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Growth of a Spherical Nucleus in the

Undercooling State of Metal
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1. Introduction and Formulation

It is well known that when a pure liquid is cooled to its melting

point T the solid phase may form; alternatively if nucleation is

E’
suppressed, the liquid will continue to cool (that is, undercool or
Supercool).

The free energy change on forming solid from. liquid at the equilib-

rium transformation temperature TE is
AG = AH - TEAS =0

where AG, AH and AS are molar changes in free energy, enthalpy and

entropy, respectively. At temperature T different from TE’
AG = AH - TAS # 0.

Neglecting the small temperature-dependence of AH and AS and combining

last two equations yields

AH AT

Tg

AG =
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k&) About the physical base we rely on [1].



where AT is the undercooling (= TE - T), whose value is negative for
solidification.

An‘important influence on the melting point of a pure material is
surface curvature. The surface curvature can be viewed as introducing
an excess pressure in the solid phase (only). The excess pressure is

accounted as follows :
Ap = 2 ok

where ¢ is surface free energy per unit area and k is the mean surface

curvature. If solid cannot be compressed, Ap = AG holds. Thus

= 2 oK
TE
or
1 20TE } ZUTE
- s
K AHAT L(TE TI)

where L is latent heat and TI is sufface temperature,

A crystal smaller than a critical size is called "embryo", which
grows to nucleus with the éritical size. We are concerned abbut growth
of the nucleus. Fbr simplicity we consider spherical nucleus, whose
size is determined just by its radius. The critical radius is
* ZOTE

L(TE - TA) ’  /

TA is initial liquid temperature of unde;cool state. -

From the above statéd we can describe a system of equations which

determines the radius Y(t) and the temperature distribution T(r,t) as

follows :



[ pe S'Jt? =kKAT , O0<r<Y(t), t>0,
-k —g%} (¥(t),t) = Lpi(t) » £>0,
20T
E
Y(0) = v~
L(T, - T,)
L(T. - T.)
E I~ 1 =
oo = o c t>0 (Tp = T®),0),

E
T(r,0) = Ty(x) ,

where k is thermal conductivity, p demsity, c¢ specific heat of solid

metal, and L latent heat, which are assmed to be constant. Putting

T—TA=u E_E.=a 20 _
’ 9
Tg Lp L,
20T
= - = =
L(T, - T,) b, ¥Y(t) = y(t) and To(r) £(r)

 yields the simplified form -

(P-1) -g—ltl-=Au,0<r<y(t),t>0,
m ’ m
(P-—Z) u(}'(t):t) = _b— - y(t) s t > o,
@) (P-3)  y(t) = - a%-;‘— (y(£),t) , t>0,

C(-4)  y(0) = b,

(P-5) u(r,0) f(r) , 0<r<b.

Here we shall refer to the series of Friedman's works, Part I {1959)
[2], Part II (1960)[3] and Part III (1960)[4]. 1In Part I he considered

the problem of melting of solids. Ini'Part II he considered the develop-



ment of one liquid drop surrounded by totally supersaturated or totally
undersaturated vapour of its own substance. Denoting by u(r,t) the
normalized vapour density at the point (r,t), we get for u(r,t) the

following system of equations

ou . .
[ Y Au , y(£) <r <o, t>0,
u(y(t),t) = 1 (saturation density), t > 0,
¢ du
y(t) = a - (y(t),t), t>0,

y(0) =b (b > 0),

k u(r,0) = f(r), r>b .

In Part III he considered the behavior of one gas bubble in liquid in
which some of same gas 1s dissolved. Denoting by u(r,t) the normalized
density of dissolved gas in the liquid, we get for u(r,t) the following

system of equations

3
-53- =Au, y(t)<r<e, t>0 >

m m

u(y(),t) =

y& b t>0,
@+ yr(lt) () = o gﬁ (y(t),t), t >0,

Y(o) =b ,
u(r,0) = £(r), £ 5>b .

We note that the case of m=0, n=0 reduces to that of Part II by putting
l-u=v. He could prove the unique existence of the solution only for

émall .



Our problem is analogous to Friedman's problems,especially that of
Part ITII. Thus it can be viewed as that of Part IV. Indeed we can prove

unique existence of the solution analogously. By putting

r=x,. ru(r,t) =wx,t) , rf(r) = ¢(x)

our system takes the form

(v _ dw
t alx2

0<x<y(t), £t>0,
wy(t),t) == (y(t) =b), t>0,

w(0,t) =

o

» t>0,

@Y #
y(t)y(t)

ow : m m .
"'a—a';‘ <¥(t)’t)+a(~b_--—§?—(—{5)’ t>0,

y() =b ,

L wi(x,0) =¢(x) , 0<x<b,.

By introducing the Green's functions of heat equation

cs 3% _ )
g(x,t; E,1) = —te o A=D1 . B
2[m¢ t-T) z.fﬂ ( t-_'r)
_.SE:ELE _x 2
G(x,t; &,1) = L e MDD 1 o H4(t-T)

2 [w (t-1) 2[m (t~T)

and making use of standard technique, we get the nonlinear integral
equation of volterra type for ux(y(t),t) eéquivalent to the last system

as followings :



()
o

b t
[ () = -2 J G (y(t),t5 £,009(8)dE +-g%-f &(r)c(y(t),t;“y(r),r)dr
0 0
. t
t?“) 4 -2 J GE(Y(t)st; y(T),T)v(T)dT
(o]

yy + a(% - B +av(e) =0

\

where v(t) = lim wu (x,t). If the last system for v(t) and y(t) is solved,
x>y (t)
w(x,t) (and hence u(x,t)) is given by the formula

b t
w(x,t) = j g(x,t; £,0)0(E)dE + ,ﬁ ‘I g(x,t; y();T) (y(T) - b)y(T)dr
Y 0
t
+ f {g(x,t; y(t),t)v(t) - -%— U(y(T),T)-%g'(X.t;'y(T),T)}dT
b :

The system (P'') can be solved by Picard's iteration procedure £or small
t and small a. Using monotonicity of y(t)'(that is itseif to be maked
sure of) allows to continue the solution for all t.

In the method, however, restictionron o 1s very severe. Here we
take another more constructive way. This way is one taken by Cannon,
Hill and Primicerio for the most simple Stefan's problem [5}, {6], [7].

Here we will give our definition of solution :

Definition A pair of functions (y,u) is éalled a solution of the

system (P) in 0 < t s T, if the following conditions are satisfied :
i) y(t) e CLO<t<T), y(t) e ClO<tsT),
i) ulrt), () cCOsDyt), 0<tsT),

Mue ClOspr < y(t), 0<tsT) R



iii)  (y,u) satisfies (P-1) ~ (P-5).

In item 2 we will give some lemmata necessary for later purposes.
In item 3 uniqueness and existence of solution of our problem will be
proved. In item 5 we will propose a difference scheme solving our
problem and give another proof of existence tﬁeorem as_a by-product.
In item 6 iteration procedure for solving our difference scheme will

be given and its convergen will be proved.

2. Some lemmata

Here we shall collect some a priori properties of solution (y,u)
of the system (P).

First we assume that

f(r) is continuous,

(2.1) -
)

f(r) 20, f(r)0, O0sr<b.

Lemma 1  Under the assumption (2.1), y(t) i8 strietly monotone
inereasing for t > 0, that is
y(t) >0 (t>0).
(Proof) Assume y(t) < O in an inte;val 0<t< t0 s
m

then the function U Z u - ( 5 3&%3 ) satisfies the system of

equations
Luza-vU = 2B g
0 t 2
y(t)

4 U(Y(t);t) =0,

| U(r,0) = £(x)



By the maximum principle we have U2 0 (0 < t < to), and hence
_S%—(y(t),t) =-§§‘(y(t),t) < 0. This means &(t) 2 0 through (P-3), which
is, however, contradiction to our assumption §(t) < 0. Thus from
18, A

continuity of §(t) we get §(t) 2 0 for some interval 0 5 t < tgs and
u(r,t) 20 (0<rsy(t), 0s<tx to)
Next we assume that

§(t0) =0, y(t) <0 (tg< ts tlf.

m m ’

£ . - o - _ ,
Then the function. U = u ( Y(to) y(t)‘) satisfies

LU=AU -0 =-2E 5 (¢ <tsce) ,

0 t Vo 2 0 1
‘ y(t)
) m m
U(y(t),t) = b " y(to)[ >0,

U(r,to) = u(r,to) 20.

By the maximum principle we have U = 0 (t0 s tg tl) and arrive at ..
contradiction analogously as done above. Thus we get ;(t) 2 0 for all
t2 0. |

Next we shall show that.the equality can be omitted. if the

equality were to happen, there would be ‘t' and t"' such that
ye) = y() , t'ses<t" (y(E) =0, t'<ts< t")

Since above defined U satisfies L .U = 0 and U(y(t),t) = 0 (t' <t < t"').

0
From £(r) 2 0 and f(r) ¥ 0, by the strong maximum principle we get U >0
U _ Bu

and by Friedman's lemma [8], '%%'(y(t),t) < 0, which is contradic-

ar
tion to y=0 (t' < t < t"). Thus the proof is completed.

Next we assume that



(8}
L

(2.2) f(r) £ N( é% - —%— ) (N : positive constant ).

Lemma 2 Uhder»the assumption (2.1) and (2.2)

(2.3) 0 <HE __ (y(t),t) < --ﬂ-—- (0<ts<t,)
o r 2 0
y(to)
holds for any ) |
(Proof) Introduce a 'barrier' function
1 1 m m
w, (r,t) = N[ — = 1+ -
t . r Y(to) b y(to) .
Since, by Lemma 1
b, G ,t) = N[ = =]+ B =B B B 5o
to y(t) y(to) b y(to) b y(t) 0"’
: 1 1 m m 1 1
w, (£,0) = N[ = = —==] + = - =< > N[ = =—r
I 7S L YT OV S TCO L
1 1
>N( T -b )2f!
we have w. - u 20 (0 £ t £ t.) and hence
t0 0
m m
uly(ty) - poty) = ( + -'51253), N
(p>0),

= Gy - oyl

’

p

which produces

Ju N
- 5 (Y(to)’to)‘ s |

y(to)2

Since ty is arbitrary, we get the right side inequality of (2.3). The
left side inequality is also true from Lemma 1.
Further we suppose that

(2:4) f'(x) £ 0.



3Y

Lemma 3  Under the condition (2.1) and (2.4)

%f? (ryt) < 0 for 0sSrsSy(t) and t > 0
holds.
(Proof) z = -%i? satisfies the system of equations

( 2 9z m
b= TpEc g T0, £>0,

[

2(y(£),6) = = == y(t) <0,

z(r,0) = £'(xr) < 0 ;

z(0,t) =0 .
L .

Suppose that there exist an intefior point (T,t) such that

max z(r,t) = z(r,T) =M> 0, z(r,t) < M(t < t)

O<rsy(t)

OStStO
Then at (T,t), z = 0, z_. < 0 and z, 20 hold, but this means that
Az - -Zi z -z < 0, which is contradiction. Therefore we get

T
z(r,t) < 0.
Next we shall state a comparison theorem. We consider two pairs

of data (bi’fi) (i=1,2) satisfying conditipns.(Z.l) and (2.4), and
their corresponding solutions (yi,ui) (i=1,2);

Lemma 4 If b] < b2 and f} s‘fé,.then
y;(t) < y,(t)  (t20)

holds.
(Proof) If the statement is not true, there is a to such that

7 (tg) = ¥y(eg)s ¥y(eg) 2 ¥y(t)s 3, (0) < 3y(6) O 5 €< e

-10-
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In 0 < t < t,, we have by Lemma 3

0

: m m m m

and hence by the maximum principle
uz(r,t) - ul(r,t) >0 (0<rc«< yl(t), 0<t«< to).

- = )
Since uz(yl(to),to) ul(yl(to),to) 0, it follows by Friedman's

lemma that

Buz duy . .
e Ualtgdsty) = 577 (yy(egdatg) < 0 die. y,(t5) > v, (2,
which is contradiction. Thus we have completed the proof.

Here we will give a fundamental formula. Multiplying (P-l) by r2

and integration of the result over the region {0 < r < y(1), 0 < T < t}

yields
Yo b t
2 2 Z00)y
u(r,t)rdr - f u(r,0)r"dr - ‘f u(y (1), D)y (D)y(r)dr
0 ¢ 0 0
=f Vo B g,

o
which can be written by using the conditions (P-2) ~ (P-5) as

fv(t) b t
2 2 m m 2, .\
u(r,t)rdr - ] f(r)r"dr - I (— - =)y (Dy(t)dr
A R A §“. vy’

t .
=- % I yz('r)y('_r)d'r .
o .

From this by integration we get the desired fundamental formula

2 2

T (2267 -h+ 5 6P -vh
(2.5) b 4 ¢o)
= J f(r)rzdr - f u(r,t)rzdr .
0 0

-11-
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which is useful for later purposes.
From the last formula we have first a comparison theorem containing
the case of b1 = bz (see Lemma 4).

14
Lemma 4 If bl < b2 and f‘1 < f2, then
y; Sy, (t20)

holds.
(Proof) It is sufficient to prove it for the case of b1‘= bz,
which we assume. Take an arbitrary positive constant 8§, and consider

three pairs of data (bl’fl)’ (bz,fz) and (b2 + G,fz). (The last f., is

2
taken to be zero for b2 <rs b2 + 6.) It is clear from the previous
lemma that the corresponding solutions (yl,ul), (yz,qz) and'(yzﬁ,uza)
satisfy '

@ v <’ Ly, <y’ w:o0.
1 2 2 2 4

Applying the fundamental formula (2.5) to two solutions (yzs,uzs)

and (yz,uz), we have

L, 1l __mo §3 . m , 62
37 (3 " b4 )G, )+ 5 (yzy) :
b8 Y, ()
i1,1l__m 3. m 2 2 8 2
' ' 0. (v}
and
1 1 m 3.m_ 2
3 (3 ---.D—z)y2 +5Y,
by Y% (t)
1l 1 _m,, 3 m, 2 2. _ 2
‘3‘ ( o bz)bz + 2 bZ + jo fz(r)r dr fo uz(r,t)r dr .

Subtracting the latter equation from the former yields

=12



9 N

0

1,1 m N 3, ,m 8,2 2
T, 007 3 e L) - )
1,m_ _m 83,1 1 _m 3_. 3
2.7 '
1, m m 3., m 2 .2
3 ( b, ———b2+6 )(b2+5) +3 [(b,+5) b,"]
Yy (T) Y, ()
- f [uzs(r,t) - uz(r,t)]rzdr - uza(r,t)rzdr .
0 Y (t)
By the maximum principle we see that
u, (ryt) 20 (0=sr< Yy (t)) and
Sre) - u,(r,0) 20 (05 x5y, (0)
u, (z,t u, (r,t r < y,(8)).
Hence we have from (2.7)
L,l_m . 83 m 82
1,1 mn 3,m_2 Sm 8,3
3 (573, M2 YTV TR, 0,40 (v,
1.1 m 3_, 3, _ Sm 3
_ +5 (5 b, )[(b2+6) b, ]» ‘—_———3b2(b2+6) (b,*8)
m 2 2
+3 [(b2+5) - b, 1.
We note that the function
1l m, 3, m.2
F(y) =3 (-3 )07 +5Y

is monotone increasing for all y > 0 if b > om, and also for

0<y< =2 4 p < am.

' L 8
Now it follows from continuity and monotonicity (Lemma 1) of Yy (t)

-13-



and yl(t) that for sufficiently small t and §,

b, +8 sy G(t) ( S--—Esz—— if b, < am ) and
2 2 om - b2 2 2
omb
= —_2
bl = bz s yl(t) ( < om - b2 if bz < Oom )o,

Therefore by the above note and hence we get from (2.6) and (2.8)

o

l_(.l._ - o 3,m_2
3 o b2

m 1,1
Wit Sy, Ty F e

for sufficiently small t and 6. The last term 0(8) tends to zero as
8§ + 0 since ya(t) is uniformly bounded for small t and §. Since § is

arbitrary, the inequality implies

1.1 m . 3 m 2 _ 1.1 m n
3 (o~ b, )y oy <3 (g b, )Y, 5 Y,

for sufficiently small t. Again by the above note we get
(2.9) yl(t) < yz(t) for sufficiently small t.

if £, = fzs b, = b,, we have also yl(t) > yz(t), and hegce yl(t) = yz(t)
for sufficiently small t. Continuing the same reasoning we get
y,(8) = y,(t) for all t > 0.

Suppose. that fl 3 f2, fl < fz, bl = b2'
y, (&) = ¥,(t) holds for an interval 0 < t < tys the maximum principle

If the equality

yields ul(i,t) - uz(r,t) <0 (0<rc« yl(t), 0<ts to). Hence by
Friedman's lemma

Bul Buz . .

3 0p(0)58) = 525 (r(8),8) > 0 fie. y () <y, (1)

holds for 0 < t < FO’ which is contradiction to our assumption. Therefore

we get yl(t) < yz(t) and ul(r,t) < uz(r,t) for sufficiently small t,

-14=



hence by applying Lemma &4
yl(t) < yz(t) for all t> 0 .

Thus we héve proved Lemma 4'.
We will investigate the behavior of y(t) as t + ©,
Lemma 5 Suppose that there exists a solution (y,u) of (P) for
all t > 0. Then
lim y(t) = y(»)
£t > o
where y(») is the positive root of the equation (2.10)

(Proof) Consider the solution w(r,t) of the system

w -M=20 (r>0,t>0)

t
- m _ m <r<
£(r) ( b r ) O r" b ©
w(r,0) = ’
0<b<r

It is clear that u(r,t) - ( %E - %} ) is bounded above by w(r,t).

However we have as t + ©

b
rzw(r,t) -y f g(r,t; E,O.){fcg) - %‘ - .% y }EdE
0 2
1 - r-b Jb
_ 4t o o 5
) re @ - ¢ & - F ke
2[m t3/2 . o b E
b ' 7 .. .
< 372 ¢ s g 16t 32 pax 12 {£(r) - (%5.-€})}
c2fTe | © 0srsp

Thus 1lim rzw(r,t) =.0 - uniformly, and hence 1lim rz{u(r,t)e(%%-ﬂl)}=o
t + . t > r

-15-
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Therefore from (2.5) we have

: b
1 3_ 1 2 2
(2.100 33 YT =3 b7+ b7+ f £(r)xr7dr
0.

Hence we get a unique root y(~) of the last equation, and by the

monotonicity
y(t) < y(® (t =2 0),

lim y(t) = y(=).

t > ®

3. Uniqueness and existence of solution

Directly from Lemma 4' we have a uniqueness theorem.

Theorem 1  The system (P) has not more than one solution under
the condition (2.1) and (2.4).

(Proof) Suppose that there are two ﬁairs of solution (yl,ul)
and (yz,uz). Then Y1 = Yy holds from Lemma 4'. Hence the well known
theory of the problem with prescribed boundary shows uy = u,.

Next we will construct a solution of our problem . For that we
consider an auxiliary problem, which we cal} (AP), with a prescribed

boundary r = yo(t) :

r

%%=Au, 0<r<y0(t),.t>to,

(AP) 4 u(y(t),t) = -% - -;-Ol(lam, t > tg

\ u(r,to) ='fo(r) , 0srsg yo(to)‘

" Putting

-16-



f(r) , 0sr<b-290

£,(0) = £(x) =
0, b-6<sr=<hb
e .
Volt) =y () =b, 0<t<6,
3] ‘ Bue
we get the corresponding solution u  of (AP), and we know that e
exists and is continuous for 0 < r < ye(t), 0 <t<9 and that
o
aue N
(3.1) - 0 < - _3? < 5 3
(y(£))

under the asumption (2.2).

Suppose that by the boundary function
t
0 3u’ 8
(3.2) y (t) =b -0 o (y (T - 8),t - 0T (t 2 0)

the solution ue of (AP) is constructed recursively for 6 < t < nf,
Bue Bue 9‘

and e exists and is continuous, and further 0 < - Yy {(y (t),t)

‘-g-ﬁ*—fi . Then ye(t) is continuously differentiable for t 2 6.

y .(£=06)

Now in nb < t

<

A

(n+1)6, we define ye(t) by (3.2) and solve (AP) with

to = nd, yo(t) ye(t), fo(r) = ue(r,ne), and then get ue(r,t). From

the above assumption ye(t) turns out to be continuously differentiable

also for nf < t € (n+l1)6 and

(3.3) 0=y < oN

{ye(t - 6)}2 .

- Continuing the procedure we get {ye,ue} for 0 £ t £ T and we know that

(3.3) holds for 6 <t < T.
The family of functions {ye} is equicontinuous and uniformly

‘bounded in 0 £ t < T. By Ascoli-Arzela's theorem, hence, we can

-17-



extract a subsequence of {ye} which converges tq a Lipshitz continuous
function y(t). Define u(r,t) as the solution of (AP) with t0 = 0,
fo(r) = £(r) and yo(t) = y(t) (defined'above). We can also prove by
the maximum principle that the corresponding subsequence'{ue(r,t)}
éonverges to u(r,t).

So defined (y,u) turns out to be the desired solution of our
probleﬁ (P). 1In fact, since (y,u) satisfies (P-1), (P-2), (P-4) and
(P-5), it remains to assure (P-3), which ig, as easily been shown,
equivalent to the fundamental formula (2.5) under Lipshitz continuity
of y(t). For (ye,ue)'we have an analogous formula

t yeey b
f )2 -2y (r0))ar - f W, eyrlar + f £ (ryrlar

o 0 Y
t

+f (2 - 2 HH%% =0
0 y (1)

Tending © to zero through the extracted subsequence, we get the
fundamental formula (2.5) for the limit functions (y,u). Hence (y,u)
satisfies also (P-3). It is clear from uniqueness that all sequence
(ye,ue) converges to (y,u). Thus we have proved existence of solution
under the assumption (2.2) and that it can be obtained by the above
stated method.

We can get rid of the condition (2.2), and we have

Theorem 2  Suppose that f(r) is continﬁously differentiable, not
equal to zero identically énd satisfies (2.1)(2.4)*; Then there is a

pair of solution (y,u) of our problem (P).

*)  This:impliés that £(b)*0 may occur. Then the solution u is consid-
ered at:(b,O) to satisfy 0 s. lim u(r,t) < lim u(r,t) < £(b)
- i xyt)*(b,0) (r,t)+(b,0)

-18- .



Indeed define

f(r), 0sr<b-=-6 ,
f(S (r) =

0, b-8d<srshbd

for each § satisfying 0 < 6 < b. Since f is bounded in 0 < r < b, it

follows that for each &8(0 < 6§ < b) there exists an N = N(8) such that

1

0 £2(r) < NE( 2

o |-

).

Hence, for each § there exists a unique solution (yG,ua) of the problem

(P) corresponding to the data (b;fs). From Lemma 4' we see that for

61 62 - 6n 6n
§,<8,, 7y <y . Set §_ = 2 ", n=1,2, ... , and comsider {(y ",u ®}.
Now the sequence {y "} is a monotone increasing sequence of functions

which are bounded above via Lemma 4' by the free boundary of the solu-
tion of the problem (P) corresponding to the data (b+l,f) where f is

extended as zero over b < x £ b+l. Consequently, there exists a func-
. : 8
tion y(t) = 1lim y n(t). From Lemma 1 y n, n=1,2, ... , are strictly
n -+ o 61
monotone increasing functions of t. Hence, for 0 >0, y "(0) - b >0

and it follows from the boundedness of f that there exists a positive
) .
constant K = K(f,y 1(cr) - b) such that for each Gn and tg satisfying

. 0<o0x< t0 < T we have by Lemha 2

.8 :

n

y (t,) 8 . K

0 n, -

=-u vy (gy)sty) S5 .
n 2
y ()"

0 <

o

Since t is arbitrary, we get for all n=1,2, ...

,Gn oK oK
0<y (t)s—g—-—— < 2
’ n, .2 b

y (v)

-19-



for 0 £ t £ T. Thus it follows thét the limit function y is Lipshitz
continuous with Lipshitz constant JZ%_ for o <t < T. In order to

b
demonstrate the continuity of y at t=0, consider the solution (p,v)

of the problem

r‘g“i"ﬂ"“‘),b<1'<p(t),'0<ts'1?,
vib,t) =M, 0<t<T,
.M m . .
(3.4) v(p(t),t) = b T p(0) 0<tsT,
b =-a B (),e) , 0<esT,
p(0) = b .

where M = max ( max f(r), '%’- ).
0<r<hb
It can be seen that its solution exists and p(t) is monotone

increasing function for all t 2 0 (see item 4), and further that

v yan(t) < p(t) holds for all t > 0 by the same reasoning as in the
proofs of Lemma 4 and Lemma 4'. Therefore we get y(t) < p(t) for
all t > 0. Since yal(t) < y(t) < p(t) and both y 1(t) and p(t) are
continuous for t 2 0 (ysl(O) = p(0) = b), it follows that‘y(t) is
also continuous at t=0. Let u denote the solution of (P-1),(P-2),(P-5)
wéth boundary y(t). I; follows from the maximﬁm principle that

u u as n*°, Hence (y,u) satisfies'the fundamentai>f9rmula (2.5)

which implies that y is continuously differentiable for t > 0 and

that (y,u) is the solution of (P) for the data (b,f).

4. Comment on unique solvability of the problem (3.4)

First we note that the following system
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8
f éﬁf A =0, ber <ot , 0<tsT,
$ v
vib,t) =M, 0<t=<T,
b, 0 = - 5 , 0<tsT,
(4.1) p(t)
'8 8 |
p(t) =-az— (P(),t), 0<t=<T,
%) =b+85,
§ m m ' :
v (r,0) = b8 - o (b < r < b+S)

has the unique solution (ps,vé). ( Here 0 < 1im"v6(r,t) <

5 (r,t)>(b,0)
< lim v (r,t) < M. ) In fact by repeating the almost same argument
(r,£)>(b,0) o
of Lemma 1 we get
(4.2) ps(t) >0 (t > 0)
By using a ‘barrier' function
M
1 1 m m
w, (r,t) = [ = - 1+ -
1 +§ 8
o L= AR E )
b p(ty)
we get through the analogous argument of Lemma -2.
(4.3) 0 < e = - vr(p (t),t) < 3 5 < 3
a o (ty) (P (£y)-D) P (ty)-b

Noting that vi(b,t) < 0 (by the maximum principle) and repeating the

argument in Lemma 3 yields also
§ §
(4.4) vr(r,t) <0,bsr<p(), t>0.

From this we get also the correspondings to Lemma 4, that is



Ut
[

6i % '
(4.5) 0 (t) <p T(e) (£20), (5 <6,

And further in order to prove

$ 8

(4.6) o 1(t) =p 2

(t) (£20), (6, = 8,)

‘we use another fundamental formula

1,1 m 6§, .3 3 1, 1 m m
ST(E‘_-];G—TS e ()~ - (b‘l‘ﬁ)‘} -‘2{‘-&-- ("};‘+ m)}’(

x(0%0)% - 6% - nlodr) - 1))

(4.7) Lt , pee)
mn | 5 - A -5 et - S et
G(T) b r’ b4 .
0" b
bry 11
p m m
+fb Ty - -

‘which is gotten by using the Green's formula

2§ 2 a® 2 8 3u _
éruvdr+(ruar - v o= Jdt = 0

along the boundary of the region b < r < pé(t), 0 < tT< t with

L

u = Lo
b T

. Subtfactig the formula with 6=61 for that with 6=62

(<S1 < 52) yields

5 8 8
a1 m 2,43 _1,.1 m m 2,42 _ 2
B (o b3, p ()T -5 {5 ("Ff—‘bﬁl Yo “(6)T - mp “(r)
| 8 | &, &
= (- -&-5-1 ot -2 (L (-’S+—b$3-l Yo 1) - mo L(e)
B a s
- J (5 -2) 2,0 - v ek
b : ' t _
Su(t) S : ,
Ly 2a,lar +m | (=2 ——2— jyar+ o(s, - 6.)
BT 5, 78 2" %
£ : o P P
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62 61 - 81 62
By noting that v “(r,t) — v (r,t) >0 (0<r<p (t)), v (r,t) >0
5 :
and p 2(t) >p l(t) we get

5 s 8

N S 2,3 _1 1 _ om_  m 2,42 _ 2

3 (5 b+61)p (t) 5 { 5= (%73 l51)}0 (t) mp “(t)

cdiom s 1ol myom oy F1o 61(::) +0(8,-8

KA L 2 ' DR mo 27°7)-
1 1 m 3 1 1 m m 2

Since the function F(p) = ETA S b+61)p -3 { e (-;+-b—_‘_—5—1)}p - mp

. (]
is monotone increasing for p > b if p - b . is small, we get together

with (4.5)

8 $ $

p»l(t) <p 2(t) <p 1(t) + 0(62 - 61) for small t.

Tending 62 to 61 ﬁe have (4.6) for small t, and hence for all t.
By noting (4.2) ~ (4.6) we can construct a solution (pG,v§) in the
same way as in item 3. This solution is uniquely determined by (4.6).
Next we shall show that ;here.exist two positive constants:Bl and

B, such that

(4.8) b+31/T<p6(r.)<b+5+32(_§ (0O<tse)

Putting
SRR E S

yields the system to be satisfied by w6 :

268
w o _ dw_ _, , b<rc« pG(t), 0<t=<T,
ot 2
. or '
Sy e 8
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L, =0 ,

§
Pd(t)f)ﬁ(t) + %Lm =-a—g—;—_’— (ps(t),t) , 0<tsT,

p (t)

)y =b+s ,

i

wa(r,O) =0,

For comparison let's introduce the function
o Bn .
2b 1 2
4.9)  w(r,t) = =25 —— — (r-y() -7
' n=1 (2a)! 9t .
" with a infinitely differentiable function y(t) for t>0. It 1s clear

that w satisfies the following equations

(4.10)4 w(y(t)+b,t) = 0 ,

2b 7(£) = - 4L (y(t)+b,0) .

\

1
If we take that yB(t) = Bt2 , we get

[+ ]

: I
wib,t) = wpd,0) = B 5 B g%
: n=1 (2n)]
and we know that
2 o2
B (FE 1) cwm,n < B (F -1,

1 -
Hence putting Bl =] log (1 + -g'%) 1% yields

w, (b,£) < BM.(< wO(b,)).
Y8 ®.0)
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fung)

§ ot

Then it follows that for sufficiently small t
1
2 §

(4.11) b+ Bt "< ()

holds. 1In fact, if that is not true, there exist a sufficiently small

to such that

i

1 1

2 < pa(t) (0st< to), b+ Bltoz = pé(to).

b+81t

Then we have by the maximum principle

. L
ws(r,t) >w, (r,t) for - 0<r< b+81t Z ., 0¢< t<t

By 0
and hence, since wa( 6(t') t.) =w, (b+B t‘é. t,) =0, b ’friedman's
’ R B~ 10 *Fo » Y
theorem
§ ow
oW 3 Bs .6 '
r )
This means that
8, 8, om y
Pty (t) + —5 > 2b y(ty).
p (to) :

By the assumption, ps(to) < y(to) and hence

JE%— > 2b §(to) - pd(to)éd(to)

" >b §(t0) for sufficiently small § and t

0
But this enequality can not occur for sufficiently small t0 since
. B I .
y(to) = L Therefore the left inequality of (4.8) holds for
2]t ‘ : '
0 .

sufficiently small t.

" On the other hand we have from (4.3)
) oM
p (t) S.—S—""'——"—
p(t) -b

25



Ui
<

and hence
%Dé(t)2 - bps(t) < —;— (b + 6)2 - b(B + 8) + oMt

or

b6(t)sb+/ 52+2um:
<b+s+g,[t (B, = [2m4)

Thus we have proved (4.8).
From (4.3) and (4.8) we get also

'8 ‘
(4.12) 0 <p(t) < —B—I.-J—_-._t—

for 0 <t < €.
Now we consider a sequence {(ps,v6)} of soiution as § + 0. Taking

§ < 1 and putting ca(t) = t(ps(ﬁ) - b), then ﬁé have from (4.8)
(4.13) 0<% <eq+ B,/E) (Ostse
and from (4.8) and (4.12)

(4.14) 0 < Ga(t) = pa(t) - b + th(t) < i+ (52 + _gM_ ‘)/-e_, (0<t=<e).
1 .

Thus {os(t)} are equicontinuous and uniformly bounded over the inteival'
[0,e]. Therefore there is avsubsequence, which we denote by {Gn(t)}

(n + ©), such that on(t) converges uniformly to a Lipséhité continuous
fﬁnction a(t). Thgn we put pn(t) = t-ldn(t) »and. p(t) = t_lﬁ(t).

From (4.8) we get b + Bljpz.s_p(t)'s b + BZJFE- and from (4.5)

an+l(t) < pn(t). | |

We consider vn(r,t)_corresponding to pn(t) and the solution v(r,t)
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N6

of the auxiliary problem (3.4)', that is, the problem with the prescribed
boundaries p(t) and the fourth condition of (3.4) being deleted. From
(4.12) and (3.4)

oM
m m
0= v (p(t),e) - (5 - ) ) s N (p () = p(t))

aM '
= ———= (0_(t) - o(t)).
Blt3/2 n

From the continuity of the solutions v(t) and'vn(t),for any N there
exist t, and n, such that max lv (r,t) - v(r,t)l <n for 0<t<t

bsr<p(t)
and n > ng. By the maximum principle

0

M
max lvn(r,t) - v(r,t)|'< max(n,-f———§7z max (Gno(t) - o(t)))
bsrsp(t) ' . Blto ;0<tss
to<tse '

Therefore we get vn(r,t) + v(r,t) (n » ®). Resulted {p,v} turns to
be the desired solution for 0 < t € € of (3.4). In faét if n + o (§~0)

along the extracted sequence in the formula (4.7) it follows that

T o - e’ =) - (F - Pr6® - vh - ak® - »)
t £
dt 2,1 1 ‘o
= mfo p(t) A r (4 - P v(r,t)dr + (g L

which is equivalent to the fourth condition of (3.4). Noting that
oM :
m m
- - —Ezgs) S];;?ﬁ? (p(e) = r) by (4.12), we get the

. 0 g v(r,e) - (
solution (p,v) for also [€,T] in the same way as in the proof of exist-
ence of the solution fof (4.15. 'Thus we have proved that there eiists
a solution (p,v) of (3.4) for all t e [0,T].

Uniqueness can be shown as in Theorem 2.

Theorem 3 - There exists one and only one solution (p,v) of the

-27..



system (3.4) and 0(t) satisfies

BI t <pl(t) -b< BZ/F;‘ (Bl’ BZ : positive constants).

5. A Difference Scheme

Here we will propose a difference scheme for solving our problem
(P). We shall introduce a family of rectangular lattices on the (r,t)
plane with space mesh h and time steps kn (n=1,2, ...). Let's.vary h
so that (b +-%'h)/h = J runs through intégers and find kn's so that the
free boundary crosses lattices just at each mesh point (rJ+n’tn)’ where
= (j --%—)h (j=0,1,2, ...) and t, = }E: kp . With reference to given

r
. . . p=1
positive numbers h and kn we introduce the devided differences

u ot = 5 Lulrg,t) = ulene) 1,
up(ryat) = £ Lulr,e) = ulr ) 1,
urf(rj’tn) =lf;§ [ u(rj+l,tn) - 2%(rj,tn) + u(rj_l,tn) ]f

and “E(rj’tn) = —%; [ u(rj,tn) - ﬁ(rj,tn_l} ]f

A.. difference analogue to our problem (P) is

( Ahu(rj,tn)

1 L
'ur?(rj’tn) + B (ur(rj,tn) +‘u;(rj,tn)) uE(rj,tn)
2 (5 = | 4+ h or - h or )
Y Y2 = Yn-1 Yn-1 Yp-1 7*

m
u(rJ+n’tn) b

(5.1) ﬁ u(rp,t) = ulrgt )

y-Y_l . k. -
—117;—JL—— =-qv +B—= (Bis a positive constant;

n Y

Vo © uf(tJ+n’tn))
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(g}
>

L u(r,,0) = £(r.),
h| h|

d
where the third equation corresponds to ‘3%‘(0,t) = 0, which is auto-
matically satisfied by the spherical simetricity for the solution of

the differential problem (P). The fourth equation corresponds to (P=-3)
Kk .
n

[n

convergen of the difference scheme and convergence of its iteratively

and contain an artificial added term B s, which makes sure of
solving procedure. (see also [9])

The quantities to be determined are‘{kn}'and {u(rj,tn)}, while
they are (y,u) in the original problem.

First we shall prepare a maximum principle for our difference

scheme, Suppose that the function VU(rj,tn) (—-%-h <Sr

i

§ S Yy 270,12,

++e« N) satisfies

[- LOhU(fj,tn) = Ahu(rj,tn) - UE(r ,tn) <0

3

(0 < T < Y, » 0152, .. )

(5.2) ﬂ U(y,t) =F 20 (0=1,2, ... ),
U(rl,tn) = U(rO’tn) (n=0,1,2, «¢. ),

U(r
\ J

0) = £(ry) 2 0 (=1,2, ..., D).

Then we have
Lemma 6 U(r,t,) = 0 holds for 0 < r; <y, and n=0,1,2, ... .
If further f(r) % 0, it follows that U(rj,tn) >0 for 0 < T, <Y, s
n=1,2, vu. . '
. 1 _ ,
(Proof) Putting (j - > )U(rj’tn)>‘ V(rj,tn) reduces (5.2) to the

followiﬁg‘:

=29~



CJi
=

- V- < < = cee
Vrz_(rj,tn) Vt(rj,tn) <0 (0 r, <y v7L2, )s

_ 1
V(yn,iﬁ) = (22 -)E (e=l,2, ... ),
(5.3)

V(rl,tn) + V(ro,tn) =0 (n=0,1,2, ... ),

V(z,,0) = (3 -3 G=L,2, L., D).

3

,tn ) (j0 > 1) such that V(r ,tn) > 0 for

If there exists a point (r,
g My h|
0 < rj <V n=0,1, ... , no-l and V(rjo,tno) < 0 and further
>
v(rj,tn ) 2> V(rj ,tn ) for rj * rj , rj 0, then it follows that
0 0 0 0
V_(r, ,t )>0 and V-(r, ,t ) <O,
Ty myt t Jo Mg

which is contradiction to the first equation of (5.3). Therefore we

_ have V(r ,tn) > 0 and hence U(r ,tn) >0for0<r, < yng n=0,1,2, ... .

] 3 3

Next we suppose that £(r) > 0 and f(r) % 0.’ If there is a point
r=r
Jo 1
first equation of (5.3) that Vrf(r

(> 0) on t = t, such that V(rj ’tl) = 0, then it follows the
. . 0 N
st.) < 0 and hence by the fact
g 1
V>0, V(rj = 0. Repeating this argument yields V(rj,tl) =0

for all r, < . But at a point such that f(r >0, V-(r, ,t
S ut a poin rjl uc ( jl) ’ t( jl’ l)
< 0 and Vrf(rj’tl) = 0 hold, and that is ':contradiction to the first

»t.)
Oil 1

equation of (5.3). Thus we get V(r ’tl) >0 for 0 < rj < Yq-

3

Successively continuing the same reasoning step by step we get

V(r ,tn) >0 for all 0 < r, < v, n=1,2, ... , and hence'U(rj,tn) >0

3 3

for all 0 < <y wel2, . (Q.E.D)

For simplicity of notation we denote u(rj,tn) by u? occasionally.

Now we shall see the property of strictly monotone increasing of
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{yn 1.
Lemma ?  Assume that (2.1) (f(r) 2 0, f(r) £ 0) holds. Then the

solution (y,u) of (5.1) satisfies for n=1,2,3, ...

Yy > Yp_1 > u;(yn,tn) <0
n m

and 0 < u, < max( 5 + max f(r) )
J O<rsb

(Proof) ( This is analogous to that of Lemma 1.) Assume that

- : IR IR S S ¥
y“o < yno_1 € vee € yo—b . Then the funct%on Uj = uj ( b . )
satisfies
[ n n n m 'm 1
LUt =A0" - @U)." == (=~ - - (<2 0),
on’y = &0y Uye ¢ n yn_l)At( ‘
(3=1,2, ... J-n-1, 0=1,2, ... ),
(5.4) J Ul =0 (L2, ... ),
U; = Ug (0=0,1,2, ... ),
® = £(r) (4=1,2, ... ).
L h| h| :

s
h
Uf(yn’tn) = uf(yn’tn) < 0. This implies thaty -y __, > 0, which is

By Lemma 6 we have U 0 (j=0,1, ... 4 J-n; n=1,2, ... ) and hence

contradiction to our assumption. Hence since n, is arbitrary, it
.follows that Y > Y1 (n=1,2, ... ) and hence uf(yn’tn) <0 (n=1,2, ..o )¢
Next we put

max ( -%— s max £(r) ) = M
0<r<b

-31=



and consider the function V? =M - u? satisfing (5.2) with V3+n.= M-

(%} - 2 ) > 0 and V? =M~ £f(r,) 2 0. Then by Lemma 6 we get

Yn 3

V? >0, that is, u? <M.

u? > 0 follows directly from Lemma 6.

Next we shall prove that {- vn} is bounded above under the

condition (2.2), that 1is,

0 s £(r) < N(-%- - -%-) ( N : positive constant ) .

Lemma 8 Under the last condition we have

11 : -
2 24 4 v e -
(5.5) - = B"h < - v, S yn-lyn'<' bz (n=1,2, ... )
and
o
(5.6) nyn°yn_15 (—;'2' +1)kn
and
| 1 1 |
2 ., 2,4 ,aN : 1 o
(5.7) -5 B R 7 +1) sugle,, st ) < 2 ( ”) + 1)(N + m),

(n'—‘l,g, oo o ) o’

(Proof) We take .4 barrier function

1 1 ‘m m
= —— o e ] e m —
e A T
» 0 0
Since, by Lemma 7 ‘
1 1 m m m
w (y’t)zN[———_—]+_-——‘>—,—— (OSn<n)
ny "nn Y .yno, b yno b Ya 0

-32-
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D N U m__m
wn (rj,O) = N[ = ] + 5

0 3 yno n0
1 1
> N[ r - b ] 2 f b

it follows from Lemma 7 that w - u 20 (0sn<s no) and hence
. §]

“‘Yno‘h’ tno)—c%- y:()) ‘ X
which y%elds
, N
i u’?(y“o’ t“o) ) Vo -1 YnO .

Since n, is arbitrary, we get the right parts of (5.5).

From the fact just above proved we get

y. -3
n n-1 _ _ 1 _ 2 .2 oN .
—~—E;——~— 5 (v / a” v O+ 48/ h ) < :;f +1

for small h and

1l 1
Yo " Va1 8 kn 2 2. 4
- = - - >-—-B h
n ok f"‘ a
n o h
Noting thét Wt < o by Lemma ;.” we get
J4n~1 J4n - o .
o _ 1 ’ I
w P ¢y = o1 Vel Tomel | Jémo
t V' J4n-1’n » ~ :
k k
n n
. i 1 :
I TR RS
k o 2
n b
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b3

The function U? defined by (5.4) satisfies

n n-1 n n
Usn-1 " V%1 b Urin-1 " Yn m N ., oN
" T G s (D
k n h n b b
il
because of (4.5). - Therefore
-1
o _ "
J4+n~-1 Jn-1 m 1 1
u-(r., ., t) = = (= - =)
< —1-5(--9-‘3;— + 1N +m),
b b .

Lemma 9  Assume that in addition to (2.1),f'(r) and Af(r) exist
and |f'(r)] < M, |Af(r)| < M, for 0 <r< b and f(0) = 0. Then it

follows that
Iu;(rj,tn)l <M

Iu;(rj,tn)l s_Mé

<y, < .
for 0 rg yn,0<tn

(Proof)  First note that f(r) satisfies (2.2) with the appropriate

constant N = szl (if it is necessary, we take M1 sufficiently large).

The function w? = M1 * uf(rj’tn) satisfies the system of equations

0 .
L Wi =My £ £(r) 20

=34-
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By the same argument in the proof of Lemma 6 we get W? 2 0, that is,

lui_(rj,tn)l <M.

Next the function Z; = M2 * uE(rj,t } (if it 1is necessary, we

n
take M, sufficiently large so that M, > L

N
(2= + 1)V + m)) satisfieg
2 2 2 .2

o

the system of equations

ﬁ

[

N
[

0 (n=2,3,4, ... ),

{ Zin-1 T My EUp(Tpggr 5 2 0

1
L Zj M2 + Ahf(rj) >0

Applying Lemma 6 we have Z, > 0 , that is

L~

2 for 0 < rj < yn , n=1,2, RRER

Thus we have proved Lemma 9.

Frow now we shall prove convergence of our difference scheme and

~as a byproduct existence of the solution of (P) again.

First of all we note that as h*0 - kn tends to zero uniformly by
the fourth equation of (4.1). If we define the pieceweise linear
boundary yh(t) by the formula

t-t t -t
yh(t)_—___.ll. (t)+_n;*'_L__

kn Yo+l yn(t) for tn st<s<t

n+l’

(n=0,1,2, ... )

then by Lemma 4.3 yh(t) is Lipschitz continuous with a uniform Lipshitz
\
constant ( _Eg_ + 1) and uniformly bounded for 0 < t £ T. Therefore
b
by Ascoli-Arzela's theorem there exists a subsequence of {yh(t)}



(which we denote again by {yh(t)}) such that as h > 0 y, {(t) uniformly
converges-to a Lipschitz continuous function y(t).

)|

Next it follows from Lemma 9 that for any positive a, lurf(rj’tn
is also uniformly bounded for a < rj < yn and 0 < tn < T. In fact it
is clear by considering the first equation of (4.1). And further it

can be seen that {urfr}’ {urft} and {uEr} are also uniformly bounded

for a < rj <y(t) — e, e< tn < T (e, a are arbitrary small positive

constant). Indeed if we put (j -‘% )h u? = w; we get the equation to
be satisfied by w?
n n

and we know that {w?} is uniformly bounded for 0 < T Sy 0 < t ST
since v, is bounded for 0 < t < T by (5.6). Then it is well known
that divided differens of high order of w? with respec; to t and r

. are all uniformly bounded for any closed region with finite distance
from the boundary of the region 0 < r < y(t), 0 < t < T and for suffi-

ciently small h (See Petrowsky's text book [10]), and hence that of

n
uj are so as. From these facts it follows that there exists a sub-

n
3

the whole region 0 < r < y(t), t > 0) converges to a infinitely dif-

sequence {u?} such that as h+ 0 u (in fact the extended ones over

ferentiable function u uniformly for any closed region in 0 < r < y(t),

n n n
<t < - - i
0 <t <T and (uj )rr . (uj )t and (uj )r converge uniformly to the

o n2
corresponding derivatives J ; R -%%- and -g%— respectively.
or

Let tend h to zero through the extracted subsequence in the first

equation of (5.1), then the equation
Ju

Du =

at
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holes in 0 < r < y(t), 0 < t £ T. Since {uE} is uniformly bounded in

“the whole region by Lemma 9, the limit function 2u and hence Au are

ot

bounded in the whole region 0. < r < y(t), 0 < t < T. Since -%%— is

uniformly bounded in the whole region by the same reasoning from

Lemma 9, there exist the limits 1im u(r,t) = u(0,t) and 1lim u{r,t)
: r+0 >y (t)

= u(y(t),t) which is equal to %3-— —;%ET and hence u(r,t) is

continuous for 0 < r < y(t), 0 < t < T. {ur¥} is also uniformly

bounded for b < r < y(t) and 0 < t < T from the first equation of

2
(5.1) by Lemma 9. Therefore 9 ; is uniformly bounded for b < r < y(t),
or .
0 < t<T and hence there exists the limit 1im —g—:— = v(t) (uniformly)
- >y (t) :
and v(t) is continuous for 0 < t < T.
The fourth equation of (5.1) yields
n n k 2
y, =b-a kv, # S. 8L
p=1 == ’
1
4

Let tend h to zero, then by noting that —£ < 2h
¢ n [B

y(t) = b - o r v{t)dT
0

holds. Hence y(t) is differentiable and

the relation

y(t) = - av(t)

Thus we have shown that the pair (y,u) of theilimit function satisfies
all the equations of (P) and therefore it is a solution of (P). It
is easily seen from the uniqueness theorem (Theorem 1) that all thé
sequence {yn,ugjh converges to the solution (y,u).

Thus we have proved

Theorem 4 Under the assumption of Lemma 9 there exist a solution
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(y,u) of (P), which is given as the limit of solution of our difference

gcheme (5.1) as h~ 0.

6. Solving the difference scheme

In order to solve the nonlinear algebraic equation (5.1) at each

time step t = tn, we shall use the following iteration procedure . -

(6.1) ¢

\

=k ( ko ¢ arbitrary positive constant ),

L ,tn) + ués)(r

(s),.
u = (rj.tn) + ; (ur (rj j,tn))
(s)
_ u (rj’tn) - u'(rj’tn—l) -0
k(S)
n
(s) _ (8 '
u (rl’tn) u (rostn)’
(s) ' ono_m -
u (rJh’tn) = b yn ’

k) o %— @+ [P v agm ),

.(Vr(IS) = ués)(yn,tn)) (s=0,1,2, ... ) .,

Convergence of this procedure will be proved for an appropriate

constant B. For the purpose we. put

(6.2)

and then we get the system to be satisfied by w :

fj“(S) (x (s) (r

j’tn) =W j’tn)

(s) |,
=k

n n-1’

(s)

rt

(r =0,

(s)
) wii(r,,t ) - w(r,,t )
w ’tn) - — 'j = L

] ' O

n
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(6.3) w(s)(rl,tn) + w(s)(ro,tn) = 0

(s) - m _ om
w (rJ+n’tn) = Yn( b yn )

Now we introduce one step Green's function of the implicit

difference analogue of heat equation :

i
e 1 2w -1
g(rjsgz’ tn) = >Th J (L + 4anin D) ) X
-
“i(r, = ED R -i(r, + ) B
x [e i L e i 2" h ]dw.,
(6.4) r
G(rjsgg, tn) = omh f%(l + 4anin 5 ) x
~i(r, ~ED L i, +E, -DY
x [e 3 L 1 z B
kn 1 | 1 .
where An = —;E- . rj = (j - E—)h.‘and Ez.é ¢ --3-)h. -These functlongi

satisfy the boundary conditions

(6.5) - ~
g(rl,El; tn) + g(ro,gl; tn) =0

and conjugate relations

(6.6) 8z = - Gg » G o=~ 8¢

By using the Green's function we can give a representation of

{w(s)(rj,tn)} : by using (6.5)

J+n-1 ‘ ‘
W(S)(rj’t§8)) = %;i hg(r ,Eys e ucg,, )
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4

- k(S) (s))w(s)
n

gg(r oy s £, (S))

(y st

(Refer to [9]). Hence by (6.6)

J4n~1
( )(Y st == Z hGg(ynsgz; téS)

w(€,, t_ )
=1 £ n-1

- kés) Gg(yn,yn: tés))W§s)(yn,tés))
+ kéS) Egl}' aY H t( ))W(S)( n téS))
and

Gyt = vy e

w(S)
b o

- e 6y T o0y (e L)

Jin-1 (s) ..
- g:: BG(y sEg5 t - DW(Ey,t )]
- 0k e 0y e e Ly 5 D)
~Jin-1 .
1 (s -1) (s-1)
(S )( ) %;i hGE(y 95&; t )w(gﬁ’tn—l)]

It can be proved in the same way aé in § 3 of [9] that
(s) _ .(s=1) const.| (s-1) _ . (s-2)
|z Oprt) = wg O | < S v e - vV e

(s)
and hence for a large B {wr (yn,tn)} converges to the limit wf(yn’tn)
as s + « and therefore {vés)}, {kés)} converge to the limits \A and kn
respectively. And further py 6.7) {w(s)(rj,tés))} converges to the
) . _1
limit w(rj,tn). Then it is clea? that {u(rj,tn) = rj w(rj,tn)}
(3=0,1,2, ... J+n) and kn satisfy (4.1) at tn' Thus we have proved

that we can take constant B so large that our iteration procedure

converges.
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