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Difference approximation of evolution equations

and generation of nonlinear semigroups

by Yoshikazu Kobayashi

Department of Mathematics, Waseda University

We consider the following nonlinear evolution equation
(DE) (d/dt) u(t) € Au(t) , 0O<t<T ,
where A is a (multi-valued) quasi-dissipative operator. In
this note, we construct the solution of the evolution equation
(DE) by the method of difference approximation. In addition,
we give a generation theorem of nonlinear semigroups through
the difference approximations.

1. Preliminaries. Let X be a real Banach space.  For

the multi-valued operator A, we use the following notations:

D(A)={x € X; Ax#¢} , RMkﬂjxeDmﬂy;yemﬁ ,

and [[ax([ = inf{ Iyl ; y€Ax} for x €ED(A).
We identify the multi-valued operator A with its graph, so that
we write [x,y] €A if y €Ax. '

Let F be the duality map in X. Then we set
<Y % >y= inf{ <y , £ >; f€F(x)}

and < y , X > 7 < 7Yy . ox >i= - <y, -x >i for x(yéiX.

Let A (C XxX. A is said to be dissipative if for any

[Xl,Yl] €A (i=1,2),

SYyp T Yy X T Xy



according to Takahashi [9], we introduce the following notion
as a generalization of that of dissipative operator.
pefinition 1. Let A ( XxX. A is said to be quasi-
éiiiiﬁigézg if for any [xi,yi]e A (i=1,2),
SYp e Xy T Xy 7yt Yy Xy 7 Xy >y 20,
The following example shows that quasi-dissipative
operators are not always dissipative,
Example (I. Mivyadera). Let X=R2 with maximum norm.
Let xl=(l,l)and x2=(0,0). We set D(A)={xl,x2}, Axl={(u,6);
a<0 or B<0} and Ax2={(a,6); 0>0 or B>0}. Then A is quasi-
dissipative in X but A - w is not dissipative in X for any
real w. In addition,ﬁR(I - AA) D D(A) for any X > 0.
For the quasi-~dissipative operator, we have the following.
Lemma 1. Let A C XxXX. Then the followings are equivalent.
(i) A is quasi-dissipative;
(i) for any [xi,yi]éiA (i=1,2) and A,u > 0,
(X + )Hxlg' X 0l < Mxy = x5 = nyglh + ulx, = x; = Ayl
(iii) for any [xi,yi]éSA (i=1,2) and A > 0,
2 lxy = %yl xy - %, - Aylﬂ + “XZ - X - Ayzﬂ.
We can verify Lemma 1 similarly as the proof of Kato's lemma [4].
Let XO(::X. A one parameter family {T(t); t > 0} of

operators from XO into itself is called (nonlinear) contraction

semigroup on X0 if it has the following properties:
(1) flT(t)x - T(t)yll < lIx - v for x,y €X, and t > 0;
(i) T(0)x=x for x X4 and T(t+s)=T(t)T(s) for t,s > 0;

(iii) for each X €Xq, T(t)x is strongly continuous in t > 0.
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2. Cauchy problems and difference approximation.

Let A be a quasi-dissipative operator in X. Let xoe}x
and T > 0. Then we treat the following Cauchy problem for the

evolution equation (DE):

(d/dt) u(t) & Au(t) for t «(0,T),
(CP;XO)

u(0) = Xqe

For the Cauchy problem (CP;xO), we consider the following type

of difference approximation:

Xn - Xn
k k-1
= = - yi i,ei , k=1,2,,N_; n>1,
(DS;XO) te — teq
n _
%0 T ¥or

where for each n, [xE,yE]éEA (k=l,2,~w;Nn) and {tz} represents

the partition of [0,T] such that O=th<tl<-w<ty <T<ty and
0 71 Np-1 "—"Np
n n

- - n
n= maxlﬁkin k = tx-1) > 0 asn > ~. The g may be refferred

as an error bound which occurs at the k~th step of the n-th

S (t

approximation of the difference approximation (DS;xO).'

Definition 2. Let un(t) be a sequence in Lw(O,T;X)f

We say that un(t) is a (backward) DS-approximate solution of

the Cauchy problem (CP;x if there exists a difference

o)

approximation (DS;x,) satisfying the following:
0

. _ .n _ .
(1) un(O) = X5 = X5 /D > 1;

. _.n n n _ . . :
(i1) un(t) = Xy for t E(tk—l’tk](d“O’T]’ k=1,2, anrnil'
tes Npn n,.,n _ .n o

(i) k=lek(tk tk—l) - 0 as n + «,

Then we have

]

Theorem I. Let xoééD(A) and un(t) be a DS-approximate

solution of (CP;xO) on [0,T]. Then there exists a u(t) &

C([0,T];X) satisfying the following:



(i) u(t) = limn+mun(t) for t&[0,T],

and the convergence is uniform on [0,T];

(ii) u{t)eD(a) for t€[0,T] and u(0)=x,;

(iii) for any DS-approximate solution an(t) of (CP;xO),
u(t) = 1imn+man(t) for t&J[0,T].

Remarks. 1) Kenmochi-Oharu [5] and Takahashi [9], [10]
studied the convergence (i) under the additional condition,
which is called the stability condition by them. Our result
is an extension of their results.

2) By Benilan's method [2], we fiﬁd that the limiting function
u(t) is the unique integral solution of the Cauchy problem

(CP;x,.).

0
The proof of Theorem I is based on the following.

Lemma 2. Let (DS;xO) and (DS;xO) be two difference
approximations as above of the Cauchy problems (CP;xO) and

~

(CP;xO) on [0,T], respectively. Let the notations with

represents the difference approximation (DS;xO). Then
m “n ~
(1) =y - x5 It < Ixg = ull + lIxy - u ||

R S RN S Rl [
m

i m _.m j ‘n,’n _ ’n
+) =15 (E tx-1) * 2 =15k (B~ teoq)o

for 0 < i < N+ 0<3< N, and u&bD(a).

Proof. Let u&D(A) and VEAu. We set a; j=”x? - X?”,
4
m_.m _.m . n_°n _ ’n . . o
hy ty t;_, and hj tj tj—l for 0 < 1< N and 0< j < L

By (iii) of Lemma 1, we have

m

= = ull < llx = By - ull + nfiv)

k
mm
k& k

for 1 < k < N Therefore, inductively, we have

<%y = wll+ nfel + nliv)

— —
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1 = wll < 4D = all+ €5+ S0r el

=

or
i - i —
a; o ey - ull +lixg - ull+ £7 Zk 1€
This shows that (1) holds true for (i,0) with 0 < i < Nm
Similarly we have (1) for (0,j) with Of;jib%f’ Furthermore,

by (ii) of Lemma 1, we have

m “n “n, m m_m “n “n “n"n m
(h, + hy) a; 5 < hjnxi - hyy; - xj11+ h nx. - hyyy - x|
< hq a. .+ hm a. . + h h (em + 8?)
- 3] i-1,3 o i"i,3-1 J

for 1 < i < N and 1 < j < Nn' Hence, using the Cauchy-
Schwarz'inequality, we can verify (1) for every (i,j) by
the induction for (i,j). Q.E.D.

Remark. Let A be a dissipative operator in X such that
R(I - AA) DO D(A) for A >0. Then estimate (1) gives

n 2

(I - xa) "x -~ (I - uA)_mx{li {(nx - mu)2 + nA” o+ muz}l/z

for nym>1, X,u>0 and x&D(A). This estimate is similar to

but different from that of Crandall-Liggett [3].

Proof of Theorem I. Let (Ds;xo) be the corresponding

difference approximation to un(t). Then by Lemma 2, we have
m n
(2) ”Xi - Xj “f_ano - up“

+ {(t@ - tI.‘)2 + émt? + Gnt?}l/ZMAupm

Nm m m _ . Np .n,,n _ .n .
MDA G B DN SRRy
for 0 < i <N_and 0 < j < N, where {up}(:D(A) is a sequence

such that up > x, as p +» », This estimate shows that there

0
exists

u(t) lim x

E as ti >~ t, n > oo,

= 1lim u_(t)
n->o n

for every t&[0,T]. Furthermore, by (2), we have

fau il
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late) - us)ff < 2lkxg = ufl + [t - sl ljau)
for t,s €[0,T]. This shows that u(t) is continuous on [o,T].
The property (i) is evident. Let un(t) be a DS-approximate
solution of (CP;xO) with xoé}D(A). And let us set
u(t) = limn+mun(t) for t& [0,T].

Then by the estimate (1), we have

fult) - uct) || <llxg - X for t ¢[0,T].

oll
Especially, we have (ii). Q.E.D.
By Theorem I, we define the following.

Definition 3. Let u(t)&cC([0,T];X) and xoe-D(A). We

say that u(t) is a (backward) DS-limit solution of the Cauchy

problem (CP;XO) on [0,T] if there exists a (backward) DS-
approximate solution un(t) of (CP;xO) on [0,T], such that
un(t) converges to u(t), uniformly for t €[0,T].
In the proof of Theorem I, we obtained the following.
Corollary. Let u(t), a(t) be two DS-limit solutions
of (CP) on [0,T]. Then
lu(t) - G(t) | < Jju(o) - G(O)H for t €[0,T].

3. Generation of semigroups

By Theorem I and the Corollary , we have a generation

theorem of semigroups.

Definition 4. Let A be a quasi-dissipative operator in X.

We say that A has thé property (&D) if for any x €D(A) and T > 0,
there exists a DS-approximate solution of the Cauchy problem
(CP;x) on [0,T].

Theorem T . Let A be a quasi-dissipative operator in X,

having the property @z)). Then there exists a contraction
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semigroup {T(t); t > 0} on D(A) such that for any x&D(A) and
T > 0, u(t)=T(t)x is the unique DS-1limit soluﬁion of the
Cauchy problem (CP;xO) on [0,T].

Proof. Let x&D(A) and T > 0. Then, by Theorem I, there
exists the unique DS-limit solution u(t) of (CP;x) on [0,T].

By its corollary, we can extend the soluton u(t) onto [0,x).

Then we define T(t):D(A) > D(A) by

T(t)x = u(t) for t > 0.
Using Theorem I and its corollary, we can verify that {T(t);
t > 0} is the desired contraction semigroup. Q.E.D.

4. Existence of difference approximation

In this section, we give a sufficient condition that a
quasi-dissipative operator has the property (&9). Let A be
a quasi-dissipative operator in X. We add the following
condition on A:

(R) for any x&D(A), there exist sequences 6n ¥y 0 and [xn,y ]

t n
& A (n>1) such that

lim 5_1“X

n->o n -x - anynﬂ = 0.

n
Then we have
Theorem II. Let A be a quasi-dissipative operator in X,

satisfying the condition (R)t' Then A has the property (f}).

Thus A generates a contraction semigroup on D(A), in the sense

of Theorem II.

Remarks. 1) This theorem implies the fundamental result:
of Crandall-Liggett [3]: a part of the results of Martin [7] on:

ordinary differential equations; and the results of Webb [11]

and Barbu [1l] on the continuous perturbations of m-dissipative
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operators. The details will be treated in [6].

2) Yorke announces in [12] that he obtained a similar result.

Proof of Theorem III. Let xogzﬁTKT and € + 0. Let n be
fixed. Then for each x<D(A), we set
Gn(x) =sup{ 6§ ; 0 < 6 < €, and there exists [xé,yélé}A
such that ”X5 - x - 6y6H < 8§ €n}.
Then dn(x) are positive by the assumption. Therefore,
inductively, we can choose h; > 0 and [xﬁ,yi]é}A, for k=1,2,~-~,

so that they satisfy the following:

(i) Xg = Xqi

i n n - cn e e
(i) (1/2) §_(xp_q) < h < e, for k=1,2, ;
(i) flxi - xE_l - hiyil[i hﬁ e, r for k=1,2,---.

n i n n .
Then we set ti=23k=l hk' We may show that t; > @ as i > «,
For the purpose, we use the following estimate:

n

n ny (tli1 - t?)”y]r{l” +oe (] -t + en(tg‘ - )

3y flxy - X5
for any i > j > k > 1. This estimate may be verified by the
induction for (i,j) with i > 3j > k for each fixed_k > 1, by
using Lemma 1 as in the proof of Lemma 2.
Now, suppose that t? > 8q < t= as i +» «, for contradiction.
Then by (3), we see that there exists uOGEBTKT such that
x? > u, as i » o, By the assumption, we can choose § > 0 and
[u5'V5]€EA such that 0 < § < € and

”u6 - uy - 6V6\li éen/Z.
Since 6n(x?) » 0 and x? > u, as i » o, there exists iO such that
Gn(xﬁ) <38 and]]x? - uo“i 6 e,/2 for i > i,. Then we have
0’

which is contrary to the definition of én(x?). Q.E.D.

lug - vy - Svell < 8 e, for i > i



Remark. The construction and properties of the DS-limit
solution of evolution equations will be studied more
systematically and generally in [6].
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