Difference approximation of evolution equations and generation of nonlinear semigroups

by Yoshikazu Kobayashi
Department of Mathematics, Waseda University

We consider the following nonlinear evolution equation (DE) $(d/dt) \ u(t) \in Au(t) \ , \quad 0 < t < T \ ,$

where A is a (multi-valued) quasi-dissipative operator. In this note, we construct the solution of the evolution equation (DE) by the method of difference approximation. In addition, we give a generation theorem of nonlinear semigroups through the difference approximations.

1. <u>Preliminaries</u>. Let X be a real Banach space. For the multi-valued operator A, we use the following notations:

$$D(A) = \{x \in X; Ax \neq \emptyset\} , R(A) = \bigcup_{x \in D(A)} \{y; y \in Ax\} ,$$
 and $||Ax|| = \inf\{ ||y|| ; y \in Ax\}$ for $x \in D(A)$.

We identify the multi-valued operator A with its graph, so that we write $[x,y] \in A$ if $y \in Ax$.

Let F be the duality map in X. Then we set

$$< y , x >_{i} = \inf \{ < y , f >; f \in F(x) \}$$

and $< y , x >_{s} = - < -y , x >_{i} = - < y , -x >_{i} \text{ for } x, y \in X.$

Let A \subset X×X. A is said to be <u>dissipative</u> if for any $[x_i,y_i] \in A \ (i=1,2)\,,$

$$< y_1 - y_2 , x_1 - x_2 > \le 0.$$

According to Takahashi [9], we introduce the following notion as a generalization of that of dissipative operator.

$$< y_1, x_1 - x_2 > + < y_2, x_2 - x_1 > \le 0.$$

The following example shows that quasi-dissipative operators are not always dissipative.

Example (I. Miyadera). Let $X=R^2$ with maximum norm. Let $x_1=(1,1)$ and $x_2=(0,0)$. We set $D(A)=\{x_1,x_2\}$, $Ax_1=\{(\alpha,\beta); \alpha \le 0 \text{ or } \beta \le 0\}$ and $Ax_2=\{(\alpha,\beta); \alpha \ge 0 \text{ or } \beta \ge 0\}$. Then A is quasidissipative in X but A - ω is not dissipative in X for any real ω . In addition, $R(I-\lambda A) \supset D(A)$ for any $\lambda > 0$. For the quasi-dissipative operator, we have the following.

Lemma 1. Let $A \subset X \times X$. Then the followings are equivalent.

- (i) A is quasi-dissipative;
- (ii) for any $[x_1, y_1] \in A$ (i=1,2) and $\lambda, \mu > 0$, $(\lambda + \mu) \|x_1 x_2\| \le \lambda \|x_1 x_2 \mu y_1\| + \mu \|x_2 x_1 \lambda y_2\|;$
- (iii) for any $[x_i,y_i] \in A$ (i=1,2) and $\lambda > 0$,

$$2 \| \mathbf{x}_1 - \mathbf{x}_2 \| \leq \| \mathbf{x}_1 - \mathbf{x}_2 - \lambda \mathbf{y}_1 \| + \| \mathbf{x}_2 - \mathbf{x}_1 - \lambda \mathbf{y}_2 \|.$$

We can verify Lemma 1 similarly as the proof of Kato's lemma [4].

Let $X_0 \subset X$. A one parameter family $\{T(t); t \geq 0\}$ of operators from X_0 into itself is called (nonlinear) contraction semigroup on X_0 if it has the following properties:

- (i) $\|T(t)x T(t)y\| \le \|x y\|$ for $x,y \in X_0$ and $t \ge 0$;
- (ii) $T(0) = x \text{ for } x \times_{0} \text{ and } T(t+s) = T(t) T(s) \text{ for } t,s \ge 0;$
- (iii) for each $x \in X_0$, T(t)x is strongly continuous in $t \ge 0$.

2. Cauchy problems and difference approximation.

Let A be a quasi-dissipative operator in X. Let $\mathbf{x}_0 \in \mathbf{X}$ and T > 0. Then we treat the following Cauchy problem for the evolution equation (DE):

$$(CP; x_0)$$

$$\begin{cases} (d/dt) & u(t) \in Au(t) \\ u(0) & = x_0. \end{cases}$$
 for $t \in (0,T)$,

For the Cauchy problem $(CP;x_0)$, we consider the following type of difference approximation:

$$(DS; x_0) \begin{cases} \left\| \frac{x_k^n - x_{k-1}^n}{t_k^n - t_{k-1}^n} - y_k^n \right\| & \leq \epsilon_k^n, k=1, 2, \dots, N_n; n \geq 1, \\ x_0^n = x_0, \end{cases}$$

where for each n, $[x_k^n,y_k^n]\in A$ $(k=1,2,\cdots,N_n)$ and $\{t_k^n\}$ represents the partition of [0,T] such that $0=t_0^n < t_1^n < \cdots < t_{N_n-1}^n < T \le t_{N_n}^n$ and $\delta_n = \max_{1 \le k \le n} (t_k^n - t_{k-1}^n) \to 0$ as $n \to \infty$. The ϵ_k^n may be refferred as an error bound which occurs at the k-th step of the n-th approximation of the difference approximation (DS; x_0).

Definition 2. Let $u_n(t)$ be a sequence in $L^{\infty}(0,T;X)$. We say that $u_n(t)$ is a (backward) DS-approximate solution of the Cauchy problem (CP; x_0) if there exists a difference approximation (DS; x_0) satisfying the following:

(i)
$$u_n(0) = x_0^n = x_0, n \ge 1;$$

$$(\text{ii}) \quad \text{$u_n(t) = x_k^n$ for $t \in (t_{k-1}^n, t_k^n] \cap (0,T]$, $k=1,2,\cdots,N_n; n \geq 1$; }$$

(iii)
$$\sum_{k=1}^{N_n} \varepsilon_k^n (t_k^n - t_{k-1}^n) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Then we have

Theorem I. Let $x_0 \in \overline{D(A)}$ and $u_n(t)$ be a DS-approximate solution of $(CP; x_0)$ on [0,T]. Then there exists a $u(t) \in C([0,T];X)$ satisfying the following:

- (i) $u(t) = \lim_{n \to \infty} u_n(t) \quad \text{for } t \in [0,T] \,,$ and the convergence is uniform on [0,T];
- (ii) $u(t) \in \overline{D(A)}$ for $t \in [0,T]$ and $u(0) = x_0$;
- (iii) for any DS-approximate solution $\hat{u}_n(t)$ of $(CP; x_0)$, $u(t) = \lim_{n \to \infty} \hat{u}_n(t) \quad \text{for } t \in [0,T].$

Remarks. 1) Kenmochi-Oharu [5] and Takahashi [9], [10] studied the convergence (i) under the additional condition, which is called the stability condition by them. Our result is an extension of their results.

2) By Benilan's method [2], we find that the limiting function u(t) is the unique integral solution of the Cauchy problem $(CP; x_0)$.

The proof of Theorem I is based on the following.

Lemma 2. Let $(DS; x_0)$ and $(DS; x_0)$ be two difference approximations as above of the Cauchy problems $(CP; x_0)$ and $(CP; x_0)$ on [0,T], respectively. Let the notations with represents the difference approximation $(DS; x_0)$. Then

$$\begin{aligned} \|\mathbf{x}_{i}^{m} - \hat{\mathbf{x}}_{j}^{n}\| &\leq \|\mathbf{x}_{0} - \mathbf{u}\| + \|\hat{\mathbf{x}}_{0} - \mathbf{u}\| \\ &+ \{(\mathbf{t}_{i}^{m} - \hat{\mathbf{t}}_{j}^{n})^{2} + \delta_{m}\mathbf{t}_{i}^{m} + \hat{\delta}_{n}\hat{\mathbf{t}}_{j}^{n}\}^{1/2} \|\|\mathbf{A}\mathbf{u}\|\| \\ &+ \sum_{k=1}^{i} \varepsilon_{k}^{m} (\mathbf{t}_{k}^{m} - \mathbf{t}_{k-1}^{m}) + \sum_{k=1}^{j} \hat{\varepsilon}_{k}^{n} (\hat{\mathbf{t}}_{k}^{n} - \hat{\mathbf{t}}_{k-1}^{n}), \end{aligned}$$

for 0 \leq i \leq N_m, 0 \leq j \leq N̂_n and u \in D(A).

$$\begin{aligned} \|\mathbf{x}_{k}^{m} - \mathbf{u}\| &\leq \|\mathbf{x}_{k}^{m} - \mathbf{h}_{k}^{m} \mathbf{y}_{k}^{m} - \mathbf{u}\| + \mathbf{h}_{k}^{m} \|\mathbf{v}\| \\ &\leq \|\mathbf{x}_{k-1}^{m} - \mathbf{u}\| + \mathbf{h}_{k}^{m} \epsilon_{k}^{m} + \mathbf{h}_{k}^{m} \|\mathbf{v}\| \end{aligned}$$

for $1 \le k \le N_m$. Therefore, inductively, we have

$$||\,\mathbf{x}_{\mathbf{i}}^{m}\,-\,\mathbf{u}\,||\,\leq\,||\,\mathbf{x}_{\mathbf{0}}^{m}\,-\,\mathbf{u}\,||\,+\,\mathbf{t}_{\mathbf{i}}^{m}||\mathbf{v}\,||\,+\,\textstyle\sum_{k=1}^{\mathbf{i}}\epsilon_{k}^{m}h_{k}^{m}$$

or

 $a_{\text{i,0}} \leq \|\mathbf{x}_0 - \mathbf{u}\| + \|\hat{\mathbf{x}}_0 - \mathbf{u}\| + \mathbf{t}_{\text{i}}^m \|\mathbf{A}\mathbf{u}\| + \sum_{k=1}^{\text{i}} \epsilon_k^m \mathbf{h}_k^m.$ This shows that (1) holds true for (i,0) with $0 \leq \text{i} \leq \mathbb{N}_m$. Similarly we have (1) for (0,j) with $0 \leq \text{j} \leq \hat{\mathbb{N}}_n$. Furthermore, by (ii) of Lemma 1, we have

$$(h_{i}^{m} + \hat{h}_{j}^{n}) a_{i,j} \leq \hat{h}_{j}^{n} \|x_{i}^{m} - h_{i}^{m} y_{i}^{m} - \hat{x}_{j}^{n} \| + h_{i}^{m} \|\hat{x}_{j}^{n} - \hat{h}_{j}^{n} \hat{y}_{j}^{n} - x_{i}^{m} \|$$

$$\leq \hat{h}_{j}^{n} a_{i-1,j} + h_{i}^{m} a_{i,j-1} + h_{i}^{m} \hat{h}_{j}^{n} (\epsilon_{i}^{m} + \hat{\epsilon}_{j}^{n})$$

for $1 \le i \le N_m$ and $1 \le j \le \hat{N_n}$. Hence, using the Cauchy-Schwarz'inequality, we can verify (1) for every (i,j) by the induction for (i,j). Q.E.D.

Remark. Let A be a dissipative operator in X such that $R(I-\lambda A)\supset D(A) \text{ for }\lambda>0. \text{ Then estimate (1) gives}\\ \|(I-\lambda A)^{-n}x-(I-\mu A)^{-m}x\|\leq \{(n\lambda-m\mu)^2+n\lambda^2+m\mu^2\}^{1/2}\|Au\|\\ \text{for }n,m\geq 1,\ \lambda,\mu>0 \text{ and }x\in D(A). \text{ This estimate is similar to but different from that of Crandall-Liggett [3].}$

<u>Proof of Theorem I.</u> Let (DS; \mathbf{x}_0) be the corresponding difference approximation to $\mathbf{u}_n(t)$. Then by Lemma 2, we have

$$\begin{aligned} \|\mathbf{x}_{i}^{m} - \mathbf{x}_{j}^{n}\| &\leq 2\|\mathbf{x}_{0} - \mathbf{u}_{p}\| \\ &+ \{(\mathbf{t}_{i}^{m} - \mathbf{t}_{j}^{n})^{2} + \delta_{m}\mathbf{t}_{i}^{m} + \delta_{n}\mathbf{t}_{j}^{n}\}^{1/2}\|\mathbf{A}\mathbf{u}_{p}\| \\ &+ \sum_{k=1}^{N_{m}} \varepsilon_{k}^{m} (\mathbf{t}_{k}^{m} - \mathbf{t}_{k-1}^{m}) + \sum_{k=1}^{N_{n}} \varepsilon_{k}^{n} (\mathbf{t}_{k}^{n} - \mathbf{t}_{k-1}^{n}) \end{aligned}$$

for $0 \le i \le N_m$ and $0 \le j \le N_n$, where $\{u_p\} \subset D(A)$ is a sequence such that $u_p \to x_0$ as $p \to \infty$. This estimate shows that there exists

$$u(t) = \lim_{n \to \infty} x_k^n$$
 as $t_k^n \to t$, $n \to \infty$,
= $\lim_{n \to \infty} u_n(t)$

for every $t \in [0,T]$. Furthermore, by (2), we have

 $\|u(t)-u(s)\|\leq 2\|x_0-u_p\|+|t-s|\,\|Au_p\|$ for t,s \in [0,T]. This shows that u(t) is continuous on [0,T]. The property (ii) is evident. Let $\hat{u}_n(t)$ be a DS-approximate solution of $(CP;\hat{x}_0)$ with $\hat{x}_0\in\overline{D(A)}$. And let us set $\hat{u}(t)=\lim_{n\to\infty}\hat{u}_n(t)$ for $t\in[0,T]$.

Then by the estimate (1), we have

$$\| \mathbf{u}(t) - \hat{\mathbf{u}}(t) \| \le \| \mathbf{x}_0 - \hat{\mathbf{x}}_0 \|$$
 for $t \in [0,T]$.

Especially, we have (iii). Q.E.D.

By Theorem I, we define the following.

Definition 3. Let $u(t) \in C([0,T];X)$ and $x_0 \in \overline{D(A)}$. We say that u(t) is a (backward) DS-limit solution of the Cauchy problem $(CP;x_0)$ on [0,T] if there exists a (backward) DS-approximate solution $u_n(t)$ of $(CP;x_0)$ on [0,T], such that $u_n(t)$ converges to u(t), uniformly for $t \in [0,T]$. In the proof of Theorem I, we obtained the following.

Corollary. Let u(t), $\hat{u}(t)$ be two DS-limit solutions of (CP) on [0,T]. Then

$$\|\mathbf{u}(t) - \hat{\mathbf{u}}(t)\| \le \|\mathbf{u}(0) - \hat{\mathbf{u}}(0)\|$$
 for $t \in [0,T]$.

3. Generation of semigroups

By Theorem I and the Corollary , we have a generation theorem of semigroups.

Definition 4. Let A be a quasi-dissipative operator in X. We say that A has the <u>property</u> $(\sqrt[A])$ if for any $x \in \overline{D(A)}$ and T > 0, there exists a DS-approximate solution of the Cauchy problem (CP;x) on [0,T].

Theorem II. Let A be a quasi-dissipative operator in X, having the property (\mathcal{L}) . Then there exists a contraction

semigroup $\{T(t); t \ge 0\}$ on $\overline{D(A)}$ such that for any $x \in \overline{D(A)}$ and T > 0, u(t) = T(t)x is the unique DS-limit solution of the Cauchy problem $(CP; x_0)$ on [0,T].

<u>Proof.</u> Let $x \in \overline{D(A)}$ and T > 0. Then, by Theorem I, there exists the unique DS-limit solution u(t) of (CP;x) on [0,T]. By its corollary, we can extend the solution u(t) onto $[0,\infty)$. Then we define $T(t):\overline{D(A)} \to \overline{D(A)}$ by

$$T(t)x = u(t)$$
 for $t \ge 0$.

Using Theorem I and its corollary, we can verify that $\{T(t); t \ge 0\}$ is the desired contraction semigroup. Q.E.D.

4. Existence of difference approximation

In this section, we give a sufficient condition that a quasi-dissipative operator has the property (\mathcal{L}) . Let A be a quasi-dissipative operator in X. We add the following condition on A:

(R) t for any $x \in \overline{D(A)}$, there exist sequences $\delta_n \neq 0$ and $[x_n, y_n] \in A$ (n>1) such that

$$\lim_{n\to\infty} \delta_n^{-1} \|\mathbf{x}_n - \mathbf{x} - \delta_n \mathbf{y}_n\| = 0.$$

Then we have

Theorem III. Let A be a quasi-dissipative operator in X, satisfying the condition (R)_t. Then A has the property (\mathcal{L}) . Thus A generates a contraction semigroup on $\overline{D(A)}$, in the sense of Theorem II.

Remarks. 1) This theorem implies the fundamental result of Crandall-Liggett [3]: a part of the results of Martin [7] on ordinary differential equations; and the results of Webb [11] and Barbu [1] on the continuous perturbations of m-dissipative

operators. The details will be treated in [6].

2) Yorke announces in [12] that he obtained a similar result.

<u>Proof of Theorem III.</u> Let $x_0 \in \overline{D(A)}$ and $\epsilon_n \neq 0$. Let n be fixed. Then for each $x \in \overline{D(A)}$, we set

$$\begin{split} \delta_n(\mathbf{x}) &= \sup \{ \ \delta \ ; \ 0 < \delta \le \epsilon_n \ \text{and there exists} \ [\mathbf{x}_\delta, \mathbf{y}_\delta] \in \mathbf{A} \\ &= \text{such that} \ ||\mathbf{x}_\delta - \mathbf{x} - \delta \mathbf{y}_\delta|| \le \delta \ \epsilon_n \}. \end{split}$$

Then $\delta_n(x)$ are positive by the assumption. Therefore, inductively, we can choose $h_k^n > 0$ and $[x_k^n, y_k^n] \in A$, for $k=1,2,\cdots$, so that they satisfy the following:

(i)
$$x_0^n = x_0;$$

(ii)
$$(1/2) \delta_n(x_{k-1}^n) < h_k^n \le \varepsilon_n$$
, for k=1,2,...;

(iii)
$$\|x_k^n - x_{k-1}^n - h_k^n y_k^n\| \le h_k^n \epsilon_n$$
, for k=1,2,...

Then we set $t_i^n = \sum_{k=1}^i h_k^n$. We may show that $t_i^n \to \infty$ as $i \to \infty$. For the purpose, we use the following estimate:

$$(3) \quad \|x_{\mathbf{i}}^{n}-x_{\mathbf{j}}^{n}\| \leq (t_{\mathbf{i}}^{n}-t_{\mathbf{j}}^{n})\|y_{\mathbf{k}}^{n}\| + \epsilon_{n}(t_{\mathbf{i}}^{n}-t_{\mathbf{k}}^{n}) + \epsilon_{n}(t_{\mathbf{j}}^{n}-t_{\mathbf{k}}^{n})$$
 for any $i \geq j \geq k \geq 1$. This estimate may be verified by the induction for (i,j) with $i \geq j \geq k$ for each fixed $k \geq 1$, by using Lemma 1 as in the proof of Lemma 2.

Now, suppose that $t_i^n \to s_0^- < +\infty$ as $i \to \infty$, for contradiction. Then by (3), we see that there exists $u_0 \in \overline{D(A)}$ such that $x_i^n \to u_0^-$ as $i \to \infty$. By the assumption, we can choose $\delta > 0$ and $[u_\delta^-, v_\delta^-] \in A$ such that $0 < \delta \le \varepsilon_n^-$ and

$$\|\mathbf{u}_{\delta} - \mathbf{u}_{0} - \delta \mathbf{v}_{\delta}\| \leq \delta \varepsilon_{n}/2.$$

Since $\delta_n(\mathbf{x}_i^n) \to 0$ and $\mathbf{x}_i^n \to \mathbf{u}_0$ as $i \to \infty$, there exists i_0 such that $\delta_n(\mathbf{x}_i^n) < \delta$ and $||\mathbf{x}_i^n - \mathbf{u}_0|| \le \delta \varepsilon_n/2$ for $i \ge i_0$. Then we have

$$\|\mathbf{u}_{\delta} - \mathbf{u}_{0} - \delta \mathbf{v}_{\delta}\| \le \delta \varepsilon_{n} \text{ for } i \ge i_{0}$$
,

which is contrary to the definition of $\delta_n(x_i^n)$. Q.E.D.

Remark. The construction and properties of the DS-limit solution of evolution equations will be studied more systematically and generally in [6].

Acknowledgement. The author would like to express his hearty thanks to Prof. I. Miyadera and Mr. T. Takahashi for their valuable advices.

Refferences.

- [1] V. Barvu, Continuous perturbations of nonlinear m-accretive operators in Banach spaces, Boll. U.M.I. 6(1972), 270-278.
- [2] Ph. Bénilan, Equations d'évolution dans un espace Banach quelconque et applications, Thèse Orsay, 1972.
- [3] M. Crandall and T. Liggett, Generation of semigroups of nonlinear transformations in general Banach spaces, Amer. J. Math., 93(1971), 265-298.
- [4] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
- [5] N. Kenmochi and S. Oharu, Difference approximation of nonlinear evolution equations, Publ. Res. Inst. Math. Sci., 10(1974), 147-207.
- [6] Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, in preparation.
- [7] R. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc., 179(1973), 399-414.
- [8] S. Rasmussen, Nonlinear semi-groups, evolution equations and productintegral representations. Math. Inst. Aarhus Univ.,

Various Publ. Series, 20(1971/72).

- [2] T. Takahashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of semigroups of nonlinear contraction, to appear.
- [10] ______, Convergence of difference approximation of nonlinear evolution equations and generation of semigroups, to appear.
- [11] G. Webb, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Funct. Anal., 10(1972), 191-203.
- [12] J. Yorke, Ordinary differential equations and evolutionary equations, preprint.