be the complete system of orth-
normal eigensections and eigenvalues, respectively, of L(t).
Theorem 11. The eigenvalues ;kj(t)}of‘L(t) are
constants as t varies if and only if
(8.5) 5 trace(Ut(x,t)G(X,X,s,t))dvol = 0,
M

where G(x,y,s,t)é}Hom(Ex,Ey) is the kernel function of

-sL(t) ‘
e and of the form 0 -Aj(t)s

(8.6) ‘ G(x,y,8,t) = I e

¢ (x,0)0%(y, 1),
j=0 : .

where * denotes the conjugate transpose.

We have the asymptotic expansion as s NO :

o — T Y
(8.7) trace G(x,x,s,t) ~ L s (n/2m) + (k/Zm)Fk(x,Lo)
<=0 -

from which it follows that

: A .(t)s 0o :
(8‘8) az) e d —~ b S—(Yl/zm)+(k/2m) ‘> Fk(X,LO)dVOlo
j=0 k=0
M
We have
(8.9) j trace(vg FK(X,LO)G(x,x,s,t))dvol =0,
M

where V; denotes a volume preserving infinitesimal trans-
formation. Hence we obtain multidimentional analogues of
the KdV series



-t

U, = & ¢, VP (x,L.),
T opipite * ¥ KO

with some additional conditions.
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