On certain nonlinear parabolic variational inequalities in Hilbert spaces

Ву

Nobuyuki KENMOCHI

Department of Mathematics, Faculty of Education,
Chiba University

1. <u>Introduction</u>. Let H be a (real) Hilbert space and T be a fixed positive number. Let $\{\phi_t; 0 \le t \le T\}$ be a family of proper l.s.c. (lower semicontinuous) convex functions on H. Assume that for each $v \in L^2(0, T; H)$ the function $t \to \phi_t(v(t))$ is measurable on (0, T). Then for any given $u_0 \in H$ and $f \in L^2(0, T; H)$ we consider the Cauchy problem:

(E)
$$(d/dt)u(t) + \partial \phi_t(u(t)) \ni f(t)$$
 on $[0, T]$,

(I)
$$u(0) = u_0$$
,

where for each t, $\vartheta\phi_t$ is the subdifferential of ϕ_t . This kind of Cauchy problem has been studied by many mathematicians; for instance, we can recall results of Brézis [4], Watanabe [10], Moreau [8], Péralba [9], Attouch-Damlamian [2], Attouch-Bénilan-Damlamian-Picard [1] and the author [5].

In [4] Brézis treated the case of

$$\phi_t = \phi + I_{K(t)}$$

where φ is a time-independent proper l.s.c. convex function on H, K(t) is a closed convex subset of H with parameter t and $\mathbb{I}_{K}(t)$ is the indicator function of K(t). Also, Watanabe [10] and

Attouch-Damlamian [2] dealt with this Cauchy problem. But they required that the effective domain $D(\phi_t)$ of ϕ_t is invariant with respect to the time t. By the effective domain of ϕ_t we mean the set of all $x \in H$ such that $\phi_t(x) < \infty$. In this paper we are going to treat the case where the effective domain of ϕ_t may change with the time t.

As is easily seen, the evolution equation (E) is translated into the following parabolic variational inequality:

$$(V) \left\{ \begin{array}{l} \int_0^T (u'(t) - f(t), u(t) - v(t)) dt \leq \Phi(v) - \Phi(u) \\ \\ \text{whenever } v \in D(\Phi) \equiv \{v \in L^2(0, T; H); \phi_t(v(t) \in L^1(0, T)\}, \end{array} \right.$$

where Φ is a function on $L^2(0, T; H)$ given by

$$\Phi(v) = \begin{cases} \int_{0}^{T} \phi_{t}(v(t))dt & \text{if } v \in D(\Phi), \\ \infty & \text{otherwise.} \end{cases}$$

Therefore we consider the Cauchy problem for this parabolic variational inequality (V) instead of (E).

- 2. Formulation of a problem $P[\phi_t, f, u_o]$. Let us formulate a problem precisely. Denote by D_o the effective domain of ϕ_0 , and by D the closure of D_o in H. Then, given $u_o \in D$ and $f \in L^2(0, T; H)$ we formulate the problem $P[\phi_t, f, u_o]$ to find a function $u \in C([0, T]; H)$ such that
 - (a) $u'(0) = u_0;$
 - (b) $u \in D(\Phi)$ (and hence $\phi_t(u(t)) < \infty$ for a.e. $t \in [0, T]$);

- (c) $u' = (d/dt)u \in L^2(0, T; H);$
- (d) (V) holds.

Such a function u is called a strong solution of $P[\phi_t, f, u_o]$, while a function $u \in C([0, T]; H)$ is often called a weak solution of $P[\phi_t, f, u_o]$, if conditions (a), (b) and the following (e) are satisfied:

(e)
$$\begin{cases} \int_{0}^{T} (v' - f, u - v) dt - \frac{1}{2} \|u_{0} - v(0)\|^{2} \\ \leq \Phi(v) - \Phi(u) & \text{whenever } v \in D(\Phi) \text{ and } v' \in L^{2}(0, T; H). \end{cases}$$

Before stating a sufficient condition for a strong or weak solution of $P[\phi_t, f, u_0]$ to exist, we consider a simple example.

Example. Let us take $H = L^2(0, 1)$ and consider a function β as follws:

$$\beta(r) = \begin{cases} r & \text{if } r < 0, \\ \tan r & \text{if } 0 \le r < \pi/2, \\ \infty & \text{if } r \ge \pi/2. \end{cases}$$

Define proper l.s.c. convex functions ϕ^1 and ϕ^2 on $L^2(0, 1)$ by the following:

$$\phi^{1}(v) = \frac{1}{2} \|v\|^{2},$$

$$\phi^{2}(v) = \int_{0}^{1} \int_{0}^{v(x)} \beta(r) dr dx.$$

Then we set

$$\phi_{t}(v) = \begin{cases} \phi^{1}(v) & \text{if } t \in [0, \pi/2), \\ \phi^{2}(v) & \text{if } t \in [\pi/2, 2]. \end{cases}$$

and consider the Cauchy problem:

(*)
$$\begin{cases} (a) \int_{0}^{2} (u', u - v) dt \leq \Phi(v) - \Phi(u) & \text{for all } v \in D(\Phi), \\ (b) & u(0) = u_{0} \in L^{2}(0, 1). \end{cases}$$

Clearly, the inequality (a) is equivalent to the evolution equation

$$u' + \partial \phi_t(u) = 0$$
 on [0, 2].

If this Cauchy problem (*) has a strong solution u, then we have

$$u(t) = u_0 e^{-t}$$
 on [0, $\pi/2$],

because $\vartheta \varphi_t$ is the identity for any $t \in [0, \pi/2)$. Moreover, the function u must satisfy

(**)
$$\begin{cases} u' + \partial \phi^{2}(u) = 0 & \text{on } [\pi/2, 2], \\ u(\pi/2) = u_{0}e^{-\pi/2} & (\in D(\phi^{2})), \end{cases}$$

that is, u is a strong solution of the Cauchy problem (**) on $[\pi/2, 2]$. Therefore $u_0e^{-\pi/2}$ must be contained in the effective domain $D(\phi^2)$ of ϕ^2 . But this is impossible if u_0 is sufficiently large, because

$$D(\phi^2) \subset \{\rho \in L^2(0, 1); \rho(x) < \pi/2 \text{ a.e. } x \in (0, 1)\}.$$

Thus for a sufficiently large initial data, the Cauchy problem (*) cannot have a strong or even weak solution. Such a phenomenon arises from the fact that the effective domain of ϕ_t undergoes a change from a large set into a small set suddenly at the time $\pi/2$, so we can say about the problem $P[\phi_t, f, u_o]$ that in oder for a strong solution to exist the effective domain of ϕ_t should move smoothly with the time in a sense, in particular when the

effective domain of ϕ_{t} is decreasing.

Assumption. For each te[0, T], xeH with $\phi_t(x) < \infty$ and se[t, T], there is an element $\hat{x} \in H$ such that

$$\|\hat{x} - x\| \le \text{const.} \|t - s\|,$$

$$\phi_{s}(\hat{x}) \leq \phi_{t}(x) + \text{const.}|t - s|(1 + ||x||^{2} + ||\phi_{t}(x)||),$$

where these constants are independent of t, x, s and \hat{x} .

By the way, the family $\{\phi_t\}$ in the Example does not satisfy the Assumption at $t=\pi/2$. If we exchange ϕ^1 for ϕ^2 in the Example, the family $\{\phi_t\}$ given by this exchange satisfies the Assumption. More generally, if $\phi_t(x)$ is a decreasing function in t, then the Assumption is trivially satisfied.

3. <u>Main results</u>. Under the Assumption mentioned in the previous section, we establish the following existence theorem.

Theorem 1. i) If $u_0 \in D_0$ and $f \in L^2(0, T; H)$, then $P[\phi_t, f, u_0] \text{ has a unique strong solution } u \text{ such that } t \to \phi_t(u(t))$ is bounded on [0, T].

ii) If $u_0 \in D$ and $f \in L^2(0, T; H)$, then $P[\phi_t, f, u_0]$ has a unique weak solution u such that for any positive number δ ,

$$u' \in L^2(\delta, T; H),$$

 $t \rightarrow \phi_t(u(t))$ is bounded on [δ , T].

So far as a weak solution is concerned, we see the following:

Let u_0 be any element of D and f be any function in $L^2(0, T; H)$. Then a function $u \in L^2(0, T; H)$ is a weak solution of $P[\phi_t, f, u_0]$ if and only if there are sequenses $\{f_n\} \subset L^2(0, T; H), \{u_{0,n}\} \subset D$ and $\{u_n\} \subset C([0, T]; H)$ such that each u_n is a strong solution of $P[\phi_t, f_n, u_{0,n}]$ and

$$f_n \rightarrow f$$
 in $L^2(0, T; H)$,
 $u_{0,n} \rightarrow u_0$ in H,
 $u_n \rightarrow u$ in $L^2(0, T; H)$

as $n \rightarrow \infty$.

Moreover, for any given $u_0 \in D$, define a multivalued operator M_{u_0} from $L^2(0, T; H)$ into itself by the following:

 $\mathbf{f} \in \mathbf{M}_{\mathbf{u}_{0}}(\mathbf{u}) \Longleftrightarrow \mathbf{u} \text{ is a weak solution of } \mathbf{P}[\phi_{\mathbf{t}}, \ \mathbf{f}, \ \mathbf{u}_{0}].$

Then we see that $f\in M_{u_0}(u)$ if and only if $u\in D(\Phi)$ and (e) holds, and have an interesting result about the operator M_{u_0} .

Theorem 2. For each $u_0 \in D$, M_{u_0} is a maximal monotone operator in $L^2(0, T; H)$.

Remark. In particular, when ϕ_t is time-independent, Theorem 2 was proved by Brézis [3].

Remark. Detail proofs of Theorems 1 and 2 are found in [6] and [7], respectively.

4. Construction of a strong solution. Finally we state how to construct a strong solution of $P[\phi_t, f, u_o]$. Here we

employ a finite difference method with respect to t.

For each positive integer N we set

$$\varepsilon_{\rm N}$$
 = T/N and $f_{\rm N,n}$ = $\varepsilon_{\rm N}^{-1} / \frac{\varepsilon_{\rm N}^{\rm n}}{\varepsilon_{\rm N}^{\rm (n-1)}} f(t) dt$, n = 1, 2,..., N,

and successively define a sequence $\{u_{N,n}\}_{n=1}^{N}$ as follows:

$$u_{N,0} = u_{o}$$

(***)
$$(u_{N,n} - u_{N,n-1})/\epsilon_{N} + \partial \phi_{\epsilon_{N}n}(u_{N,n}) \ni f_{N,n}, n=1, 2,...,N;$$

when the element $u_{N,n-1}$ in the (n-1)-th step is defined, the next element $u_{N,n}$ is chosen so that the relation (***) is satisfied. In fact, such an element $u_{N,n}$ exists, since $\vartheta\phi_{\varepsilon_N}$ n is maximal monotone in H.

Now, we put

$$\begin{array}{l} u_{N}(t) = u_{N,n} \\ \\ \nabla_{N} u_{N}(t) = (u_{N,n} - u_{N,n-1})/\epsilon_{N} \end{array} \right\} \mbox{ if } t \in [\epsilon_{N}(n-1), \ \epsilon_{N}n), \\ n = 1, 2, ..., N$$

to obtain two sequences $\{u_N\}_{N=1}^\infty$ and $\{\nabla_N u_N\}_{N=1}^\infty$ of simple functions. If $u_0 \in D_0$ and $f \in L^2(0, T; H)$, we can show by using the Assumption that $\{u_N\}$ is bounded in $L^\infty(0, T; H)$ and $\{\nabla_N u_N\}$ is bounded in $L^2(0, T; H)$. So we can choose a weakly* convergent subsequence $\{u_N\}$ and a weakly convergent subsequence $\{\nabla_N u_N\}$:

$$u_{N_k} \rightarrow u$$
 weakly* in $L^{\infty}(0, T; H)$

and

$$\nabla_{N_k} u_{N_k} \rightarrow v$$
 weakly in $L^2(0, T; H)$.

Then we have u' = v and can show that the limit u is the required strong solution.

ACKNOWLEDGEMENT. The author would like to express his hearty thanks to Professor H. Brézis who kindly gave the author many valuable advices about Theorms 1 and 2.

References

- [1] H. Attouch, Ph. Bénilan, A. Damlamian and C. Picard, Équations d'évolution avec condition unilatérale, C. R. Acad, Sci. Paris 279(1974), 607 609.
- [2] H. Attouch and A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, (to appear).
- [3] H. Brézis, Problèmes unilatéraux, J. Math. Pures Apple. 51 (1972), 1 168.
- [4] H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps, C. R. Acad. Sci. Paris 274(1972), 310 312.
- [5] N. Kenmochi, The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities, Proc. Japan Acad. 50(1974), 714 717.
- [6] N. Kenmochi, Some nonlinear parabolic variational inequalities, (to appear).
- [7] N. Kenmochi and T. Nagai, Weak solutions for certain nonlinear time-dependent parabolic variational inequalities, (to appear).
- [8] J. J. Moreau, Problème d'évolution associé à un convexe mobile d'un espace hilbertien, C. R. Acad. Sci. Paris 276 (1973), 791 794.

- [9] J. C. Péralba, Un Problème d'évolution relatif à un opérateur sous-différentiel dépendant du temps, C. R. Acad. Sci. Paris 275(1972), 93 96.
- [10] J. Watanabe, On certain nonlinear evolution equations, J. Math. Soc. Japan 25(1973), 446 463.