goooboooogn
0 2570 19750 1-31

On The Homotopy Type Of Some Subgroups Of Diff(MB)
Kazuhiko Fukuil

Introduction

Let M be a closed oriented n-dimensional manifold and F
be a codimension one foliation on M of class cf(rz2). (M, F)
is called a generalized Reeb foliated ;:;ifold if (M,F) is de-~
composed as (M,F)tgjl(Mi,Fi) ,where (Mi’Fi) is a generalized

i=
Reeb component for each i (see 31 for definition).

The main purpose of t@is paper is to show that the topologi-
cal group of foliation preserving diffeomorphisms of a generalized
Reeb foliated 3-dimensional man;fold (M,F) has the same homotopy
type as an ﬂ—dimensional torus Tf for some non-negative integer
f which can be controlled by a geometrical data(see Theorem 4.2).

The key of the proof is the fibration lemma(Lemma 1.13%)which is

valid in the general dimensions. A typical example of generalized



Reeb foliated manifolds is constructed from a spinnable structure
by the usual method (Tamura[12]). In this case we have a better
information, that is, the integer Q is less than the number of con-
nected components of the axis of this spinnable structure plus two
(Theprem 5.2).

}1, Generalized Reeb foliation and fibration lemma

Let M be a closed oriented n-dimensional manifold and F
a codimension one foliation on M of class CT(rz22).

Definition 1.1. An orientation preserving diffeomorphism
f:M—~9M’ is called a foliation preserving diffeomorphism(resp. a leaf
preserving diffeomorphism) if for each point x of M ; the leaf
through x 1is mapped to the leaf through f(x)(resp. x ), that is
f(Lx)sz(x) (resp. f(LX)zLX), where LX is the leaf that contains

X. It is clear that a foliation preserving diffeomorphism(resp.

a leaf preserving diffeomorphism) f induces a homeomorphism f



(resp. id.) of the leaf space M/F such that the diagram commutes,

VY, Mt
L X resp. & L
o Y oid.
M/F L sM/F M/F —>M/F / ,

where verticél arrows are canonical projection(see Reeb[9]).
Let FDiff"(M,F) or FDiff(M,F) (resp. LDIff (M,F) or LDiff(M,F))
denote the space of all foliation(resp. leaf) preserving diffeo=-
morphisms of (M,F) of class ct. It is clear that fﬁi??(M,F)
CiFDiff(M,F)CiDiff(M). Topologies of the spaces are induced by
the cF topology of Diff(M). Then it is well known that these
spaces are topological groups. There is an exact sequence of
topological groups; 1—<>f5§?f(M,F)—f9FDiff(M,EU:EQHomeo(M/F) ,
where the second arrow is the inclusion map and the map 7T is de-
fined by Tr(f)=f .

<

Definition 1.2, A compact foliated manifold (M,F)(@M§e) is

called a generalized Reeb component if the following three condi-



tions are satisfied; (1) all leaves in Int M are non-compact

and proper, (2) the holonomy groups of all leaves in Int M - are
trivial and (3%) each of the elements of the holonomy group of each
compac%ﬁeaf of F can be represented by a local diffeomorphism

of R,=[0,w), leaving fixed 0, which is C'-tangent to id. at O
and whose second derived function is non-negative or non-positive
in some neighborhood of O.

The structure of a generalized Reeb component was studied by
Imanishi-Yagi[6]. Our definition is slightly different from that
in[:6]. A generalized Reeb component in [ 6) means a compact foli-
ated manifold (M,F)(@QM+¢) satisfying above (1),(2). In the
first part @6f this section, we recall some properties of a gener-
alized Reeb component. See [6;§2] for more details.

Lefinition 1.53. A vector field X on M transverse to F

is called a nice vectur fiecld if X has a closed orbit <C such
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that CAL:{one point% for any leaf L in Int M. Such a closed
orbit C 1s called a nice orbit.

Propositicn 1.4[6;Proposition 2.1]. Let {[M,F) be a gener-
alized Reeb component. Then there exists a nice vector field X
on M.

We identify Sl with the nice orbit € in Proposition 1.4.
Let p:Int M—>sl be a map defined by p(x)=C(L, . Then we see
that p ‘is a locally trivial fibrataon. Let dt be the natural
one form on Slle/Z and w=p*dtf Then there exists a positive
function g on Int M such that w(gX)=zl. Let <#t denote the
flow associated to gX. <#£ is the foliation preserving flow on
Int M and #}(Lj;L for any leaf L in Int M and any integer n.

Remark 1.5. By putting ‘%l(z):z for zedM, we may show
from Lemma 1.8 below and Definition 1.2(3), that 41 is a foli=-

ation preserving flow of class ¢’ on M and is Cr—tangent to
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id. at D M.

Lemma 1.6[5;Lemma 2.5]. Let V be a component of M and
z a point of V. Let T Dbe the maximal solution curve of X
which contaiés z and Yo be a point of Lxé\T. Then LX5}T=
%yn=4g(yo), néZ} , and if X is outward normal at gz, %%gbynzz.

To described the structure of F vnear V, we define a foli=-
ated manifold V(N,h) as follows. Let N be a codimension one
submanifcld of V such that  v-N is Connected and the manifold VH
obtained from V by cutting along N has tw © boundary components
Nl and N2 which are copies of N. Let h be a contracting diffeo-~
morphism o f Eo,il €70. V(N,h) is obtained from VNX[O,E) by
identifying (x,t@)ele[o,i) with (x,h(t))éNa)([O,i). There exists
a dually foliated structure on V(N,?} which is induced from the

product structure VNX[D,Q). The dual structure of F 1is defined

by X.



Lemma 1.7[€;Lemma 2.6]. There exist a submgﬁfold N and a
diffeomorphism h satisfying above conditions. There exists an
embedding j of V(N,h) into M which preserves the dually foli-
ated structures, satisfying j(x,O):x for x€&V.

Lemma 1.8[%; Lemma 2.?]. Let j: V(N,h)—>M be as above.
We identify (x,Tje@N-Na)ib,s) with a point of V(N,h). For t20

s e 1 ! .
we define @g (x,T)=] = {U(X{t), then <4% preserves the foliated
& .
structure on V{(N,h) and we have 2k(x,"c')z(x,h (o).

For any f in PFDiff(M,F), there exists a diffeomorphism f

of S1 such that the diagram commutes,

Let FDif%}M,F) be the identity component of FDiff(M,F). Let

e FDiffO(M,F)—->Diffo(sl) is a map defined by TA(f)= f. clealy

this map is the continuous homomorphism.
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Lemma 1.9. Im7 =80(2).

Proof. That Im7C contains the rotation group 80(2), is
easily proved by using the foliation preserving flow <Ft Let us
prove that Im/[is contained in S0(2). Suppose for some f 1in
FDiffO(M,F) ,TC(f)%SO(2). We shall deduce a contradiction from
this assumption.

A point XO in the nice orbit C corresponds to a point 3{—0
i o, We can assume T(f)(fo)zf(i—o):i‘o,fkid., by composing a
relevant rotation which is induced by the foliation preserving
tlow P,.

Assertion 1.10. There exists a leaf preserving d&iffeomorphism
g such that gf preserves each orbit of X 1in some smakl neighbor-
hood of J M.

Proof. Let V be a component of @M and f“llvzv«—)\r be the diffeo-

moryhism restricted to V of f—l, which is contained in the identity



component of the space of diffeomorphisms of V, DiffO(V). Take

a smooth path ht from idV to f-ﬂv in DiffO(V), hozidv, hlzf HV.

Let H:VXI—XI be a map defined by H(x,t):(ht(x);t). Consider

a vector field defined by (ag 1) on VUXI in MxI. Take small-

tubular neighborhoods N, N of VXI im MxI, Nijﬁé and the vector
b4

1,72

field, which is denoted by V(x,t), on MXI such that it is tangent
to the leaves an@ the derivative dp1 of the projection pl:MXI

—M maps v(x,t) to the zero vector outside Nl’ and the deri-
vative dp2 of the projection pazMxlwél maps vVv(x,t) to the unit

vector ~§E, and that in N it commutes with the differential map

2

of the projection of Nl to V along the orbits of X. Then
integréting the vector féeld v(x,t), we obtain an element 81 of
LDiff(M,F) which is the extention of f'ﬂv. Note that 7r(gff)£?

and gfquidv' By composing a relevant leaf preserving diffeo-

morphism g2 such that g4V=1aV and gz (outside of NZ):id., Eégff
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has a requ ired property. It is similar for the case of other
component of M. Q.E.D./
Again we denote such gf by f for simplicity.

Assertion 1.11. Under Lemma 1.6, there exists a unique

integer m such that f(yn)zyn+m for a sufficiently large integer

n.
Proof. From Assertion 1.10, there is a commutative diagram
in T (v, 9,1 LN S
’ n’’n+l” T 7 n+m’ n+m!
J/p \Lp :
SRR S S L

where p(y )=xO for each n and Ey‘,y +i}= \) <¥t(y ) din T.
n n’“n 0<tel n
Therefore m'=mtl. Since f is the orientation preserving diffeo-
morphism , we have m'=m+l. Q.E.D.
Proof of Lemma 1.9 cntinued. By composing%ﬁhe.foliation

preserving diffeomorphism induced from ¢{m, we may assume f(yn)

=y, for a large positive integer n. Let Tn denote a set
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( - i ! . . K - - . .
{ U <¥t(yn)bu<zs and fh :T ~>T_~ De the restriction of f
t20 n
to T . e can assume that Tn is parametrized by the interval
n
[o,?} such that =z corresponds to O. Put

£ =1 .
S A A

The diffeomorphism fh is described by fo as follows;
n

-9 _
hgfgh (x) , for X6[5n+(g-1)k’yn+ﬂkj ,
f(x)=

X s for X=zZ
where h, which is that in Lemmas 1.7 and 1.8, is a contracting
diffeomorphism of Tgtﬁhil. Note that the second derived function
h"¢0 in some neighborhood of O from Definition 1.2(3). From
the assumption, .fokid,, there is xde(yn,yn+k] that satisfies
the fo}lowing 1) or 2) ;
1) XOZfO(xO) and fé(xo)>1 ,

<
2) Xo—fo(xo) and fé(x03<l .

Let :hn(xo) (n=1,2,...)+ When X, satisfies the condition 1),
0 (



(W' (5 (%)),
(") (x))  Tol%o

1] N e
f (xn,_

2 £A(xy) 71 .

Hence f'(xn) can not converge to 1. This fact and f(yn)zyn
lead to a contradiction. It is similarly proved when Xq satisfies
the condition 2). Q.E.D.

Definition 1.12. F is called a generalized Reeb foliation
]

on a closed oriented manifold M 1if there is a decomposition of

Y
(M,F) such that (M,F)= U (M,,F.) , where (M;,F;) denotes a
jop 14 i*7i

generalized Reeb component.
Let £, be the restriction of f to (Mi,Fi) for any £ in

FDiffo(M,F). From Lemma 1.9, we define a-map'ﬂj:FDiffo(M,F)"7>

F\/r/\ j— _—
SO(2)X..7%80(2) by (£)=(F,...y £).

Lemma 1.13(fibration lemma). /U is a locally trivial fib-

Proof. We define a foliation preserving flow dﬁ; on M to be
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a union of the foliaticn preserving flows on generalized Reeb com-

ponents. From Remark 1.5, 4;t is well defined and of cla ss C .

=1
o

‘ Hence it is easily proved by using this fl§w <#t . Q.E.

Let LDiff(¥,F) denote the fiber of this fibration .
Note that this space is the space fﬁif?(M,F)ﬂFDiffO(M,F).

LCorollary 1.14. FDiffO(M,F)/LDiff(M,F) is hémeomorphic to

I xSt

Let LBiffO(M,F) denote the identity component of LDiff(M,F).
Since LDiff(M,F) 1is a closed subgroup of FDiffo(M,F) and the
natural map FDiffo(M,F)—aFDiffo(M,F)/LDiff(M,F) has a local section,
we use "the bundle structure theorem"(steenrod[ll;p}Oj).

Proposition 1.15. Let p :FDiffo(N,F)/LDifQ§M;F)'————ﬁ>
FDiffo(M,F)/LDiff(M,F) be the map induced by the inclusion of

cosets. Thon we can assign a bundle structure to FDiffo(N,F)/

LDiffO(M,F) relative to p. The fiber of the bundle is

I3
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LDiff(M,F)/LDiff (M, F).

.Corolhary 1.16. FDiffo(M,F)/LDiffo(M,F) is homeomorphic to
an r-diménsional manifold which Kas the same homotopy type as an
| -dimensional torus T1(0§ﬂ§r).

Remark 1.17. Leslie[?] has proved " let (M,F) be a compact
foliated n~-dimensional manifold of codimension q, and of class c®
If F has a finite ng&gr of leaves Ll,..',LL such thgt 'Eagffi~

T?fh:M, then FDiffO(M,F)/LDiffO(M,F) is a Lie group of dimension
< Jx.
§2 On the space LDiff(M,F)

Let (M,F) be a generalized Reeb foliated manifold and Vi
(i:l,Z,Q..,A) its compact leaves. Let & denote the subspace
of LDiff(M,F) consisting of leaf preserving diffeomorphisms such

that in some tubular neighborhood N(Vi) of Vi , the following

diagram commutes;
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N(V V.. UN(T) —L 5 £CN(V)) Ve UN (U0 )

e L

Vlu"’UV)‘ U ..UV VlV---UVA,

where q :N(Vi)——awi is a map defined‘by q(y)z%gﬁj#%(y) (see
Lemma 1.6).

Lemma 2.1. The inclusion map £¢SLDiff(M,F) is a weak homo—’
topy equivalence.

£ 1is included in FDiffo(M,F) , hence the restriction to
each V, belong to the identity component DiffO(Vi) of Diff(Vi).
Let res : £_1>DiffO(Vl)X...XDiffo(V)) \be the rest?iction map,

i.e., res(f):(f,vl,...,q ).

Vx
Lemma 2.2. There is an exact sequence;
1—>9 —>&  FE5 pirs (V))x...XDLfffyy) —>1 ,

where \9 is the kernel of rgs , and res 1is a locally tfivial

fibration.

proof. This is proved by the same way as in [Q;Lemma BJ .
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Let (M l’F ) and (1 2,E ) be generalized Reeb components
with V., as a Component of boundary. For f in % , fg(f) is
a pair &f integers (k?k'), where k and k' are the integer m in
Assertion 1.11 for (¥ 1,F ), (M FZ) respectively.

Lemma 2.3. /%3...@{;;9~*f>(Z®Z)@...®(ZQZ) is a homomorphism.

Proof. It is easily proved by the following commutative

: , £ . 1 & r -
dlagram’ [yn H yn+ ]] "_$[yn+m H yn+m+lj — [yn+m+g ? yn+m+ﬂ+l”i

l/P ‘L b ~L b
Sl Sl 3

——¥ 8 st ,
wher n 1is a sufficiently large positive integer.
Remark 2.4. Clearly fgw.{.@fk is é locally trivial fibration
over the image of f%a...gf).
§3. The homotopy type of the space of diffeomorphisms of 2-
dimensional manifold and its application.

Let Mg be a closed oriented 2-dimensional manifold of genus

g and DZUDEU UD& be 2-discs embedded in Mg. Let Diffr(Mg)

Ib
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pe the space of orientation preserving diffeomorphisms of Mg of

class ¢’ with Cr-topology and DiffO(Mg) be its identity component,
By Diffr(Mg;DlU...UDl) we denote the subgroup of Diffr(Mg)
consisting of/the diffeomorphisms whose restriction to ij...UD}

are identity.

Proposition 3.1. Diffg(Mg;DfJ...UDL) is contractible for
any g and any positive integerl .

Lemma 3.2. Let V be a compact oriented 2~dimensional mani=-
fold with boundary. Then res :Diffé(V)—€>Diffg(DV) is a locally
trivial fibratio?, where res 1s the restriction map.

Proof. It is easy to see that res 1is surjective. Let
U(id.) be a neighborhood of id. in Diffg(bv). We may consider
U(id.) as the set consisting of sections s of the tangcent bundle
T(AV) of OV such that the norm of s , IIsIKt for a sma 11 positive

number ¢ . To prove Lemma 3.2, in the following diagram

17
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T(DV) C— T(V)
i 0
s( L S :j/
DV —» vV,
we have only extend the section s of T@V) to T(V). Lét N
be a tubular neighbd rhood of SV in V, which is diffeomorphic to
3vx[0,1).  Since T(V) N:NXRZ , for any section s in U(id.),
we define a section of T(V) S:Nv—>T(ViN by S(v,t):{(v,t),
X(t)s(v),og, where X :[0,1)—>(0,1] 1is a smooth function such
that X [0,1/3]=1, ¥[2/3,1)=0. Q.E.D.
Proof of Proposition 3.1. Let V be a compact oriented

2-dimensional manifold(with or without boundary) which is not diffeo=-

morphia to a 2—sphere Sa, a 2-torus Tz, a 2=-disc D2 and a cylinder

2, 1 m RN o
¢ (=5 X[O’%J)° The group lefO(V) is contractible(see Gramain

[5)). ©Note that the fiber of the fibration in Lemma 3.2 is

Diffg(v;év). Hence Diffg{v;év) is contractible. It is well

13



known that Diffg(Da;éDa) is contractible(see Smale [10]). For
the case ?f V:CZ, we easily see that Diffg(c2902> is contractible.
Q.E.D.

Next, we consider the non-compact case. Let 1L be a non-
compact oriented 2-dimensional manifold. By Diffc’r(L) we denote
the subgroup of Diffr(L) consisting of diffeomorphisms with compact
support.

Proposition 3.3. 7r£(DiffC’r(L);id.)=O for each positive
integer 1.

i

Proof. Let S be a i-dimensional sphere with a base point

5,(i21).  Let j’:(Sl,sO)-%(Diffc(L),id.) be any continuous map.
Since S is compact, there exists a compact submanifold K of
I such that SF(Sl) restricted to L-K 1s identity. Hence the

image of % is contained in Diff(K;3K). From the contractibility

of the identity component of Diff(K;3dK), there exists a homotopy

(9

19
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&:5'XI—Diff(K;)K) such that $(s,0)=%(s) ana &(s,1l)=id..

Let E3 be the total space of a fibration over Sl with L2
as a fiber, tha t is, E=LXI/(x,0)~{h(x),1), where L 1is a non-
compact oriented 2-dimensional manifold and h :L~>L 1is an orient-
ation preserving diffeomorphism. Then we study the homotopy type
of the space { féDiffC(E);ﬁﬁﬁj; where /U is the fibration map},

deacted by PhDiffc(L)). This space is identified with the space

{%’:I~<>Diffc(L), differentiable map; f(O):h-%T(l)eh}. Furthermore,
this space is homotopy equivalent to Fhe space.{3>:1~f>Diffc(L),
continuous map; ?(O):h—o?(llﬁiwith Cc-0 topology, which.is also
denoted by PR(DiffS(L)). Let q:Ph(Diffg(L))—f>Diffg(L) be a

map defined by q(¥)=%(0).

Lemma 3.4. q is a locally trivial fibration.

Proof. First we show g 1is surjective. For any f 1in

20



. s . J N c
Diffg(L), take a smooth path f,  frum identity to f in DIiff (L).

h‘%féh is a smooth path from identity to h_%ﬁh in Diffg(L).

Let 8¢ be a homotopy defined by

_ &t <l
&y fl-at for o%tsz ,
nTef.. eh for <t€l
T2t-1 srET
1

8, is a path connecfing f and h “efh.

Next, we show that q 1is a locally trivial fibration. Let
Ug(id.) be a neighborhood of id. in Diffg(L), which is homeo-
morphihh to the set {ser;(T(L)); nsu(ij (by a coordinate mapping
(Eells[}l)), where [ﬁ;(T(L)) is the space of sections of the tangent
bundle T(L) of 1L whose restrictions to outside of the compact
set are zero-sections. Because of the continuity of a map f ——>
h_%ﬁh, there exists a neighborhood Uijid.;[\‘_ggt U=Ug(id.)nUg(id.).

ouch Hat fa any i Ugtidy) b ig catatued 5 Ug(m

Let Vi, :U——}Ph(Diffg(L)) be a map defined by

2]
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Kl-at)sf for 04ts7 ,

=

Y
‘id.(f)(t -
(2t=1)s, -1 for 2<t<1,

h &fh
where Se in r;(T(L)) corresponds to f in U by a coordinate
mapping. q»id. is a continuous map and q;qu‘(f)zf. Hence
#Ed. is a local section. Let Ug(f) be a neighborhood of f
in Diffg(L) which is homeomorphic to the set {ser;(f*T(L)); nsﬂ(i},
and Ua(h_}ﬁh) be a neighborhood of h +vfh in Diffg(L). Let
Pt be a smooth path connectiﬁg f and h-}ﬁh.' Let U .be a
small neighborhood of f such that UCUi(f), and for any f in U,
n"Ysh  is contained in Uz(h-gﬁh). Let \kf:U-—>Ph(Diffg(L)) be
a map defined by
(1-3t)s,, for 0st£1/3,
ﬂ?(f')(t): }Bt—l for 1/3¢tg2/3 ,

(3t-2)sy =14 for 2/3%t€1.

V@. is continuonus and qb#}(f'):‘f', Hence \Ff is a local section.

22



The fiber of the fibration q 1is the space of based loops
in biffS(L), which is denoted by jlﬁDiffoc(L)). Consider the
homotopy exact sequence of the fibration q. Then we have

Proposition 3.5. 7[‘1(Ph(Diffg(L))=O for each  i20.

Corollary 3.6. Ph(Diffg(L)) is a connected component of
PP (Dif£C(L)).

§l+. Theorems

Note that the kernel of F| ...@/j\ in Lemma 2.3 is the
space Phl(DiffC(Ll))X.i)(PhA(Diffc(LA)). Hence each connected
component of\g is contractible from Proposition 3.5. Consider
the homofopy exact sequence of the fibration res in Lemma 2.2,

e STL(9 )%@(ﬁ)——)?(z@iffo(vl)x. CXDLEEN(V))) =T () —
7rl(£)-—>7Cl<DiffO(v1“)x...XDiffO(v)\))éaﬂ'O@)—;... .

Let 's Dbe the number of Vi homeomorphic to a torus TZ. By the
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result of Earle and Eells{2], Gramain[57, DiffO(TZ) is homotopy

equivalent to TZ, and the other group DiffO(V) is contractible.

(Note that Vi is not diffeomorphic to Sz.) Thus the map
R . . N
AT (Dier (V) % . XDif£ (Va))—>7((9) reduces to the map
A :(Z@ZY}.?J@(ZQZ)*t>ZE#\9 ). By considering the holonomy around

Ta, we may assume that Z%(Z@BYS S?§ZZ@O) is injective. There-

fore combining Lemma 2.1, we have

Theorem 4.1. 7Fi(LDiff(M,F).): 0 for iz2 ,
@le for i=1, 0¢f<s.
Theorem 4.2. Let (M,F) be a generalized. Reeb foliatea
3-d imensional manifold. Then FﬁifggM,F) has the same homotopy
type as an p—dimensional torus T£(0§ﬂ§r+s), where r is the ﬁumber
of generalized Reeb components and s 1is the number of compact
2

leaves homeomorphic tc T .

Proof. Consider the homotopy exact sequence of the fibration

24
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in Lemma 1.15,

. . . - l~r—-:1 :
.,,_%71'2(LD:.ff(M,F))—>7l’2xFD1ffo(M,F))-v—,/[z(sx O

: s , lo—re~.1l .
Tl(LDiff(M,F))'—érl(Plefo(l‘x,F))—-}ﬂ'l_(S e XS )—>T1,(LDif£ (¥, F))
—>1.

since FDiffo(M,F) is a topologigal group, ’ﬂi(FDiffo(M,F)) is

.an abelian group. Therefore we have

7[‘i(FD1ffO(M,F)) =(0 for iz2 ,

i
@z for i=1, 0%f¢r+s.

Hence FDiffO(M,F) is weak homotopy equivalent to an f—dimensional

torus TQ. By a result of Palais(S], FDiffo(M,F) is homotopy

equivalent to Ti for O§ﬁ§r+s.

Let F a codimension one foliation on Sl)(s'2 such that

Reeb component, where S%KSZ:S¥XD§%£S¥(D§.
k. 2

F SIXD?(izl,E) is a
i
: . i ae 1, <2 . C .
Dxample 4.3. PleIO\ SKST,F) 1is homotopy equivalent to
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Proof. First we consider about the homotopy type of LDiff
(SlXSZ,F), which is the fiber of the fibration JU in Lemma 1.13,
From the contractibility of Diff(DZ;éﬁa), we see that § is homo~-
topy equivalent to ZEZ(see Lemma 2.3). In this case, /3 is
an epimorphism.) Consider the homotopy exact sequence of the
fibration res 1in Lemma 2.2,

‘ a
C T (9T (8)TC (Dif£y (1)) —> 74 (Y ) —>T,(8) —> 1.

0
From the structure of the foliation F, A 760 is an injection.
Combining Lemma 2.1, we have
TCi(LDiff(.Sl)(Sa,F);id.h 0 for iZz2 ,
Z for 1i=1,2.
Next, consider the homotopy exact sequence of the fibration
T in Lemma 1.13,

.. .—>7t“2(slel)——axl(LDiff(slxse,F) )f%ﬁl(FDiffo(Sly(SZ,F))

%Tl(S]XSl)-—}%(LDiff(Slxsz,F)) —>1.

24
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E(FDiffO(S])(SZ,F)}id.)z @z for i=1,

Hence we have

0] fo¥ ize2. Q.E.D.
; 5. Foliation induced from spinnable structures
A compact 3-dimensional manifold M 1is called spinnable
if there exists a l-dimensional submanifold X, which is a finite
union of circle's, called an axis, satisfying the following conditions

(1) The normal bundle of X is trivial,

2 2

(2) Let XXD~ ©be a tubular neighborhood of X, then M-XKInt D

is the toal space of a fibration o ver a circle Sl and
H

2 1

(3) Let p:M=XXInt D—>S~ be the projection of E' , then the

diagram Xxsli———é M—Xxlnt D

commutes, where 1 denotes the inclusion map and p' denotes the
projection onto the second factor.

The fiber L of ¥ is called a generator and the pair~$9=(x,§)
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is called a spinnable structure on M.
Theorem 5.1 (Alexander(l]). Every closed orientable 3-dimen-
sional manifold has a spinnable structure.

Let (Mtj) be a closed manifold with a spinnable structure

1

r
)g. The axis X 1is a finite union of circle's, i.e., Sy .
‘ ) 71

1

1

Hence we can construct a codimension one foliation on M from
this spinnable structure(seef12]). We denote this foliation by
Fg. Note that Fg is a generalized Reeb foliation. Thus by

Theorem 4.2, we know that FDiffO(M,%g) has the same homotopy

4

— e

type of Slx...XSl

for some integer Q , 08{€or+l. In this case
we obtain a better information.

Theorem 5.2. FDiffO( M,Ez) is homotopy equivalent to &
for some Q s O§Q§r+l, where r 1is equal to the number of connected
components of the axis of ,8.

Theorem 5.3. 70, (LDiff(M,F));id.)=0 for i2l, and
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7[6(LDiff(M’€2);id-):o for r=1, g=1, where g ;s the genus of
the generator L of l .

Theoremv5.2 is proved from Theorem 5.3 wusing the same method
as in the proof éf Theorem 4.2. Moreover we have the following
corollary of Theorems 5.2 and 5.3, which is a result of Fukui-
Ushikily].

Corollary 5.4. FDiffo(M,gg) is homotopy equivalent tq
S%Ksl for r=1, g=0.

Proof of Theorem 5.3. By putting VizTi(Azr) in §2, we
have Lemmas 2.1,2.2 and 2.3. Consiaer the homotopy exact sequence
of the fibration res in Lemma 2.2,

..‘a'ffz(DiffO(Ti)X. . .xDiffo(Ti)\) -ﬂ”(l(& )—ﬁ-TL&(S))——)?Zi(DiffO(Ti)A
...'XDiffO(Ti))**—t‘f TT,(9)— T (£) —¥1.
From the structure of the foliation F around each compact leaf

Ti , we see that A is injective. Hence we complete the proof
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of the first part of Theorem 5.3.

Next,we consider the case r:l,\g:O. The kernel of f ,in
Lemma 2.3, is the space Ph(Diff(DZ;SDa))XPid'(Diff(nggDa)).
Since Diff(D°; ) is contractible[10), PR(Diff(DZ;30°)) X
Pid'(Diff(De;QDa)) is connected. Q.E.D.
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