On the stability of incompressible viscous fluid motions past objects by Kyuya MASUDA (Dept. of Math., Univ. of Tokyo, Komaba) Let \mathcal{E} be the exterior domain in 3-space. Let us consider the steady flow in \mathcal{E} governed by (1) $$\begin{cases} -\sqrt{\Delta} w + (w \cdot \nabla) w + \nabla P_1 = 0, \\ \sqrt{w} w = 0 \end{cases}$$ $$(2) \qquad w(x) \longrightarrow w^{\infty} \qquad (|x|) \longrightarrow w$$ (3) $$W(y) = b(y) \qquad (y(\in \partial \mathcal{E})$$ where the viscousity coefficient \forall is a positive constant, \mathbf{w} is some fixed constant vector, \mathbf{b} is some prescribed function on \mathcal{E} . R. Finn showed that if w^{∞} - b is "small" enough, then there exists a smooth solution w with Given the disturbance u_o (\in $L^2(\mathcal{E})$) to w . Then the perturbed flow v is gorvened by (4) $$\begin{cases} \frac{\partial V}{\partial t} - \sqrt{\Delta V} + (V \cdot \nabla)V - \nabla \rho_2 = 0 \\ \text{div } V = 0 \end{cases}$$ (5) $$\lim_{|x| \to \infty} v(x,t) = w^{\infty}, \quad v(x,t) = b(x) \quad (x(t) \in S_{x}(t) = 0)$$ $$\lim_{|x| \to \infty} v(x,t) = w(x) + u_{0}(x)$$ $$\lim_{|x| \to \infty} v(x,t) = w(x) + u_{0}(x)$$ Now our result is: Assume that (i) sup $$|x|/w(x) - w^{\alpha}| < \frac{1}{2}$$ (ii) $$\nabla w \in L^{3}(E)$$ Then evry weak solution v of (4), (5) becomes analytic (in t and x) after some definite time T_0 , and then converges to steady flow w uniformly in x on e like $|v(x,\pm)-v(y)| \leq M + \frac{1}{8} (t - x)$ (M; constant)