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"What is 1l divided by 2 divided by 3?" Two answers to
this question are possible according as we interpret it as
"(1 divided by 2) divided by 3" or "1 divided by (2 divided
by 3)". The ambiguity of the question of this sort increases
as the number df "divided by" in the question gets larger.
The value of "x divided by x

divided by x divided by

0 1 2
. divided by vxn" can be uﬁiquely determined provided the
precedence (i.e., total order) between these n fdivided by"
is given. Thﬁs, by assigning the precedence in all possible
ways (n! ways), we shall study how the valge of "xo divided

by ... divided by xn" behaves as the precedence varies. We

formalize this argument in the following way.



15 Xos e be distinct denumerable formal
variables. Let G Dbe the free commutative group generated by

these variables. Let Srl be the set of all permutations on

{1, 2, ..., n} , i.e., the symmetric group of degree n. (We
put SO = {1}.) As is customary, we denote the elements of

Sn by

1 2 ... n
o(1)o(2)...0(n)/ .
For any Gef%l and Kc{l, 2, ..., n} whose cardinality

|[K| = k, we define ox €8, as follows. Let f be the order

isomorphism from K to {1, 2, ..., k} , and g be the order
1

2

isomorphism from o(K) to {1, 2, ..., k}. We put 0K=g°0°f_
where , denotes the composition of mappings.

We now define the mapping Vn : Sn +~ G as follows.

(1) Vo(l) = X5 where 1 1s the sole element of SO.

(ii1) For n>0, Vn(o)=Vk_l(o (o

-1
{l,...,k-l})(vn—k {k+1,...,n}))

where k=o—l(n).

It i1s easily seen that the above defined mapping gives the

evaluation of the following fraction:



o(1l)

o(2)

o(k) = n

o(n)
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where 0(J) denotes the length of the bar between X571 and

Xj' We call this fraction the fraction associated with 0.
For example, if o = (é‘i 3 g), VM(G) is calculated thus:
XO x0 x3 N -1
Vu(c) = —3 = 2 1
il X Xy
—_1 — 1
X5 X5
4
*3
2
Xy
-1 -1.-1 _ -1,-1 -1
(x4(xy/%5) )(x3x4 ) T o= (xg(xyx, 7) )(x3 xy)
_ -1 -1
= xoxl x2x3 Xy -

Evidently, Vn(O? can be written in the form



where Ei = +1.

Hence, instead of Vn’ we may consider the mapping
. n+l
P8, > (£,

defined by 5%(0) =»(€O’ €15 s en) = €4€p---€ .

n+l

For any € e{+} (instead of +1 (-1) we simply write.

+ (=) ), we put

1 ep-1
N_(e) —lffn edl.

Namely, Nn(e) is the number of permutations o¢ such that

C/Pn(o) = g. We also put

M_ = max {Nn(e)le e{i}n+1}.

The meanings of Nn and Mn might be interpreted as follows:
Let us fix some n, and consider the set of all fractions
associated with oa's 1in Sn' We call it the fraction language
of degree n. Each element of the fraction language 1s said
to be a sentence. Then Vn may be considered as giving a
semantical interpretation (in G) of each sentence. Thus, the
fact that 93“0) =_95(T) means that the sentences o0 and =
are talking about the (semantically) same thing though they may

N (P, (9))

be syntactically distinct. Hence, for any o QSn,
gives the cardinality of the class semantically equivalent to
c. Mn denotes the cardinality of the largest class in this

sense.
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In the following, we investigate the values of Mn' First
note that for any cesS (n2 1), we have edel = +-, where
gn(g) = € = eyeq...€ . Later it is also proved that Nn(s) # 0
if €9€1 = +-., For small n, Mn 1s easily calculated directly

as follows:

My =My =M, =1, My =2, M =5, M =16.

0 1 2 3 5
We also list the values of N5:
N5( oo ).= N5( bttt ) = 1,
Ng( oot ) = Ng( 4—tbbo ) = b,
Ng( #=-mt= ) = N 4=ttt ) = 9,
NS( to——tt ) = N5( t=tt—= ) = 6,
Ng( 4mmtoe ) =-N5('+f+—++ ) =9,
Ng( 4=—t=t ) = Ne( +-+-+-) = 16,
Ng( #==tt- ) = NS( teteet ) = 11,
N5( Fomttt ) = NS( tote—mm ) = 4,
N5(€) =0 (otherwise),
Since n 1s dependent on the length of e (n = |g|-1,

where ]e[ 1s the length of <€), we henceforth write simply
N(e) in place of Nn(e). We shall deduce two recursive equations
for N(e). To do so, we define two sets of indices. Let

€= €pEy..Ey (n > }), where eie"{j}. We put,

= -+, 1 < n}VY{i =nle = -} (1)

I(e) ='{i|eisi+l



J(e) = {jlej_l = Es}, where ¥ = - and = +. (2)

Now, let us consider the fraction associated with some ce;ygl(e).
Let k = G_I(n), then by definition of Vn(c), we must have
€ = - and, if k # n, €rt1

we have the first recursive equation for N(e):

= +. This means k &I(e). Hence

N(e) = J(37]) Nlegeq.. e IN(E e ). (3)

i¢I(o)
The second recursive equation for N(eg) can be deduced
by paying attention to the index k = G_l(l). Then, again by

definition of V_, we must have that is, k € J(e).

k-1 T fxo
Thus we have the second recursive equation for N(e):

N(e) = J N(e (4)

€,...€ €. 740 ).

For any & ¢{+}" (n 2 0), we define E'&{i}n+2 by 6 = +-§.

Then the following lemma holds.

~s A—/
Lemma 1. N(§) = N(8), for any §.

Proof. By induction on n, where n = |§|+2. Suppose

that n 2 2 and that the lemma holds for smaller mn. Let

~/
"8 = 6263...5n (616-{f}’ n>2), so that ¢ = +-6253...6n and
§ = +—6263"'6n' Without losing generality, we may assume that
§, = +. Then we see that J(§) = J(§)V{2} and 2£J(8). Let

us compare J(8) and J(8) by using (4). If Jj > 2 then

j&€J(8) 4if and only if ;j&JKd) and N(+—62...6j_16j+1...6n}

~
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= N(+-62...Gj_léj+l...6n) by induction hypothesis. If Jj = 2

then 2¢€J(8) but 2¢(I(5) and the term N(2>(§) = N(+—5364
contributes to N(3). If j =1 then 1€J(3) and 1€J(5).

In this case the contribution of the corresponding term to N(g)

is  N(+8,8 3 ..8.) =0, since 6, = +. The contribution to N(S)
is N(+5,8,028) = N(+-55.0.5,) = N2 (®) by induction

hypothesis. By appeallng to (4) we see that the lemma holds

for n.

The Eq. (3), together with this lemma, enables us- to

calculate N(a™) and N(B™), where o and B" are defined

thus:
Let ay = BO =+ and o, = Bl = -, For i 21, we put
0y = 821+1 =+ and 0,44 =.Bzi = -. We then define
n n _
a’ = ag0,...0 and B = 3031---?n'

By Lemma 1, for n > 0, we have N(a™) = N(B™). By the

definition of o and Bn, we have

A
A

I(a™) = {i]1 <1 <n, 1: odd} (if n 2 1), (5)

(8™ ="{1i]1 <

A
e
| A

<n, i: even}l (if n 2 2).  (6)

Note that for n = 1 we have I(Bl) = {1}. Now, we calculate:

K =i€1§an§§:%)N(aOal' ERAICIUTERERIN

: -1 i-1 -1
=161%an§§_1)N<a IN(at)y. (n

'Gn



NGE™) =T ($T)N(BoBy . By IN(BB LB )
ie1(8™)
- ( i Nt )N (a™ 1y, (8)
1eI<s“)

Let us assume n > 2. Then, by adding (7) and (8), we

have, using (5) and (6),
n .
2n(a™) = ] (P NGt hN (1f n 2 2). (9)
i=1
Or, equivalently,
+l n . .
2N (o™ I(S)N(al)N(an'l) (1f n 2 1). (10)
i=0

Now, we can prove the following theorem.

Theorem 2. 17 € # an, 87 then Nn(e) < N(un) = N(Bn).

Proof. By induction on n.
(I) If n =0, 1, 2, the theorem is vacuously true.

(II) Suppose that n 2 3, and that the theorem holds for

+
any smaller n. Let € = €.€;...€ be any element in {+17 1

other than of or B8®. We want to show that N(g) < N(a™).
If €O€l # +- then we have N(g) = 0 < N(an). So we assume

that ¢

0

€, = +-. We put § = e2s3...en, so that we have

~
$

N(e) = N(T) = N(§).



~
It is easy to see that I(¥)AI() = #. Since n > 3 and

e # o or 8", there must be some k > 2 such that e, = ¢

k k+1°

Then, clearly, k ¢ I(¥H)VUI(T). Hence,
1(3H)VI(EH&, 2, ..., nl.

We calculate 2N(g) = N(E')+N(%L), by using (3):

e = T )(‘;_‘_?IL)N(eosl...ei_l)N(eiei+l...en>
+iél§ig>(?Ii)N<€o€1557752:3>N<€i€1+1---€n>
(¥ (322) N(“i_l.)N(“h_i).

e ED
< 121 B LRI Cad
= 2N(a").

In the above calculation, the first inequality (<) is derived

by the induction hypothesis, and the second one (<) follows

-1
(172

we conclude that the theorem.holds for this n.

since )N(ai-l)N(an_i) >0 for any 1i(1 £ i < n). Hence

By this theorem, the Eq. (10) becomes:



10

n !
- n
Maer = .E (i)MiMn-i (n21). (11)
i=0
We put:
M
Q, = =1 (n>0). (12)
Then we have
Q, = Q =1,
n } (13)
2(n+1)Qn+l = iZOQiQn-i (n>1).

We consider the generating function of Qn:

n
Oan . (14)

e 8

q(x) =
n

FProm (13) and (14) we obtain the following differential

equation:

q(0) =1,
2 (15)
2q'(x) = q“°(x) + 1.

The solution of (15) is:

q(x) = tan (%x + %)
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X
} 1 + tanzg
1l - tan %
X . X
} cos 5 + sin 5
X X
cos 5 = sin >

X X
1l + 2cos 5 sin 5
cos2£ - si 2X
2 ns

1l + sin x

cos x

L}

sec x + tan x. (16)
Now, for |x]| <g3 we have

5n)T X s (17)

and
2n, .2n
o 2°(2°721)B
tan x = J X (18)
n=1 (2n)! ’
where E2n and B2n denote Euler and Bernoulli numbers

respectively. (See e.g.[2])

From (12), (15), (16), (17) and (18), we finally obtain

Theorem 3.
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M2n = E2n (if n>0),
2n, ,2n
. _ 227 -1) R
M2n—l = ——_55_____'B2n (if n>1).

The values of Mn for ng<l0 1s as follows:

My =M, =M, =1, M

272, M8

3 =2, My =5, M = 16, Mg = 61,
M7 1385, M

= 7936, MlO = 50521.

9

We now consider the asymptotic behavior of Mn' First,

we guote the following theorem due to Konig (see [1]).

Theorem 4. Let h(z) = c,z
———— 190
|z] < R. Suppose that h has only one singular point =z = z

1 (cO#O) be meromorphic for

r

in |z| < R, and that z, 1s a simple pole. Then, for any

p such that [Zrl < p < R, we have

k+1

[¢] Z
= 2.1+ o(| 22| 1.

Cr+1

Since the singular points of g(z) are % + 2n7 (n: integer),

and they are all simple poles, we have by the above theorem

that

lim

L}
VT

In other words:
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Theorem 5.

n-=o n-1

ACKNOWLEDGEMENTS

The author wishes to express his sincerest thanks to
professor S. Hitotumatu and to Mr. C. Hosono for their valuable
suggestions. The author would also like to express his hearty
thanks to the refree for his careful reading of the manuscript

and his helpful suggestions.

REFERENCES

1. A.S.Householder, "The Numerical Treatment of a Single
Nonlinear Equation," Mc Graw-Hill, New York, 1970.
2. H.Rademacher, "Topics in Analytic Number Theory," Springer,

Berlin-Heldelberg~New York, 1973.



